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Non posso non ringraziare gli amici “romani” (Fabiana, Marcello, Silvano,
Roberta, Valeria, Giovanni, Luca, Stefania, Carlo, Paolo, Giuseppe, Clara,
ecc.) ed alberobellesi (Vittorio, Francesca, Scupett, Ciccio, Leo, ecc.) per
avermi supportato ed incoraggiato durante le scelte.

Desidererei ringraziare la mia famiglia: mamma Silvana, papà Giuseppe,
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Abstract

The polarimetric observables in a SAR image possess an intrinsic physical in-
formation [1], what makes polarimetric data fit to unsupervised classification
[2], without need of a–priori information on the scene. Indeed, in natural
targets, like vegetation, surface, volume and sometimes double-bounce scat-
tering mechanisms are mixed, while backscattering from man-made targets
can be usually attributed to dihedrons, trihedrons and bare surfaces. In
many cases a radar resolution cell hosts more than one mechanism, although
an average or dominant scattering mechanism can be identified for the
purposes of classification. Following Chandrasekhar’s pioneering target
decomposition [3] and the generalized and systematic theory by Huynen [4],
a number of approaches to the interpretation of the scattering processes
and to the identification of scatterers have appeared in the open literature,
e.g., [5], [6], [7], [8].

Target decomposition theory laid down the basis for the classification
of radar images. In particular, the formalism worked out by Cloude [9],
[10] led to the introduction of an unsupervised classification scheme [11],
further augmented and improved by subsequent contributions [12], [13], [14],
also connecting the fuzzy logic theory [15], [16] with Wishart’s statistical
approach and electromagnetic modeling [17], [18].

Neural Network Algorithms (NNA) have been used in multispectral
images classification [19] and for change maps [20], but their application
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2 Abstract

to polarimetric SAR image classification is more limited. In supervised
schemes, the NNA were trained by Huynens parameters [21], or by the
polarimetric coherence matrix [T], H and α [22]. Unsupervised Neural Net
classifiers, based on Self-Organizing Maps (SOM) [23], have exploited Müller
matrix directly [24], polarization signatures [25], or parameters derived from
decomposition, like Huynen’s [26], or Freeman’s [27].

In this Thesis two novel unsupervised classification algorithms, named
PolSOM and TexSOM, for polarimetric data are proposed. Both algorithms
are SOM–based and have been tested on complex Italian landscapes, where
classification can become quite challenging and a limited use of polarimetric
data has been reported for undulating, heterogeneous and fragmented
scenarios.

AIRSAR fully polarimetric data from MAC-Europe Campaign and
RADARSAT–2 data acquired for a SOAR project (SOAR–1488) have been
classified and confusion matrices have been computed from ground truth
maps.

PolSOM and TexSOM performances have been compared with each
other and with consolidated and commonly used classification method, to
assess their potential. The Neural Network algorithms have been carefully
designed based on an in-depth analysis of their operation and, for the
first time at the author’s knowledge, both object-based and pixel-based
information are jointly used in Radar polarimetric image analysis. The
proposed classification algorithms are proving to be fairly versatile and not
strictly confined to polarimetric images, like the other considered algorithms.



Introduction

This thesis consists of three parts. The first chapter regards the state of
the art, where major developments in Radar polarimetry are reviewed. A
synoptic table is provided, which summarizes most of the classification
methods for polarimetric images. The rationale driving this research is also
highlighted.

The second chapter describes some widely used classification algorithms
of polarimetric data and provides details on the self organizing map method
in polarimetry.

Finally, two novel neural–networks based methods for unsupervised
classification of polarimetric SAR data are proposed, critically discussed
and compared with other unsupervised approaches.
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Chapter 1
State of the Art

This chapter aims at presenting a review of the development of Radar
polarimetry for Earth Observation and summarizes recent methods for
polarimetric data classification.

1.1 Radar polarimetry historical background

Reviews on the history of radar polarimetry can be found in literature [4],
[28]. Early stages are related to the development of radar technologies
and, in particular, to the progress during World War II. Initial work on
specific radar polarimetry is attributed to Sinclair [29], after whom the
scattering matrix was named. It is known that the information provided
by a fully polarimetric radar can be arranged in matrix form. In that
way, a single data can be viewed as a [2 × 2] complex scattering matrix
(simply named scattering matrix or Sinclair matrix) whose entries represent
measured backscattering for the four combinations of transmitted-received
polarizations in an orthogonal basis.

Later, an important pioneering work was done by Kennaugh [30], who
defined the concept of optimal polarization for a target in the monostatic
case and whose ideas were the basis of further advances throughout the fifties
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6 State of the Art

and sixties. From that period it is important to note: the works by Rumsey
[31] on the study of the transmission between elliptically polarized antennas
by making use of the impedance concept that appears in transmission
lines; the works by Deschamps ([32], [33]) on the geometrical representation
of polarization on the Poincaré sphere; the works by Kales [34] on the
polarization efficiency concept and those by Bohnert [35] on experimental
issues.

Advances took place in practical applications about the information pro-
vided by the scattering matrices, e.g., Graves [36] showed that the scattering
matrix can be reduced to diagonal form by sub-group transformations. That
eigenanalysis was further employed by Bickel ([37], [38]) to define some
quantities that entirely specify the scattered return from a body. By using
the Poincaré sphere, Copeland [39] demonstrated how to classify a target
according to its polarization transforming properties, whereas Lowenschuss
[40] postulated that it is possible to distinguish between objects of similar
shape by looking at polarization responses.

The subsequent important milestone in radar polarimetry was the work
carried out by Huynen [4] on target decomposition theory. He contributed a
first generalization of the decomposition techniques and renewed the interest
of the remote sensing community in radar polarimetry1.

After that, Ioannidis [41] reported a method to use polarization to
discriminate between radar targets and background clutter. The importance
of polarization in various inverse problems at different frequency bands
and with many applications, was theoretically shown by Boerner [42]. Two
reviews about polarization diversity in radar were also presented in [43] and
[44].

The understanding in the variation of the scattering coefficients with
polarization increased with the introduction of the concept of wave synthesis
[45] and a new way to display the polarization dependence of the radar
cross section (called polarization signatures (Sect. (2.1.5)). With those, the
polarization characteristics of a scene can be synthesized and studied at any
possible polarization by only measuring two orthogonal polarizations. These

1Principles of target decomposition theory are detailed in section (2.1.7).



1.2 Classification Techniques 7

studies, mainly based on two-dimensional plots, were extensively employed
in subsequent years for analyzing the scattering mechanisms present in
natural scenes. Apart from target decomposition, there have been more
recent notable developments in aspects regarding radar polarimetry. Some
important workshops focused on polarimetry were held, in which several
authors contributed significant advances [46]. Moreover, two useful books
have been published, illustrating the early applications of radar polarimetry
to remote sensing of the earth’s cover ([47], [48]) and including theoretical
modeling of natural targets, operational aspects of polarimetric SAR and
examples with real data. Finally, it is important to cite contributions from
some authors to calibration issues: Wiesbeck [49], Freeman ([50],[51]), Van
Zyl [52] and Sarabandi ([53], [54]).

1.2 Classification Techniques

The main advantage of polarimetry for constructing classification schemes
is that no a-priori knowledge about the scene is required because the
observables have an intrinsic physical meaning. This fact makes polarimetric
data ideal for unsupervised classification, as firstly attempted by Van Zyl
[2]. Since some supervised applications are present in literature, the general
breakdown for the classification methods in supervised (Sect. 1.2.3) and
unsupervised (Sect. 1.2.2) will be maintained.

Details on main classification techniques are now given. It is pointed out
that Target-Decomposition based methods (Sect.1.2.1) represent the foun-
dation in radar polarimetry analysis and almost all classification algorithms,
both supervised and unsupervised are based on them.

In section (1.2.4), attention is focused on neural networks approach,
whereas in section (1.2.5) a synoptic table (Tab. 1.1) showing the classifica-
tion of the algorithms is provided.

1.2.1 Target Decomposition

The main objective in radar remote sensing is to extract information about
a target by observing the backscattering.
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Wave interaction with natural or man–made media depends on geometry
(i.e., size, shape, orientation distribution and spatial arrangement of the
objects in the radar resolution cell) and dielectric properties of the target.
The interaction conveys the information on the target into the various
quantities measured by Radar. These observables can be arranged in
matrices, of which the scattering matrix is the basic one. A sound theory
relates the features of measurement matrices to the polarization features
of backscattering and in turn to the target characteristics (Sect. (2.1.7)).
For classification or for parameters retrieval, target can be characterized
through an average or dominant scattering mechanisms, resulting from the
various mechanisms co–existing in the scattering cell. However, identification
and quantification of the elemental mechanisms contributing to the overall
scattering can be a powerful tool for characterizing the target. This is
the core idea of Target Decomposition (TD) theory, whose aim can be
summarized as the decomposition of the cell–averaged matrix into a sum of
independent matrices representing independent elements and the association
of a scattering mechanism with each element in the cell.

Many targets of interest in radar remote sensing require a multivariate
statistical description due to the combination of coherent speckle noise and
random vector scattering effects from surface and volume. For previous
targets, it is of interest to generate the concept of an average or dominant
scattering mechanism for classification purposes or inversion of scattering
data. TD theorems are aimed at providing such an interpretation based on
sensible physical constraints such as the average target being invariant to
changes in wave polarization base. Summarizing, therefore, the aim of TD
is: to decompose or express the average matrix into a sum of independent
matrices representing independent elements and to associate a physical
mechanism with each element.

