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Dynamic Graphs

Graphs subject to update operations

Insert(u,v)
Typical updates: Delete(u,v)
ChangeWeight (u,v,w)



Dynamic Graphs

Initialize
Insert
Delete

Query

A graph



Dynamic Graph Algorithms

The goal of a dynamic graph algorithm 1is to support
query and update operations as quickly as possible
(usually much faster than recomputing from scratch).

G=(V,E)
Notation: n=1V|
m = [E]|

We will use also amortized analysis:

Total worst-case time over sequence of ops

# operations



Dynamic Graphs

Partially Dynamic Problems

Graphs subject to insertions only, or
deletions only, but not both.

Fully Dynamic Problems

Graphs subject to intermixed sequences
of insertions and deletions.




Dynamic Graph Problems

Support queries about properties on a
dynamic graph

Dynamic Connectivity (undirected graph G)
Connected(): Connected(x,V):

Is G connected? Are x and y connected in G?

Dynamic Minimum Spanning Tree
(undirected graph G)
Any property on a MST of G



Dynamic Graph Problems

Dynamic Transitive Closure (directed graph G)
Reachable(x,y):

Is y reachable from x in G?

Dynamic All Pairs Shortest Paths
Distance(x,y):

What is the distance from x to y in G?
ShortestPath(x,v):

What is the shortest path from x to y in G?



Dynamic Graph Problems

Dynamic Min Cut

MinCut(): Cut(x,vy):

Min cut? Are x and y on the same side of a
min cut of G?

Dynamic Planarity Iesting
planar():
Is G planar?

Dynamic k-connectivity
k-connected(): k-connected(x,y):
Is G k-connected?  Are x and y k-connected?



Dynamic Graph Problems

Dynamic (Approximate) Maximum Matching
Matching():

Maximum Matching?
ApproximateMatching():

Approximate Maximum Matching?
ValueofMatching():

Dynamic (Approximate) Minimum Vertex Cover
VertexCover():

Approximate Minimum Vertex Cover?
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Fully Dynamic Graph Connectivity

Maintain an undirected graph G under an intermixed sequence of
operations of the following type:

* insert(u,v) : Add a new edge (u,v)
* delete(u,v) : Remove edge (u,v) from G (assumes (u,v) in Q)

* connected(u,v) : Return yes 1f there is a path between u and v;
return no otherwise

Subproblem (basic ingredient) in many other problems
Minimum spanning trees, 2-connectivity, ...
Simple problem but lots of interesting ideas!
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Applications in Computational Biology

Eyal, Halperin: Dynamic maintenance of molecular surfaces under
conformational changes. Symposium on Computational Geometry
2005: 45-54

Eyal, Halperin: Improved Maintenance of Molecular Surfaces
Using Dynamic Graph Connectivity. WABI 2005: 401-413

Bajaj, Chowdhury, Rasheed: A dynamic data structure for flexible
molecular maintenance and informatics. SIAM/ACM Conference
on Geometric and Physical Modeling 2009, 259-270, 2009

Ulitsky, Shamir: Identification of functional modules using network
topology and high-throughput data. BMC Systems Biology 2007,
1:8
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connected(v,w)
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connected(v,w)
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insert(v,w)
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Observation

Without delete, a union-find data structure
would be just sufficient

24
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Reduce the
problem to a
problem on
trees (1.e.,
maintain a
certificate for
the property)

Maintain a
spanning
forest of the
graph

"

We will have to link trees, cut trees, and determine
whether two vertices are in the same tree 1n this forest



Operations we need to do on the forest

link(v,w) : Join two trees 1n the forest by inserting edge (v,w)
(assume v and w are in different trees)

cut(v,w) : Split a tree by deleting edge (v,w) (assume v and w
are adjacent in a tree)

findtree(v) : Return the tree containing vertex v in the forest
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Operations we need to do on the forest

link(v,w) : Join two trees 1n the forest by inserting edge (v,w)
(assume v and w are in different trees)

cut(v,w) : Split a tree by deleting edge (v,w) (assume v and w
are adjacent in a tree)

findtree(v) : Return the tree containing vertex v in the forest

Can do this in O(log n) per operation with several data
structures, e.g., ET-trees (Euler Tour trees)

We refer to those as dynamic tree data structures
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ET-trees

ET-tree 1s a balanced binary tree over the Euler tour of a tree.

Can perform link, cut and findtree in O(log n)
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But dynamic
tree data
structures are
not enough:
we still have a
problem with
deleting a tree
edge
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How do we find
out whether
there 1s a
“replacement” i':
edge for the

~—a-

forest or it
really got |
disconnected ?