This decomposition leads to an easier interpretation of the scattering
processes. The first documented example of decomposition appeared in
[3], where Chandrasekhar proposed the decomposition of the scattering
by a cloud of small anisotropic particles into the sum of a conventional
Rayleigh scattering term plus a randomly polarized noise term (due to the
particle anisotropy). The generalization of the TD approaches to other
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scattering problems was addressed later by Huynen [4]. Since then, there
has been a great interest in the formulation of TD theorems for establishing
a unified scheme of analysis and a complete mathematical description of the
problem in order to avoid ambiguities and incoherences between alternative
approaches.

Following the indications of Cloude [55], TD theories can be classified
according to the kind of matrix that is effectively decomposed as a sum of
matrices and, also, to the type of analysis carried out with the averaged
matrices. There are three main groups of TD theories:

• those employing coherent decomposition of the scattering matrix;

• those based on the Müller matrix (Sect. (2.1.9)) and Stokes vector
(Sect. (2.1.11)), named also Huynen type decomposition;

• those using an eigenvector analysis of the covariance or coherency
matrix (Sect. 2.1.14).

There have been many cases of the three classes in the literature and
some hybrid approaches have also been proposed.

1.2.1.1 Coherent Decomposition Theorems

A first class of TD theorems are coherent decomposition theorems where
the scattering matrix is expressed as the complex sum of basis matrices like
the Pauli matrices (Sect. (2.1.12)). In this approach, with each basis matrix
an elementary scattering mechanism is associated.

It has been demonstrated [55] that an orthonormal basis is needed for
decomposition purposes to the generation of a polarimetric scattering vector
(vectorization of the scattering matrix), from which second order statistics
may be defined. One example in [55] shows how the scattering matrix
decomposition singles out four scattering mechanisms: single scattering
from a flat rough surface, diplane scattering with a relative orientation of
450 and orthogonal scattering, i.e., transforming each incident polarization
into its orthogonal state.
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Two other approaches to coherent TD, were formulated by Krogager
([6], [56]) and Cameron ([5], [57]) who have proposed specific but very
different linear combinations of the scattering matrix. Krogager postulated
the separation of a coherently averaged scattering matrix into a weighted
sum of the scattering matrices of a sphere, a diplane and an helix ([58], [59],
[60]). Note that, as shown in [55], this particular selection of elementary
targets entails that the single components of the decomposition are not
orthogonal and that the decomposition is not basis invariant.

In the Cameron approach, the scattering matrix is decomposed, again us-
ing the Pauli matrices, in terms of basis–invariant target features. Cameron
considers a class of targets termed symmetric, which have linear eigenpolar-
izations on the Poincaré sphere (Sect. (2.1.1)) and have a restricted target
vector parameterization [55]. Cameron was able to show that a general
scattering matrix can be expressed as a linear combination of two symmetric
components. One strength of this approach is that the three components are
orthogonal and that the minimum symmetric component has only one free
parameter, its absolute phase angle. These two examples highlight a major
problem with coherent decompositions: there are many ways of decomposing
a given scattering matrix, and without a–priori information, it is impossible
to apply a unique decomposition, even if the methods can be considered
unsupervised. Besides these drawbacks, the key issue of the averaging must
be pointed out. The fields scattered from a set of elementary targets in a
resolution cell add coherently to produce the field received by the Radar.
Since the received signal result from a variable interference between field
contributions, space–time fluctuations are observed. This phenomenon is
known as coherent speckle and must be accounted for when dealing with
data from a coherent radar (the physical origin of speckle is described in
[61]). To solve this problem, which can be treated as a multiplicative noise,
there are a number of techniques available (see for instance [62] for a review
on speckle filtering techniques and ([63], [64]) for speckle in the specific
polarimetric case), but they generally involve an incoherent averaging to
arrive at the second order statistics which are needed to represent this type
of noise. An improvement in Cameron decomposition was given by Touzi
[8]. He proposed a technique to identify pure targets in SAR images, based
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on the Cameron decomposition. This technique determines the nature of
a target on the maximum symmetrical component of the Cameron decom-
position. In conclusion, the TD theories based on coherent averaging of
the scattering matrix are exposed to problems due to speckle, so they are
not appropriate when applied to radar remote sensing of natural random
targets like vegetation. Nonetheless, they are still suitable when the scene
is dominated by a single scattering element, or a few of them and, under
certain specific conditions, a radar with high resolution is employed [58].

1.2.1.2 Müller matrix and Stokes vector Decomposition Theo-
rem

This class of TD theories is based on matrices resulting from an incoherent
averaging, thus avoiding the effect of coherent speckle. As an example of
the application of the target vector formalism to random media scattering
it is important to consider the Mischenko decomposition [65]. Even if that
method was initially applied to the problem of multiple scattering from a
cloud of particles, he showed that there is a simple but important relationship
between the coherent and incoherent multiple scattering contributions and
some implications of this result for remote sensing applications have been
explored [66]. Müller matrix based decomposition Theorem, also named
Huynen type decompositions, because he was the first to propose such a
method [4], usually works with the Müller matrix. Huynen type theories
attempt the extraction of a single scattering matrix from the averaged
data and the remainder is assigned to a distributed target or a “noise”
contribution, but not to other single scattering component. Other examples
in this sense are Chandrasekhar decomposition [3] and the Barnes/Holm
decomposition. The physical interpretation of the coherency or covariance
(Sect. (2.1.13)) matrix had also been addressed by a particular case of a
Huynen type decomposition which was proposed by Freeman ([67], [68], [7]).
Freeman decomposition models the covariance matrix as the contribution
of three scattering mechanisms:

• volume scattering, where a canopy of scatterers is modeled as a set of
randomly oriented dipoles;
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Figure 1.1: Inversion of the Freeman decomposition parameters [69].

• double-bounce scattering, modeled by a dihedral corner reflector;

• surface or single-bounce scattering, modeled by a first-order Bragg
surface scatterer.

In Fig. 1.1 the scheme employed to invert the Freeman decomposition is
shown.

It was demonstrated [55] that it is not applicable to a wide range of
scattering problems. However, when applied to some observations of mature
forests it has been quite useful for discrimination and classification purposes.

1.2.1.3 TD based on the eigenvector analysis of the covariance
or coherency matrix

The third and final class is represented by eigenvector decompositions of the
coherency or covariance matrix (Sect. (2.1.14)). This class of TD theories is
also based on matrices resulting from an incoherent averaging, but the goal
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of the eigenvectors-based TD analyses is to represent the averaged data as
a summation of single scattering mechanisms. The selection of these single
scattering mechanisms is based on statistical independence between them.
At first sight, the TD based on eigenvector analyses has two fundamental
advantages:

1. The eigenvalue problem is basis invariant;

2. The solution of the problem leads to a diagonalization of the coherency
matrix, thus yielding statistical independence between the set of
scattering processes;

The development of this last class of TD theories can be considered quite
recent, since it started about the middle 1980s. The starting point was a new
formalism presented in [9] for describing depolarizing systems. Although
the physical interpretation of this theory was clear since the beginning, its
application to remote sensing still took some years. In the meantime, the
complete algebraic description of this formalism was rigorously formulated
by Cloude([10], [70]). This was the first example where an eigenvector
decomposition of the coherency matrix was shown. Cloude identified an
important basis invariant parameterization in terms of three eigenvalues and
a set of angles (obtained from the unitary eigenvectors). These parameters
were related to physical scattering mechanisms in the scene and, for the
special case of reflection symmetry, were used to model the random media
problem as a single scattering mechanism with a degree of disorder, the
entropy, consisting in a logarithmic sum of eigenvalues.

1.2.2 Unsupervised

Turning back to the interpretation of the different parameters that appear
when the eigenvector decomposition is performed, besides entropy, two new
parameters with a physical meaning were defined by Cloude in [11]: an angle
related to the type of scattering mechanism (alpha), and an orientation angle
of a canonical target that represents the scattering mechanism (beta) (Sect.
(2.1.14)). Moreover, [11] presents a classification scheme for polarimetric
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SAR images based on the combination of entropy and alpha. An additional
parameter, called anisotropy, was proposed in [12] in order to form, together
with entropy and alpha, a useful set of parameters for classification purposes.
After the introduction of H/A/α classification algorithm, a lot of hybrid
algorithms were proposed. In quite all this new methods, the Cloude’s
parameters are used to train supervised algorithms, or to define decisions
rules.

The first improvement in H/A/α was the assumption of the complex
Wishart distribution for the polarimetric covariance matrix (Sect. (2.1.13))
[13]. In this algorithm, Cloude’s method was used to initially classify the
polarimetric SAR image and then, from the initial map, a training set is
derived for a maximum likelihood classifier based on the Wishart distribution.
The deficiency of the previous approach was that the classification result
lacked details, because of the preset zone boundaries in the H and α plane.
Indeed, with that classification method, clusters may fall on the boundaries
and more than one cluster may be enclosed in a zone [14]. In order to solve
this problem, a new solution was proposed by [14] (Sect. (2.1.15)). Unlike
other algorithms that classify pixels statistically and ignore their scattering
characteristics, the algorithm proposed by Lee not only uses a statistical
classifier, but also preserves the purity of dominant polarimetric scattering
properties. In brief, the algorithm uses a combination of a scattering model-
based decomposition developed by Freeman and Durden and the maximum
likelihood classifier based on the complex Wishart distribution. The first
step consists of the application of the Freeman and Durden decomposition
to divide pixels into three scattering categories: surface scattering, volume
scattering, and double-bounce scattering. To preserve the purity of scattering
characteristics, pixels in a scattering category were restricted to be classified
with other pixels in the same scattering category. A class initialization
scheme was also devised [1.2] to initially merge clusters from many small
clusters in each scattering category by applying a merge criterion developed
on the basis of the Wishart distance measure. Then, the iterative Wishart
classifier was applied. The stability in convergence was much superior to
that of the previous algorithm using the H/A/α-Wishart classifier.

Some examples of fuzzy clustering algorithms applied to polarimetric
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Figure 1.2: Flowchart of the algorithm proposed by Lee [69].

SAR classification where also tested ([71], [15], [16]). Kersten [17], together
with J. S. Lee, connected the fuzzy logic theory with Wishart statistical
approach. In that work five clustering techniques were compared for fully
polarimetric SAR classification purposes. They showed that pixel model is
more important than the clustering mechanism. The fuzzy logic technique
was also used to improve separation among the zones of H/α method (Fig.
1.3) [18] (Sect. (2.1.14)).

In another research, image segmentation and clustering techniques were
based on H/α/A and the power SPAN (Sect. 2.1.14), together combined
with a log–likelihood clustering estimator [72]. The following were derived
from the experiment:
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Figure 1.3: Fuzzy membership functions applied to each zone in the H/α
plane [18].

1. SPAN has additional information that is not contained in H/α/A;

2. Data log–likelihood has the potential ability to reveal the inner struc-
ture of fully polarimetric SAR data.

Electromagnetic models were also used for classification purposes. One
of the most important was developed at Tor Vergata University in order to
analyze a multi-frequency data [73].

Other important examples of unsupervised algorithms for fully polari-
metric unsupervised classification were given by:

1. Schou et al. [74], simulated annealing method was used to improve
H/α classification;

2. Rignot et al. [71], the covariance matrix was used to perform an
unsupervised segmentation;

3. Fukuda et al. [75], a wavelet–based texture feature set was derived
and applied to multifrequency polarimetric images;

4. Wang et al. [76], method based on independent component analy-
sis (ICA). Several independent components are extracted from the
channels and classified by Fuzzy–C–Mean method;
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5. Hong et al. [77], the Gaussian Markov random field model was
applied to the classification of multi-frequency polarimetric SAR data.
Previous technique was also explored by Tran et al. in [78];

6. Yong et al. [79] and Lardeux et al. [80], methods based on Support
Vector Machine techniques;

7. Rodionova [81], two-stage classification was performed using Freeman
and Durden decomposition and textural features obtained from gray
level co-occurrence matrices;

8. Hoekman et al. [82], consisting in a six steps method for image
segmentation;

9. Reigber et al. [83], Fuzzy logic approach was mixed with K-Means
classification algorithm.

1.2.3 Supervised

As mentioned before, the main advantage of polarimetry for constructing
classification schemes is that no a-priori knowledge about the scene is
required because the observables have an intrinsic physical meaning. Anyway,
some supervised techniques have been developed. Supervised classification
relies on the a priori knowledge of the location and identity of land cover
types that are in the image. In this sense coherent target decomposition
approaches may be viewed as supervised, because for the target classification
or detection, the electromagnetic structure (dihedral, helix, etc.) of the
target itself must be known. Other supervised approach were performed by:

1. Martinez et al. [84], where Multifractal features are used in a super-
vised segmentation;

2. Benz [16], where a fusion of a supervised learning fuzzy distribution
estimator and an unsupervised learning fuzzy vector quantizer is
proposed;
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3. Du et al. [85], where a supervised classification using target decompo-
sition theorems and the complex Wishart distribution was used.

1.2.4 Neural-Network Based

Artificial neural networks have been of major interest in many research
areas and a wide range of applications have been presented. In particular,
neural networks have been reported as a successful tool for medical and
industrial image processing. Neural networks also have been used in remote
sensing classification as well and have been reported to classify multi-spectral
imageries, like as: [86], [19], [87] and for multi-spectral change maps purposes
[20]. The use of neural networks for classification of SAR data also has been
presented [88].

However, very limited articles have been found utilizing neural network,
particularly for polarimetric SAR data and, in general, many reports are
limited to the use of supervised method. There are, also, some hybrid
applications, reported in section (1.2.4.3).

1.2.4.1 Supervised

One of the first work utilizing supervised neural network for polarimetry was
proposed by Pottier [21]. In that work, starting from the scattering matrix,
Müller matrix was calculated and decomposed, in order to obtain Huynen
parameters. Finally, those parameters were used to train the net. Pottier’s
idea was raised again in 1998 [22] but with the difference that instead
of Huynen parameters, H and α parameters of the polarimetric coherence
matrix (Sect. (2.1.13)) were used. In 2002, neural network performances were
compared with a statistical approach based on simulated annealing technique.
In that work, the two techniques were found to behave in a similar fashion
when applied for the classification of multipolarimetric/multifrequency SIR–
C SAR images.
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1.2.4.2 Unsupervised

The majority of the researches in unsupervised method are focused on Self-
Organizing Map, widely acknowledged as Kohonen Map [23]. First studies
were performed by Pottier et al. in [26] and [24]. Pottier et al. exploited the
use of Huynen parameters together with unsupervised networks, oppositely
to the research performed in [21]. In the work performed by Hara et al.
[24] instead of Huynen parameters, unsupervised neural classification was
performed directly on the Müller matrix. Hara et al. continued with their
research on neural networks and one year after, they proposed an application
on Sea Ice [89]. A new approach was presented by Ito and Omatu [25], where
polarization signatures were used instead of input data. In [90] Hosokawa
and Hoshi presented a supervised use of Self-Organizing Map. An additional
layer (Grossberg layer) was added to the net in order to perform the training
phase. In [91] the parameters of the co-occurrence matrix (extracted from
the gray level image) together with H and α parameter were used to perform
unsupervised classification, whereas in [27] elements of the polarimetric
coherency matrix, derived features like Freeman decompositions, Alpha,
Entropy, Anisotropy, and eigenvalues of the coherency matrix were used.

1.2.4.3 Hybrid Neural Network algorithms

Some hybrid approaches were also proposed. In [92] and [93] a Principal
Components Analysis was preformed before the back-propagation neural
network training. Especially in the second work, PCA was used in order to
reduce the size of the network. The problem of the data volume reduction,
was also tackled by Chen et al. [94] in order to improve the efficiency of
the neural classifier. They solved the problem with a correlation analysis
techniques to remove redundancy from the training data. They showed
that with P–band HH polarization, L–band VH polarization, L–band HH
polarization, C–band HH polarization and C–band VV polarization the
results was very close to those obtained using full information. In [95] and
[96] fuzzy membership function were used before the neural classification
and, finally, in [97] a mixed architecture using supervised and unsupervised



20 State of the Art

neural networks was introduced.

1.2.5 Synopsis

In this section a Synoptic table containing analyzed classification methods
is provided.

Algorithm Supervised Unsupervised Hybrid
TD 1 Pauli
TD 1 [6]
TD 1 [5]
TD 1 [8]
TD 1 [66]
TD 1 [4]
TD 2 [3]
TD 2 [98]
TD 2 [67]
TD 3 [55]
H/A/α [11]
H/A/α Wishart [13]
Lee Polarimetric [14]
category preserving
Fuzzy logic [71]
Fuzzy logic [15]
Fuzzy logic [16]
Fuzzy-Wishart [17]
Fuzzy-H/A/α [18]
H/A/α SPAN [72]
Model Based [73]
Simulated Annealing [74]
H/A/α
Covariance matrix [71]
Wavwlet and Texture [75]

Table 1.1 – Continued on next page
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Algorithm Supervised Unsupervised Hybrid
Fuzzy logic [76]
ICA
Markov Random Field [78]
Support Vector Ma-
chine

[80]

Freeman-Durden [81]
Texture
Fuzzy logic [83]
K-means
Multifractal Features [84]
Fuzzy logic [16]
TD2-Wishart [85]
NN trained [21]
with Huynen
NN trained [22]
with H/A/α
SOM applied [26]
on Huynen parameters
SOM applied [24]
on Müller matrix
SOM applied on [25]
polarimetric signature
SOM supervised [90]
SOM-Texture [91]
H/A/α
SOM [27]
Coherency Matrix
Backpropagation-
PCA

[92]

SOM-Fuzzy [96]
Table 1.1: SAR polarimetric data Classification algorithms.
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Figure 1.4: Block diagram of the classification algorithm developed at Tor
Vergata University, Rome, Italy [73].
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1.3 Motivations & Innovations of this research

Classification algorithms described in the previous sections show how dif-
ferent approaches are possible in the analysis of polarimetric data. It is
important to emphasize, however, that many of previous methods, born as
target detection applications, have been adapted to land cover classification
purposes. For the previous reasons, some information necessary for the
production of classified maps were not taken into account.

Many of the maps produced for commercial purposes are made by photo
interpreters using optical data. These maps are very well detailed and the
overall accuracy attains high percentage level, but the processing times are
long. That characteristic makes photo–interpretation not applicable when
a near real–time processing is needed (i.e., natural disasters). Moreover,
Radar data are difficult to photo–interpret and new missions provide data
more quickly, greatly decreasing the revisit time with respect to the past
missions. However, some trademarks of the “Human–Brain processor” can
be used to design a new classification algorithm. The first one is the ability
to perform parallel computations, in order to find solutions even if the input
data are corrupted. The second one is is the ability of the brain to provide
contextual information, this type of information is directly contained in the
pixels of the images, but can be extracted only when properties of groups
of pixels are considered.

The innovation introduced in this Thesis consists in implementing two
new classification algorithms for polarimetric SAR images that, through the
use of non-supervised neural networks, are able to manage heterogeneous
information and performing parallel computation.