35



Summarising so far

Tree Edge Non-Tree Edge
Insert Link Easy
Delete Cut, Easy

Replacement?
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To find a replacement,
need to traverse
one of the trees,
which can be

quite expensive.

Randomization
[Henzinger,
King]: sample
non-tree edges
in smaller tree

If sampling
fails, push
“sparse cut”
to upper level

Can we do this T '
deterministically? 37



Look 1n the
smaller tree:
¥ tree edge )
$¢ no replacement
W replacement

Wish to gain
something
(in amortized
sense) by
accumulating
information
as we do that

-
*****
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Each edge has
a level
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Each edge has
a level

Increase the
level of the
edges in the
smaller tree...
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Each edge has
a level

Increase the
level of the
edges in the
smaller tree...

...and of any |
edge discovered }
not to be a |
“replacement”

-
______
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Each edge has
a level

Increase the
level of the
edges in the
smaller tree...

...and of any |
edge discovered }
not to be a |
“replacement”

until you find a . ,
“replacement” S e
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Intuition:
Next time you
have to look
again for a

replacement...
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Intuition:
Next time you
have to look
again for a
replacement...

... ho need to
look at non-tree

edges with
label 1!
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Intuition:
Next time you
have to look
again for a
replacement...

... ho need to
look at non-tree

edges with
label 1!
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Keep on doing
that upon edge
deletions
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Keep on doing
that upon edge
deletions

Again,
increase the
level of the
edges in the
smaller tree...
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deletions

Again,
increase the
level of the
edges in the
smaller tree...

... and of any
edge discovered
not to be a
“replacement”

until you find a
“replacement”

52



Keep on doing
that upon edge
deletions

Again,
increase the
level of the
edges in the
smaller tree...

... and of any
edge discovered
not to be a
“replacement”

until you find a
“replacement”
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Terminology

G 1s the dynamic graph. F 1s a spanning forest of G.

An edge 1s either a tree edge or a non-tree edge.

Each edge has a level (.

G, 1s subgraph of G induced by edges of level > {.
G..&... G, ... GCG CG,=G

max — -

F, 1s subforest of F induced by edges of level > {.
F . .c...CF,C...C FFCF CF,=F

max
54



Invariants

Recall: F,; subforest of F induced by edges of level > £.

Will keep the following two invariants:

(Invariant 1) Each tree in F, (1.e., connected component in G)
has at most n/2¢ vertices

= At most (log n) levels

(Invariant 2) The forest F 1s a maximum spanning forest with
respect to the levels of the edges

=>» If (v, w) is a non-tree edge of level £, then v and w are
connected (i.e., in the same tree) in F,

=>» Ifatrec edge at level £ is deleted, then a replacement edge

(if there 1s one) must be of level < ¢
55






Observations

Initially all edges at level O (both invariants satistied)

Amortization argument: Levels of an edge can only
increase, so we can have < log n increases per edge

Intuition: When level of non-tree edge increased, it 1s
because we discovered that its endpoints are close
enough 1n F to fit 1n a smaller tree (higher level)

Increasing the level of a tree edge 1s always safe for
Invariant 2 (F 1s a maximum spanning forest) but it
may violate Invariant 1
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Invariant 1
IT| <n/2¢
'T,| <|T

> |T,|<n/2t

We can afford to push
all edges of T, from
level £ up to level £ + 1
(while still preserving
Invariant 1).

The replacement
edge stays at level £

58



Implementation

For each level (:
* Maintain F, in a dynamic tree data structure.
For each vertex v and each level {:

* Maintain a list of incident tree edges and a list of
incident non-tree edges at that level.

(So each vertex has 2 lists per level, 1.e., a total of
2 log n lists.)

Each vertex replicated in at most log n levels
Thus, space usage will be O(m + n log n)
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Suppose a tree edge of level £, say (v,w), 1s deleted. Then
(v,w) belongs to some tree T of F,




Suppose a tree edge of level £, say (v,w), 1s deleted. Then
(v,w) belongs to some tree T of F,

If there 1s a replacement at level £ then 1t must be incident
to one of the pieces of T




Suppose a tree edge of level £, say (v,w), 1s deleted. Then
(v,w) belongs to some tree T of F,

Let T, and T, be the pieces of T in F, containing respectively v
and w after deleting edge (v,w). W.l.o.g. assume | T, | <| T, |.




Suppose a tree edge of level £, say (v,w), 1s deleted. Then
(v,w) belongs to some tree T of F,

Let T, and T, be the pieces of T in F, containing respectively v
and w after deleting edge (v,w). W.l.o.g. assume | T, | <| T, |.