These algorithms are able to exploit the results obtained in many years
of study about theory of polarimetric SAR data, and modern concepts
about image processing. Improvements in classification overall accuracy
with respect to the methods previously described is shown, because new
strategies have been used to control the neural network without using it as
a black box.
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Chapter 2
Polarimetry and SOM background

In this Chapter a brief background about polarimetry an self organizing
map is provided. Widely used polarimetric classification algorithms have
been described in detail.

2.1 Polarimetry background

2.1.1 Stokes Formalism

In the 1852 Stokes introduced new parameters in order to characterize
polarization state of a wave. The parameters S0, S1, S2, S3, named Stokes
parameters, are:

Y =


S0

S1

S2

S3

 =


EhE

∗
h + EvE

∗
v

EhE
∗
h − EvE∗v

2<{EhE∗v}
2={EhE∗v}

 =


|Eh|2 + |Ev|2
|Eh|2 − |Ev|2
2EhEv cos(δ)
2EhEv sin(δ)

 (2.1)

where Ev and Eh are the horizontal and the vertical component of the
electric field E, δ = δh − δv is the phase difference between Eh ed Ev . The
parameter S0 is proportional to the superficial density power related to
the wave, S1 is the the difference between the superficial densities power

25
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related to the horizontal and vertical polarizations. Parameters S2 and S3

are related to the phase difference between the h and v components of the
electric field. Even if the Stokes vector consists in four parameter, only
three of them are independent:

S2
0 = S2

1 + S2
2 + S2

3 (2.2)

For partial polarized waves, not all the superficial density power is
contained in the polarized components, as a consequence the total superficial
density power is greater that polarized components:

S2
0 > S2

1 + S2
2 + S2

3 (2.3)

Considering full polarized waves, Stokes parameters are:

Y =


S0

S0 cos(2ψ) cos(2χ)
S0 sin(2ψ) cos(2χ)

S0 sin(2χ)

 = S0


1

cos(2ψ) cos(2χ)
sin(2ψ) cos(2χ)

sin(2χ)

 = S0Ŷ (2.4)

where ψ is the inclination angle , χ is the ellipticity angle and Ŷ is the
normalized Stokes vector. Polarization state of a fully polarized plane wave
can be represented by means of a point P having Cartesian coordinate
S1, S2, S3 and belonging at a sphere surface with radius S0 named Poincaré
Sphere.

Angle 2ψ defines the latitude of the point P and 2χ the longitude.
As previously discussed, the sign of χ characterizes the orientation of the
polarization state. Where χ > 0 there are the left-hand polarizations
and where χ < 0 there are the right-hand polarizations. At the poles are
represented circular polarizations and at the equator the linear ones. Eq.
(2.2) is valid for a complete polarization wave; in general Eq. (2.3) must be
used. In this sense it is necessary a parameter named degree of polarization
p:

p =
√
S1 + S2 + S3

S0
(2.5)
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Figure 2.1: Polarization states on the Poincaré sphere.

Considering that Stokes vector can be decomposed in the sum of a fully
polarized component and a completely depolarized one, if the degree of
polarization p is used:

Y =


S0

S1

S2

S3

 =


1− p

0
0
0

+ S0p


1

cos(2ψ) cos(2χ)
sin(2ψ) cos(2χ)

sin(2χ)

 (2.6)

2.1.2 Jones Formalism

In radar applications Jones formalism is preferred. In this formalism for the
representation of the wave polarization state a bi-dimensional complex space
is used instead of a real tri-dimensional one, typical of Stokes . Electric field
of a wave propagating in the z can be written as:

E(z) = Êx(z)ex + Êy(z)ey

where:
Êx(z) = Êxe

−jkz = Ex0e
−jkzejδxex
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Êy(z) = Êye
−jkz = Ey0e

−jkzejδyey

the same expression can be rewritten using a complex bi-dimensional vector
J introduced by Jones [99], [100], [101]:

J =
[
Ex
Ey

]
=
[
Ex0e

jδx

Ey0e
jδy

]
(2.7)

Jones vector contains all the information about the polarization ellipse,
but, if two different waves propagating in opposite directions are considered,
they can be represented by the same vector. In order to optimize that
problem a couple of subscripts are used [102]:

E+(r, t) = <{E+e
j(ωt−k· r)} (2.8)

E−(r, t) = <{E−ej(ωt+k· r)} (2.9)

Vectors E± are named Jones’s directional vectors [103], with E+ conjugate
of E−. Conjugacy operation applied to Jones’s vectors corresponds to the
sign change if the phase difference is considered (δ = δb − δa) or rather
consists in the change of the orientation related to the state of polarization.
Parameter ρ of Eq. (2.20) can be used to define Jones’s vectors:

J =
[
Ex0
Ey0

]
= Ex0

[
1
ρ

]
(2.10)

or, alternatively, Jones’s vectors can be expressed as a function of inclination
angle ψ and ellipticity angle χ. Considering normalized Jones vector Ĵ,
obtained assuming |J| = 1 [104], the following equation can be defined:

Ĵ(θ, ψ) =
[

cosψ cosχ− j sinψ sinχ
sinψ cosχ+ j cosψ sinχ

]
(2.11)

where the polarization state is not dependent from the superficial density
of power associated to the electromagnetic wave. When χ = 0 all linear
polarization are described, in this case Jones vector is dependent only from
inclination angle ψ:
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Ĵlin(ψ) =
[

cosψ
sinψ

]
(2.12)

Circular right-hand and left-hand are expressed in the following way:

ĴR =
1√
2

[
1
−j

]
ĴL =

1√
2

[
1
j

]
(2.13)

2.1.2.1 Polarization Basis Change

Polarization ratio changes according to the selected basis. If the orthogonal
basis {ex1, ex2} and {ey1, ey2} are considered, electric field can assume the
following formulation:

E = Ex1ex1 + Ex2ex2 = Ey1ey1 + Ey2ey2 (2.14)

and:

Jx1,x2 =
[
Ex1
Ex2

]
Jy1,y2 =

[
Ey1
Ey2

]
(2.15)

are the related Jones’s vectors.
In order to transform one complex vector in another, [U]2×2 matrix

must be used:

Jy1,y2 = [U]2×2Jx1,x2 (2.16)

The Matrix [U]2×2 must be unitary; considering ρx the polarization ratio
referred to the basis {ex1, ex2}, vectors in the new basis {ey1, ey2} can be
written as [105], [56],[106]:

ey1 = ejδy1
1√

1 + ρxρ∗x

[
1
ρx

]
(2.17)

ey2 = ejδy2
1√

1 + ρxρ∗x

[
−ρ∗x

1

]
(2.18)

where δy1 e δy2 represent the reference phases in the new basis. It is
proved that δy1 = −δy2 [107]. Transformation matrix [U]2×2 represents
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the projection of the new basis {ey1, ey2} in the old one {ex1, ex2}, with
det([U]2×2)=1 [108].

Expression of [U]2×2 matrix become:

[U]2×2 =
1√

1 + ρxρ∗x

[
ejδy1 −ρ∗xe−jδy1
ρxe

jδy1 e−jδy1

]
(2.19)

Reference phase δy1 is not relevant for the determination of polarimetric
parameters, for the previous reason usually assumes zero value (δy1 = 0).

2.1.3 Complex polarization ratio

Information about polarization state can be extracted by means of a complex
parameter, named complex polarization ratio ρ [109] that represents the
complex ratio between the orthogonal components of the electric field in a
specified basis: for instance, considering {ex, ey} basis:

ρ =
Ey0
Ex0
· ej(δy−δx) =

cos(2χ) + j sin(2χ)
1− cos(2ψ) cos(2χ)

(2.20)

It is also valid:

If a particular state of polarization is considered, that imply a partic-
ular value of ρ, exists a orthogonal state ρ⊥ that respects the following
equation:

ρρ∗⊥ = −1 (2.21)

additionally, ρ∗⊥ coincides with the complex conjugate of the complex
polarization ratio ρ [58].

Polarization states that respect Eq. (2.21) play a important role in the
polarization theory, as will be shown in the following sections.

2.1.4 Huynen’s polarization fork

The Huynen’s polarization fork is used for the analysis of of the optimal
polarization states [110]. It defines Huynen fork a 4-pronged figure in the
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Figure 2.2: Huynen’s fork.

Poincaré sphere connecting points of co-pol nulls and cross-pol nulls with
the center of the sphere. The line connecting the two cross-pol nulls passes
through the center of the Poincaré sphere, and represents two of the prongs
of the Huynen fork. The other two prongs are lines from the center of the
sphere to each of the two co-pol nulls. In Fig. 2.2, the red lines (C−D) join
the two cross–pol nulls, passing through the center of the sphere. The line
meets the surface at latitude zero and longitudes −400 and +400. The other
red lines (A−B) start from the sphere’s center (the green dot), and meet
the surface at the co–pol nulls at latitudes +200 and +400 and longitude
+200.

2.1.5 Polarization Signatures and pedestal height

Because the incident wave can take on so many polarizations, and the
scattering matrix consists of 4 complex numbers, it is helpful to have a
graphical method of visualizing the response of a target as a function of the
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incident and backscattered polarizations.
One visualization way is provided by the polarization signature of the

target. The scattering power can be determined as a function of the four
wave polarization variables, the incident and backscattered ellipcity and
inclination angles, but these constitute too many independent variables to
observe conveniently. To simplify the visualization, the backscattered polar-
izations are restricted to be either the same polarization or the orthogonal
polarization as the incident wave. This choice of polarization combinations
leads to the calculation of the co-polarized and cross-polarized responses
for each incident polarization, which are portrayed in two surface plots
called the co-pol and cross-pol signatures. These two signatures do not
represent every possible transmit-receive polarization combination, but a
useful visualization of the target’s backscattering properties.

Figure 2.3: Polarization ellipse.

An incident electromagnetic wave can be selected to have an Electric
Field vector with an ellipticity χ between −450 and +450, and an orien-
tation ψ between 00 and 1800 (Fig. 2.3). For an incident wave of unit
amplitude, the power of the co-polarized (or cross-polarized) component
of the scattered wave is presented as the z value on the plots. Often the
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Figure 2.4: Polarization signatures of a large conducting sphere or trihedral
corner reflector.

Figure 2.5: Polarization signatures of a dihedral or double-bounce reflector.

plots are normalized to have a peak value of one. The polarization plots
have peaks at polarizations that give rise to maximum received power, and
valleys where the received power is smallest, in agreement with the concept
of Huynen’s polarization fork (see section (2.1.4)) in the Poincaré sphere.

Fig. 2.4 shows the polarization signatures of the simplest class of targets:
a large conducting sphere or a trihedral corner reflector. The wave is
backscattered with the same polarization, except for a change of sign of the
ellipticity.

For more complicated targets, the polarization signature takes on dif-
ferent characteristic shapes. Interesting signatures are obtained from a
dihedral corner reflector and from Bragg scattering off the sea surface. In
the case of the dihedral reflector, when its corner (the intersection of its
sides) is aligned horizontally, parallel to the horizontal axis of the EM wave,
the co-pol response is a maximum for linear or elliptical horizontal, linear
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Figure 2.6: Polarimetric signatures of Bragg scattering from the sea surface.

Figure 2.7: Polarization signature of a target having a pedestal height of
about 0.2.

or elliptical vertical and circular polarizations (Fig. 2.5). Because the two
reflecting surfaces of the dihedral sides negate the sign of the ellipticity a
second time, this results in a typical double-bounce or even-bounce signature.
However, if the reflector is rotated by 450 around the radar line of sight, the
linear horizontal co-pol response is zero and the linear horizontal cross-pol
response is a maximum. This property means that the dihedral can be used
as a simple way of creating a cross-pol response in an HH radar system. In
the case of Bragg scattering, the response has a ridged shape similar to the
single-bounce sphere, except that the backscatter of the vertical polarization
is higher than that of the horizontal polarization (Fig. 2.6). The co-pol
response has a peak at orientation angle ψ = 900 and at ellipticity angle
χ = 00.

A useful parameter that can be obtained from polarization signatures
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is the pedestal height. It represents the minimum value of intensity found
on the signature, when the maximum response is normalized to unity. The
height of the pedestal is an indicator of the presence of an unpolarized
scattering component in the received signal, and thus is related to the
degree of polarization of a scattered wave. If a single target is scattering and
the backscattered wave is fully polarized, or if the signature is calculated
from a single non-averaged measurement, the pedestal height is zero. But if
the signature is calculated from an average of several samples (i.e. filtering
procedures), and there are multiple, dissimilar scatterers present or there
is noise in the received signal, the pedestal height will be non-zero. Thus
the pedestal height is also a measure of the number of different types of
scattering mechanism found in the averaged samples (Fig. 2.7). A fully
unpolarized wave is represented by a plane at 0.5 value and this state is
usually named flat equal power density profile. In this case polarimetric
analisys can not be performed. Usually, for particular kind of targets, the
pedestal height and the entropy (Sect. 2.1.14) increase with increasing of
frequency. Microwaves at lower frequencies such as L-band and P-band
have better ability to penetrate the natural targets and interact more
extensively with its structural components (i.e, leaves, branches and trunks).
Microwaves at higher frequencies (C- and X-Band) tend to interact primarily
with the upper portion of the natural targets and the dominant polarimetric
scattering becomes volume.

2.1.6 Scattering Source Grouping

Scattering sources may be grouped in broad categories [111] , each associated
to typical scattering behaviors, as shown in [2] and [47]. In particular:

• Soil response can be associated with a rough surface scattering effect.
This effect is important for bare soils and, in general, at low frequen-
cies, where many agricultural crops are rather transparent. σ0

RL is
appreciably higher than σ0

RR and σ0
HV is low. At lower frequencies

(P– and L–band) σ0
V V > σ0

HH , as predicted by the Small Perturbation
surface scattering model [112], while at high frequencies (C–Band)
σ0
V V = σ0

HH .
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• Vertical structures, like forest trunks and crop stalks, produce double-
bounce scattering. In general, this mechanism is important at P–band
for forests and at L–band for some agricultural crops like corn and
sunflower. σ0

HV is low, as in the soil scattering case, but, differently
from the soil, σ0

HH is generally higher than σ0
V V and the large difference

between σ0
RL and σ0

RR disappears.

• Ensembles of inclined cylindrical structures, like forest branches and
crop stems, produce volume scattering with an appreciable presence
of multiple scattering. The differences σ0

HH − σ0
HV and σ0

V V − σ0
HV

are much lower than those for soil and vertical structures. In circular
polarization, σ0

RL ≈ σ0
RR.

• Ensembles of inclined planar structures, like leaves, also produce
volume scattering; however, an appreciable amount of single “facet”
scattering is present. σ0

HH − σ0
HV and σ0

V V − σ0
HV differences are rela-

tively low, similarly to the cylinder case, but at circular polarization,
the “facet” effect generates appreciable positive σ0

RL−σ0
RR differences.

The scatterer dimension have important effect too. Let branches and
stems be represented as ensembles of cylinders with the length proportional
to the radius. For a canopy of equal cylinders, the backscatter coefficient
changes with the cylinder length (expressed in wavelengths) and show a
maximum [113]. It follows that, for each band, there is a range of cylinder
dimensions generating a dominant contribution to the backscatter. For
leaves, which can be described as discs, scattering is dependent on thickness
and moisture content [114].

2.1.7 Backscattering processes matrix analysis

For the representation of the scattering mechanisms two different matrices
are used: Scattering Matrix, sometimes named Sinclair matrix, and the
Müller matrix. Both matrices define relations between backscattered wave
and incident wave; the main difference is that the Scattering Matrix is based
on Jones formalism (Sect. (2.1.2), whereas Müller matrix is based on Stokes
formalism (Sect. (2.1.1).
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2.1.8 The Scattering Matrix

If the incident plane is expressed as:

Et = Etheh + Etvev (2.22)

where subscripts h e v denote horizontal and vertical polarization, respec-
tively. The induced currents in the target produce an electromagnetic wave
that, in the far–field approximation, can be considered locally plane. The
expression of backscattered wave is:

Es = Esheh + Esvev (2.23)

The scattering process can be formulated by means of a linear transformation
matrix based; the expression of the electromagnetic field received from the
antenna is [115], [29]:

Es = [S] Et =
[
Esh
Esv

]
=
e−jk0r

r

[
Shh Shv
Svh Svv

] [
Eth
Etv

]
(2.24)

The [S] matrix is a [2× 2] complex matrix from which important charac-
teristics about the target can be obtained. That matrix is named Scat-
tering Matrix or Sinclair Matrix. Matrix’s elements are complex like as
Sij = |Sij | ejφij where i, j ∈ {h, v}. Terms Shh and Svv are named co-polar,
whereas terms Shv and Svh are named cross-polar. It is important to note
that the matrix does not depend from the distance and can be simplified
by means of reciprocity theorem, where cross-polar elements are the same:
Shv = Svh = SX [47]. The following expression can be obtained:

[S] = ejφ0

[
|Shh| |SX | ej(φx−φ0)

|SX | ej(φx−φ0) |Svv| ej(φvv−φ0)

]
(2.25)

where it is possible to note that independent parameters are 5 (3 amplitudes
and 2 phases).
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2.1.9 The Müller Matrix

The Eq. (2.6) can be rewritten in the following as in [47]:

Y = [Q]G =


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 j −j



EhE

∗
h

EvE
∗
v

EhE
∗
v

EvE
∗
h

 (2.26)

In the case of monostatic radar, if both transmitted and received waves
are represented with the Stokes formalism, the following equation can be
written [116]:

Gs =
1
r2

[B]Gt (2.27)

or rather:
|Esh|2
|Esv |2
EshE

s∗
v

EsvE
s∗
h

 =
1
r2


ShhS

∗
hh ShvS

∗
hv ShhS

∗
hv ShvS

∗
hh

SvhS
∗
vh SvvS

∗
vv SvhS

∗
vv SvvS

∗
vh

ShhS
∗
vh ShvS

∗
vv ShhS

∗
vv ShvS

∗
vh

SvhS
∗
hh SvvS

∗
hv SvhS

∗
hv SvvS

∗
hh



|Eth|2
|Etv|2
EthE

t∗
v

EtvE
t∗
h


(2.28)

If Eq. (2.26) and Eq. (2.27) are used, the Stokes vector of the diffuse
wave Ys is:

Ys = [Q]Gs =
1
r2

[Q][B]Gt =
1
r2

[Q][B][Q]−1Yt =
1
r2

[Mm]Yt (2.29)

where [Q]−1 is the inverse Matrix. The Matrix [Mm] is a [4× 4] real matrix
that describes the connection between the Stokes vectors of the diffuse and
transmitted waves. Different names can be used for the [Mm] matrix.

That Matrix is named phase matrix by Chandrasekhar [3] and is rep-
resented by the symbol [P], Stokes matrix by Deirmendjian [117] and
represented with the symbol [σ], transformation matrix by Van de Hulst
[118] and represented with the symbol [F].