We increase to £+1 the edges of level £ in T,




Suppose a tree edge of level £, say (v,w), 1s deleted. Then
(v,w) belongs to some tree T of F,

Let T, and T, be the pieces of T in F, containing respectively v
and w after deleting edge (v,w). W.l.o.g. assume | T, | <| T, |.

We increase to £+1 the edges of level £ in T,

Next, we traverse all level £ non-tree
edges incident to T, to find a level-{
replacement edge.




Suppose a tree edge of level £, say (v,w), 1s deleted. Then
(v,w) belongs to some tree T of F,

Let T, and T, be the pieces of T in F, containing respectively v
and w after deleting edge (v,w). W.l.o.g. assume | T, | <| T, |.

We increase to £+1 the edges of level £ in T,

Next, we traverse all level £ non-tree
edges incident to T, to find a level-{
replacement edge.

If a traversed edge is not a
replacement we increase its
level to £+1




Suppose a tree edge of level £, say (v,w), 1s deleted. Then
(v,w) belongs to some tree T of F,

Let T, and T, be the pieces of T in F, containing respectively v
and w after deleting edge (v,w). W.l.o.g. assume | T, | <| T, |.

We increase to £+1 the edges of level £ in T,

Next, we traverse all level £ non-tree
edges incident to T, to find a level-{
replacement edge.

If a traversed edge is not a
replacement we increase its
level to £+1

If there 1s a replacement edge at
level £, then we are done




Suppose a tree edge of level £, say (v,w), 1s deleted. Then
(v,w) belongs to some tree T of F,

Let T, and T, be the pieces of T in F, containing respectively v
and w after deleting edge (v,w). W.l.o.g. assume | T, | <| T, |.

We increase to £+1 the edges of level £ in T,

Next, we traverse all level £ non-tree
edges incident to T, to find a level-{
replacement edge.

If a traversed edge is not a
replacement we increase its
level to £+1

What if there 1s a no
replacement edge at level (?




If there 1s no replacement edge of level £ we look for
replacement edges of level £ - 1

Let T, and T, be the trees in F,
after deleting (v,w) containing v
and w respectively

Assume | T, | <| T, |: then we
increase the level of edges of
level £-1 1n T to be £ and we start
traversing the non-tree edges of
level £-1 incident to T,




We keep going down like that level by level and either we
find a replacement edge or we conclude that no replacement
edge exists

As we go, we keep our mnvariants




Implementation

* We keep each forest F,CF, C ... CF
separately

logn

* The non-tree edges of level € are kept with
the nodes of F,
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Implementing the operations

connected(v,w) :

Check whether v and w are in the same tree of F,

insert(v,w) :

If v and w are in different trees of F,add the edge to F,
(1.e., at level 0). Otherwise, just add a non-tree edge of
level 0 to v and w.

Both invariants are still satisfied.
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Implementing the operations

delete(v,w):
Let £ be the level of edge (v,w).

* [f (v,w) 1s a non-tree edge of level £ then simply
delete 1t from vand win F;

» Otherwise, delete (v,w) from the trees containing 1t
nF,,F,,...,F,and find a replacement edge as
described before (at the highest possible level). If a
replacement edge (X,y) 1s found at level k < £, then
add (x,y)to F,, F,_, ..., F,
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Operations we need to do on the forests

For each {, wish to maintain the forest I, together
with all non-tree edges on level (.

For any vertex v, wish to find the tree T, in F,
containing it

Want to be able to compute the size of T,

Want to be able to find an edge of T, on level £, if
one exists.

Want to be able to find a level £ non-tree edge

incident to T, 1f any.
73



Operations we need to do on the forests

Trees in Fymay be cut (when an edge is deleted) and
linked (when a replacement edge is found, an edge 1s
inserted or the level of a tree edge 1s increased).

Moreover, non-tree edges may be introduced and
any edge may disappear on level £ (when the level
of an edge 1s increased or when non-tree edges are
inserted or deleted).

All this can be done 1n O(log n) time (by suitably
augmenting ET-trees)
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Analysis

* Query takes O(log n)

 Insert takes O(log n) time + charge the time
to increase the level of the edge. Each level
increase costs O(log n) so it O(log’n) total.

* Delete cuts and links O(log n) forests +
level increases (charged to insert). Overall 1t
takes O(log’n)
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Best Bounds
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[.ower Bounds
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Open: Close the Gaps
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Open Problems

Deterministic algorithm with O(polylog n) update and query
in the worst case?

Deterministic / randomized algorithm with O(log n) update
and query?

Deterministic / randomized algorithm with o(log n) update
and O(polylog n) query?
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