Since the theory of Stokes parameters and their linear transformation
was introduced by Müller, in this Thesis the previous matrix will be named
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Müller matrix. The complete matrix formulation is the following [119]:

[Mm] =


|Shh|2 |Shv|2 <(ShhS∗hv) =(ShhS∗hv)
|Svh|2 |Svv|2 <(SvhS∗vv) =(SvhS∗vv)

2<(ShhS∗vh) 2<(ShvS∗vv) 2<(ShhS∗vv + ShvS
∗
vh) =(ShhS∗vv + SvhS

∗
hv)

−2=(ShhS∗vh) −2=(ShvS∗vv) −=(ShhS∗vv + ShvS
∗
vh) <(ShhS∗vv − ShvS∗vh)


2.1.10 Basis change for [S] Matrix

Representation by means of [S] matrix depends form used polarization basis.
Equations analyzed in section (2.1.2) can be used to transform a [S] matrix
in {eh, ev} basis in the [S] matrix in an arbitrary basis {ex, ey} [120]:

[S]xy = [U]T2×2[S]hv[U]2×2 where [U]2×2 =
1√

1 + ρρ∗

[
1 −ρ∗
ρ 1

]
(2.30)

Elements of [S]xy matrix in the {ex, ey} basis, having polarization ratio
ρ are:

Sxx =
1

1 + ρρ∗
[Shh + 2ρSX + ρ2Svv] (2.31)

Sxy =
1

1 + ρρ∗
[ρShh + (1− ρρ∗)SX − ρ∗Svv]

Syx =
1

1 + ρρ∗
[ρShh − (ρρ∗ − 1)SX − ρ∗Svv]

Syy =
1

1 + ρρ∗
[ρ2Shh + 2ρSX + Svv]

where SX = Shv = Svh in agreement with the reciprocity theorem.
After the transformation the elements of the [S] matrix change, but

some properties of the matrix are invariant like as:

1. The SPAN of the matrix (sum of quadratic elements of the matrix);

2. The symmetry of [S] matrix;
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3. The determinant of [S] matrix: det([U]2×2) = 1.

It is also valid the reciprocity theorem. Previous properties are usually
used to transform a linear polarization into the circular one, in that way all
aspects of the backscattered wave can be analyzed. Elements of [S]RL can
be calculated by the following equations:

SRR = jSx +
1
2

(Shh − Svv)

SLL = jSx −
1
2

(Shh − Svv) (2.32)

SRL =
j

2
(Shh + Svv)

2.1.11 Complex Scattering Vector

The results achieved in the previous section can be also obtained using a
four complex-component vector:

k =
1
2

tr ([S]Ψ) = [k0, k1, k2, k3]T (2.33)

where tr[S] is the trace of [S], sum of the diagonal elements, Ψ is a basis
formed by a four [2 × 2] hermitian complex matrices [121]. In Eq. (2.33)
two basis are principally used. The first one is the Borgeaud basis [122]:

ΨB =
{

2
[

1 0
0 0

]
, 2
[

0 1
0 0

]
, 2
[

0 0
1 0

]
, 2
[

0 0
0 1

]}
(2.34)

to which corresponds the complex vector kB:

kB = [Shh, Shv, Svh, Svv]T (2.35)

The second basis, manly used, is named Pauli basis and is composed by the
following Pauli’s spin matrices [121]:

ΨP =
{√

2
[

1 0
0 1

]
,
√

2
[

1 0
0 −1

]
,
√

2
[

0 1
1 0

]
,
√

2
[

0 −j
j 0

]}
(2.36)
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The complex vector connected to Pauli’s basis is the following:

kP =
1√
2

[Shh + Svv, Shh − Svv, Shv + Svh, j(Svh − Shv)]T (2.37)

Constant 2 in Eq. (2.34), like as
√

2 in Eq. (2.36), are used because the
module of the scattering vector k must be proportional to the backscattering
power; the following equation must be satisfied:

|k|2 = k∗TP · kP = k∗TB · kB = (|Shh|2 + |Shv|2 + |Svh|2 + |Svv|2) = span[S]
(2.38)

independently from the choice of the basis.

2.1.12 Pauli Decomposition

One of the first approach to the analysis of polarimetric data is the [S]
coherent matrix decomposition. The basic idea is to express the matrix
of Eq. (2.25) like a linear combination of elementary scattering matrices,
strictly related to well known scattering mechanisms. Pauli decomposition,
like as the Krogager and the Cameron decompositions, can be only employed
to characterize coherent scatterers. A resolution cell in a SAR images is
formed by the coherent addition of the responses of the elementary contained
scatterers. In those cases in which there is no a dominant scatterer, the
statistic of the response is given by the complex Gaussian scattering model,
giving rise to the so-called speckle. Nevertheless, the resolution cell can
present a point target, which dominates the response of the resolution cell.
In this case, the scattering response is due to the coherent combination of
two components:

• the dominant scatterer;

• the coherent combination due to the clutter, which is given by the
complex Gaussian scattering statistics model.

The statistics of the resulting combination receives the name of Rician
model. In Fig. 2.8 the response with and without the presence of a point
scatterer within the resolution cell are compared.
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Figure 2.8: Coherent response of a given resolution cell (a) without a
dominant scatterer, (b) with a dominant scatterer [69].

Eq. (2.36), that represent Pauli Basis, can be used also for the backscat-
tering signal decomposition, because the matrices that compose the basis
can be referred to deterministic scattering mechanisms. [S] matrix can be
express as a linear combination of the backscattering mechanism described
by Pauli’s matrices, weighed by appropriate coefficients. The following
formula represents Pauli decomposition applied to a scattering matrix [S]:

[S] =
[
a+ b c− jd
c+ jd a− b

]
= a

[
1 0
0 0

]
+b
[

1 0
0 −1

]
+c
[

0 1
1 0

]
+d
[

0 −j
j 0

]
(2.39)

where a, b, c and d are proportional to the complex components of the
scattering vector kP (Eq. (2.37)). The fourth matrix in Eq. 2.39 can be not
considered in backscattering processes because of the reciprocity theorem
(Sect. 2.1.13). The other three matrices identify the scattering processes
showed in Tab. 2.1.

In general, coherent decomposition theories are exposed to problems
due to speckle, so they are not appropriate when applied to radar remote
sensing of natural random targets like vegetation. Nonetheless, they are
still suitable when the scene is dominated by a single scattering element,
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Pauli’s Matrix Type of Scattering Interpretation[
1 0
0 1

]
odd-bounce plane, sphere[

1 0
0 −1

]
even-bounce dihedral[

0 1
1 0

]
π/4 even-bounce π/4 dihedral

Table 2.1: Pauli’s matrices and their interpretation in the {eh, ev} basis.

or a few of them and, under certain specific conditions, a radar with high
resolution is employed [58].

2.1.13 Non deterministic Scatterers

In the previous section deterministic scatterers have been analyzed that
can be completely defined by the scattering matrix [S] or by the complex
scattering vector k. The concept of deterministic scatterer is not appropriate
for radar remote sensing analysis, because the resolution cell is bigger of the
used wavelength, for this reason contains more than a single scattering center,
each one represented by a scattering matrix [S]. The scattering matrix
connected to a determinate resolution cell consists in the sum of all the [S]
matrices associated to the distribute scattering centers contained in the cell
itself. For a complete study of the effects connected to non deterministic
scatterers it is useful to introduce the concepts of cohovariance and coherence
matrices ([42], [123], [124]). Polarimetric matrix of cohovariance can be
calculted by means of the complex scattering vector kB (Eq. (2.35)) [123]:

[C]4×4 = 〈kBk†B〉 =


〈|Shh|2〉 〈ShhS∗hv〉 〈ShhS∗vh〉 〈ShhS∗vv〉
〈ShvS∗hh〉 〈|Shv|2〉 〈ShvS∗vh〉 〈ShvS∗vv〉
〈SvhS∗hh〉 〈SvhS∗hv〉 〈|Svh|2〉 〈SvhS∗vv〉
〈SvvS∗hh〉 〈SvvS∗hv〉 〈SvvS∗vh〉 〈|Svv|2〉


(2.40)
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where k†B is the transpose conjugate of kB and 〈. . .〉 is the mean of the
random predominant scatterers. In the same manner, if the complex scat-
tering vector kP is considered, polarimetric coherence matrix [T]4×4 can be
calculated [123]:

[T]4×4 = 〈kPk†P 〉 (2.41)

Cohoerence and covariance matrices have the same real positive eigenvalues
but different eigenvectors [107]. It is easier to analyze scattering mechanisms
if cohoerence matrix is used. If Eq. (2.36) is considered, stating the
properties of the reciprocity theorem Shv = Svh = SX , the fourth term of
the scattering vector kP is null and the following equation can be obtained:

kP3 =
1√
2

[Shh + Svv, Shh − Svv, 2Sx]T (2.42)

Without any loss of information, a three-dimensional space can be taken
in account instead of a four-dimensional space. Taking advantage of kP3 a
new polarimetric coherence matrix [3× 3] can be defined:

[T]3×3 = 〈kP3k
†
P3〉 =

1
2

 〈|A|2〉 〈AB∗〉 〈AC∗〉〈A∗B〉 〈|B|2〉 〈BC∗〉
〈A∗C〉 〈B∗C〉 〈|C|2〉

 where


A = Shh + Svv
B = Shh − Svv

C = 2Sx
(2.43)

In Eq. (2.43) all information about variance and correlation among the
complex elements of [S] are contained.

2.1.14 Eigenvector-Eigenvalue based and H/A/α–Wishart
decompositions

The eigenvector-eigenvalue based decomposition is based on the eigen–
decomposition of the coherency matrix [T]3×3 (Eq. (2.43)). According to
the eigen–decomposition theorem, the [3× 3] Hermitian matrix [T]3×3 can
be decomposed as follows:

[T]3×3 = [U]3×3[Λ]3×3[U]−1
3×3 (2.44)
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The [3 × 3], real, diagonal matrix [Λ]3×3 contains the eigenvalues of
[T]3×3:

[Λ]3×3 =

 λ1 0 0
0 λ2 0
0 0 λ3

 (2.45)

where ∞ > λ1 > λ2 > λ3 > 0.
The [3 × 3] unitary matrix [U]3×3 contains the eigenvectors ui, for

i=1,2,3, of [T]3×3:
[U]3×3 = [u1 u2 u3] (2.46)

The eigenvectors ui, for i=1,2,3, of [T]3×3 can be formulated as follows:

[U]3×3 =
[
cosαi sinαi cosβiejδi sinαi cosβiejγi

]
(2.47)

Considering Eq. (2.45) and Eq. (2.46), the eigen–decomposition of
[T ]3×3 (Eq. (2.44)) can be written as follows:

[T ]3×3 =
j=1∑
3

λiuiu
∗T
i (2.48)

where the symbol ∗T stands for complex conjugate. As Eq. (2.48) shows,
the rank 3 matrix [T]3×3 can be decomposed as the combination of three
rank 1 coherency matrices formed as:

[T ]3×3i = uiu
∗T
i (2.49)

which can be related to the pure scattering mechanisms given in Eq.
(2.47). The eigenvalues (Eq. (2.45)) and the eigenvectors (Eq. (2.46)) are
considered as the primary parameters of the eigen–decomposition of [T]3×3.
In order to simplify the analysis of the physical information provided by this
eigen–decomposition, three secondary parameters are defined as a function
of the eigenvalues and the eigenvectors of [T]3×3:

• Entropy:

H = −
3∑
i=1

pi log3(pi); where (pi) =
λi∑3
k=1 λk

(2.50)
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where pi, also called the probability of the eigenvalue λi, represents
the relative importance of this eigenvalue respect to the total scattered
power, stating:

SPAN = |Shh|2 + |Svv|2 + 2 |Shv|2 =
3∑

k=1

λk (2.51)

• Anisotropy:

A =
λ2 − λ3

λ2 + λ3
(2.52)

• Mean Alpha angle:

α =
3∑
i=1

piαi (2.53)

The eigen–decomposition of the coherency matrix is also referred as the
H/A/α decomposition [11]. The interpretation of the information provided
by the eigen–decomposition of the coherency matrix must be performed
in terms of the eigenvalues and eigenvectors of the decomposition or in
terms of H/A/α. Nevertheless, both interpretations have to be considered
as complementary. The interpretation of the scattering mechanisms given
by the eigenvectors of the decomposition, ui, for i=1,2,3 ((Eq. 2.47)), is
performed by means of a mean dominant mechanism which can be defined
as follows:

u0 =
√
λ
[
cosα sinα cosβejδ sinα cosβejγ

]T
(2.54)

where the remaining average angles are defined in the same way as α:

β =
3∑
i=1

piβi; δ =
3∑
i=1

piδi; γ =
3∑
i=1

piγi (2.55)

The mean magnitude of the mechanism is obtained as:

λ =
3∑
i=1

piλi (2.56)
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Figure 2.9: Interpretations of α angle [69].

The study of the mechanism given in Eq. (2.54) is mainly performed through
the interpretation of the mean alpha angle, since its values can be easily
related with the physics behind the scattering process. The next list reports
the interpretations of α:

• α → 0: the scattering corresponds to single-bounce scattering pro-
duced by a rough surface;

• α→ π/4: the scattering mechanism corresponds to volume scattering;

• α→ π/2: the scattering mechanism is due to double-bounce scattering.

The second part in the interpretation of the eigen-decomposition is
performed by studying the value of the eigenvalues of the decomposition.
A given eigenvalue corresponds to the associated scattered power to the
corresponding eigenvector. Consequently, the value of the eigenvalue gives
the importance of the corresponding eigenvector or scattering mechanism.
The ensemble of scattering mechanisms is studied by means of the entropy H
and the anisotropy A. The entropy H determines the degree of randomness
of the scattering process, which can be also interpreted as the degree of
statistical disorder. In this way:



48 Polarimetry and SOM background

Figure 2.10: Entropy (H) and Anisotropy (A) values for four different
configurations of the eigenvalues [69].

• H → 0:
λ1 = SPAN, λ2 = 0, λ3 = 0 (2.57)

Consequently, the scattering matrix [T]3×3 presents rank 1 and the scattering
process corresponds to a pure target.

• H → 1:

λ1 = SPAN/3, λ2 = SPAN/3, λ3 = SPAN/3 (2.58)

In this situation, the scattering matrix [T]3×3 presents rank 3, that is,
the scattering process is due to the combination of three pure targets.
Consequently, [T]3×3 corresponds to the response of a distributed target.

• 0 < H < 1: In this case, the final scattering mechanism given by
[T]3×3 results from the combination of the three pure targets given
by ui, for i=1,2,3, but weighted by the corresponding eigenvalue.

In Fig. 2.10 four different configurations of the eigenvalues and the cor-
responding entropy values are showed. The anisotropy A, Eq. (2.52), is
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Figure 2.11: H/α plane [69].

a parameter complementary to the entropy. The anisotropy measures the
relative importance of the second and the third eigenvalues of the eigen–
decomposition. From a practical point of view, the anisotropy can be
employed as a source of discrimination only when H > 0.7. The reason is
that for lower entropies, the second and third eigenvalues are highly affected
by noise. Consequently, the anisotropy is also very noisy. According to [11],
a H/α and H/A/α planes can be developed (H/A/α plane corresponds to
a double H/α plane; one for A < 0.5 and the other for A > 0.5 ). Each
plane can be subdivided in different zones according to the values of H/α
or H/A/α. For each zone a predetermined class is assigned. In order to
perform H/α or H/A/α classification, for each pixel of the input polarimetric
image, the two/three values of H, α or H, A, α must be calculated. In this
way each pixel can be associated with one zone in the H/α or H/A/α plane.

The classes interpretation showed in Fig. 2.11 is as follows:

• class Z1: Double bounce scattering in a high entropy environment;

• class Z2: Multiple scattering in a high entropy environment (e.g. forest
canopy);

• class Z3: Surface scattering in a high entropy environment (not a
feasible region in H/α plane);
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Figure 2.12: H/A/α plane [69].

• class Z4: Medium entropy multiple scattering;

• class Z5: Medium entropy vegetation (dipole) scattering;

• class Z6: Medium entropy surface scattering;

• class Z7: Low entropy multiple scattering (double or even bounce
scattering);

• class Z8: Low entropy dipole scattering (strongly correlated mecha-
nisms with a large imbalance in amplitude between HH and VV);

• class Z9: Low entropy surface scattering (e.g. Bragg scatter and rough
surfaces).

The H/A/α–Wishart decompositions can be seen as an improvement of
the H/A/α classification.

In 1994, J.S. Lee et al. [125] developed a supervised algorithm based
on the complex Wishart distribution for the polarimetric covariance matrix.
This algorithm is statistically optimal in that it maximizes the probability
density function of pixels’ covariance matrices. However, as for all supervised
methods, training sets have to be selected in advance. These training sets,
require from the user an a–priori knowledge of the test–site.
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In 1999, J.S. Lee et al. [13] proposed an unsupervised classification
method that uses the two-dimensional H/α classification plane to initially
classify the polarimetric SAR image. The initial classification map defines
training sets for classification based on the Wishart distribution. The
classified results are then used as training sets for a new iteration using the
Wishart method. The classification procedure stops when a termination
criterion (maximum number of pixels that switch class, maximum number of
iterations or both), defined by the user, is met. With this method significant
improvement in each iteration has been observed. In order to further improve
the capability to distinguish between different classes, the combined Wishart
classifier was extended and complemented with the introduction of the
anisotropy (A) information. The H/A/α–Wishart algorithm is nowadays
one of the most widely used for classification of polarimetric data. It was
mandatory to take it into account in order to test the algorithms developed
in this Thesis. In the following chapters will refer to this algorithm with a
H/A/α–W label.

2.1.15 Polarimetric classification preserving polarimetric scat-
tering characteristics

The H/α plane is divided into eight zones and eight classes. The physical
scattering characteristics associated with each zone provide information
for terrain type assignment. The deficiency of this approach is that the
classification result lacks details, because of the preset zone boundaries in
the H and α plane. Clusters may fall on the boundaries and more than one
cluster may be enclosed in a zone [14]. A combined use of physical scattering
characteristics and statistical properties for terrain classification is desirable.
That kind of algorithm has been proposed by Lee [13], which applied the
Cloude and Pottier decomposition scheme for initial classification, followed
by iterated refinement using the complex Wishart classifier (H/A/α–W, Sect.
(2.1.14)). But, in both algorithms, the final classification can be substantially
different from initial classified results, and pixels of different scattering
mechanisms could be mixed together, because the Wishart iteration is
based only on the statistical characteristics of each pixel. Thus, the physical
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scattering characteristics are ignored for pixel reassignment during iterations.
In addition, Lee, Ainsworth, Grunes and Du in a series of recent papers
([13], [62], [126], [127]), have demonstrated that the Cloude and Pottier
“Unsupervised POL-SAR Image Feature H/α Polarimetric Classification
scheme” is highly sensitive to image speckle deterioration. In this case,
in fact, the entropy H (Eq. (2.50)) may increase and the number of
distinguishable classes identifiable from polarimetric observations is reduced.
As shown in Fig. 2.11, the feasible region of the H/α classification plane is
rapidly shrinking for high values of entropy (H = 0.9), where α parameter
reaches the limited value of 600. For this reason the use of a robust
polarimetric speckle filter is mandatory [13].

Unlike previous algorithms that classify pixels statistically and ignore
their scattering characteristics, the new Lee’s approach [14] not only uses a
statistical classifier, but also preserves the purity of dominant polarimetric
scattering properties for all pixels in a class. This algorithm uses a combina-
tion of a scattering models based decomposition developed by Freeman and
Durden and the maximum likelihood classifier based on the complex Wishart
distribution. The first step is to apply the Freeman and Durden decompo-
sition to divide pixels into three scattering categories: surface scattering,
volume scattering and double bounce scattering. To preserve the purity of
scattering characteristics, pixels in a scattering category are restricted to be
classified with other pixels in the same scattering category. A initialization
scheme is also devised to initially merge clusters from many small clusters
in each scattering category by applying a merge criterion developed based
on the Wishart distance measure. Then the iterative Wishart classifier is
applied. The stability in convergence of this algorithm is much superior to
that of the previous algorithm using the H/A/α–W classifier. The entire
unsupervised classification procedure is as follows:

• Initial Clustering

1. Filtering of the polarimetric SAR data using a filter [128] specifi-
cally designed for polarimetric SAR images, if the original data
do not have sufficient averaging in the number of looks. All
elements of the [3× 3] covariance or coherence matrix should be
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Figure 2.13: Flowchart of the algorithm [69].

filtered simultaneously to reduce speckle and retain resolution
as much as possible. It has been shown that speckle filtering
improves clustering. However, excessive filtering would reduce
spatial resolution.

2. Decompose each pixel by Freeman and Durden decomposition,
and compute PDB, PV and PS (PX , pixels belonging X class).
Label each pixel by the dominant scattering mechanism as one
of three scattering categories: Double Bounce (DB), Volume (V)
and Surface (S).

3. Divide the pixels of each category into 30 or more small clusters
with approximately equal number of pixels.

• Cluster Merging

1. The averaged covariance matrix for each cluster is computed.
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2. Within each category, the initial clusters are merged based on
the between-cluster Wishart distance. Two clusters are merged
if they have the shortest distance and are in the same scattering
category.

3. Merge the initial clusters to a desirable number of classes, Nd,
required in the final classification. To prevent a class from growing
too large and overwhelming the other classes, a limitation to the
size of classes could respect next rule:

Nmax = 2N/Nd (2.59)

where N the total number of pixels in the image. In addition,
small clusters are merged first, and only clusters in the same
scattering category can be merged to preserve the purity of
scattering characteristics. In terrain classification, the number of
pixels dominated by double bounce is much smaller than those
with surface and volume scattering. For better separation of
pixels in the double bounce category with smaller number of
pixels, merging must be limited to, at least, three final clusters
(classes) for each scattering category.

• Wishart Classification

1. Averaged covariance matrices must be computed starting from
the Nd classes and used as class centers. All pixels are reclassi-
fied based on their Wishart distance measure from class centers.
Pixels labeled as “DB”, “V” or “S” can only be assigned to the
classes with the same label. This ensures the classes are homoge-
neous in scattering characteristics. For example, a double bounce
dominated pixel will not be assigned to a surface scattering class
even if the Wishart distance is the shortest.

2. Wishart classifier is iteratively applied for 2 to 4 iterations with
the category restriction for better convergence.

• Automated Color Rendering
The classes are color-coded according to their scattering label. After
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the final classification, the color selection for each class is automatically
assigned: blue colors for the surface scattering classes, green colors
for volume scattering classes, and red colors for double bounce classes.
In the surface scattering classes, the class with highest power will be
assigned color white to designate the near specular scattering class.

The previous algorithm is based on the Freeman–Durden scattering
model decomposition [7]. This limits the applicability of this algorithm in
discriminating man–made targets, rough surface, forest species and crop
types [14]. Limitation in applications can be summarized as follow:

• Roll invariance.
The Freeman and Durden decomposition was developed under the
assumption of reflection symmetry that makes its results not roll
invariant. Variations of targets orientations with respect to the radar
look direction may cause misclassification. Buildings not aligned facing
the radar look direction do not induce double-bounce returns and
they are categorized as volume scattering in the Freeman–Durden
decomposition because of higher HV returns.

• Rough Surface Misclassified as Volume Scattering.
Freeman–Durden decomposition has intrinsic difficulty separating
very rough surface from volume scatterers. Rough surface scattering
by non vegetated surface can cause significant depolarization and
produces high cross–polar levels that can appear as volume scattering
in the Freeman and Durden decomposition, especially, at higher radar
frequencies, such as C-band and X-band. Consequently, a rough surface
will be classified as a volume class, and could be misinterpreted as
vegetation.

• Vegetated Areas Misclassified as Surface Scattering.
Some vegetated areas can appear as surface scatterers in the Freeman-
Durden decomposition. Freeman and Durden assume randomly dis-
tributed thin cylindrical scatterers for the volume scattering. This
model may work well for coniferous forest, but, for other forest species,
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the model of randomly distributed oblate spheroids is more appropri-
ate, in which cases, surface scattering may become dominate.

Some techniques can be applied to reduce previous limitations. For exam-
ple, to properly classify buildings, interferometric data may be required to
separate buildings from vegetation. Buildings tend to have much higher
interferometric coherence than vegetation. The described algorithm is con-
sidered, according to many researchers, the best method for the classification
of polarimetric SAR images. Therefore, this algorithm has been considered,
together with the H/A/α–W algorithm, to test the algorithms developed in
this Thesis.

2.2 Self-organizing Maps background

2.2.1 Introduction

There are two different purposes justifying the developing of artificial intel-
ligence. The original one is an attempt to describe biophysical phenomena
that take place in real biological neurons, whereby it may be expected that
some primitives or basic elements of information processing by the brain
could be isolated and identified. Another one is a direct attempt to develop
new devices based on heuristically conceived, although biologically inspired
simple components such as threshold-logic units or formal neurons [23].
Human brain is being studied by many researchers, in order to develop
algorithms able to reproduce its computational and adaptive characteristics.
The performance of that organ are surprising: if brain is intended as com-
putational machine, it is able, in a few steps, to identify and recognize any
danger in order to make decisions that may be vital. It is possible to note
that the processing speed - number of operations per second - is not the
decisive feature in the explanation of properties human brain; computers
perform a number of operations per second that are significantly higher. The
secret of the brain computing ability is that the in central nervous system the
synapses exploit neural growth factor for cable in configurations that make
the organ best suited to maintaining its balance towards the environment,
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Figure 2.14: Chemical synapse scheme.

finding internal capabilities to make this reconfiguration. The learning
ability of the human brain it is difficult to reproduce by computer, given its
complexity that is characterized by an interaction of organic elements whose
number is estimated to 1011 neurons and 1015 synaptic connections. Two
different approaches have been implemented in order to obtain a learning
neural network based algorithm. In the first approach a set of examples
(training set) are provided to the net under human supervision. This is
the case of Multi-Layer Perceptron technique. The distinctive feature of
Self-organizing Maps [23], also named Kohonen’s neural networks, is the
ability to learn without human supervision. This reason makes SOM a
important tool for analyzing complex problems, like as classification of SAR
data for remote sensing purposes.

2.2.2 Neural Networks Model

An artificial neural network may be viewed as a mathematical model com-
posed of non-linear computational elements, named neurons, operating in
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Figure 2.15: Statistic nonlinear generic model for a neuron. Here f(.) is
some monotonic function that has low and high saturation limit.

parallel and connected by links characterized by different weights [129]. NNs
models are mainly specifed by:

• neuron structure;

• training or learning rules;

• net topology;

Up to this time, most neural network models, especially the feed-forward
network have assumed neurons similar to those introduced over 40 years ago,
named multiple-input, single-output static elements that form a weighted
sum of input signal values ξi called Ij , and then amplify Ij in a non linear
circuit into ηj . A single neuron structure is shown in Fig. 2.15.

Usually there are three different way to define the training or learning
rules:

• Supervised Delta Role;

• Unsupervised Hebbian model;

• Competitive, both supervised and unsupervised.

In order to understand the difference between the previous methods Fig.
2.16 must be considered. In figure it shown a single processing unit of a
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generic net that receives inputs from other neurons or directly from the
environment (stimuli). On the connections are present synaptic weights that
refer to the strength of the connection. All that signals are fed, together with
internal threshold of the neuron, inside the netj . The output is calculated
by means of the activation function g(netj). The neuron is characterized,
therefore, by weight vector and the difference in the learning rules exclusively
regards the way how the weights are updated. If Hebb rule is used, the
variation of the weights directly depends form the output of the neuron:

∆wij = ηxiyj (2.60)

otherwise, of Delta Rule is considered, the learning rule is based in the
output error δj connected to a specified input pattern:

∆wij = ηxiδj (2.61)

In case of competitive learning method, the upgrading of the weights depends
on the neuron that responds better to stimulus. Kohonen networks (SOM)
are unsupervised and competitive. That nets try to imitate nervous system,
for this reason it is important to understand the learning process of the
brain. For this purpose, a geometric approach can be used. Both stimulus
and output are characterized by a indefinite number of components, that, if
represented in a n–dimensional space, correspond to a point. The learning
process is the the geometric process that transforms the stimulus (input),
represented by a point in the inputs–space, in the output, represented by a
point in the outputs–space. The dimension of the outputs space is usually
smaller respect the dimension of the inputs space, because the stimulus
contains information able to active many simultaneous processes. For this
reason this geometric transformation consists, at least in a latent way, in
a reduction of redundancy, in other words in a compression of input data,
that is another way to describe the classification of satellite images. Both
in the input and in the output space, typical regions are created where the
information are represented. The mechanisms that controls the information
transferring must identify this regions and ensure the connection. The
operation that consists in the data grouping, in order to create the regions,
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Figure 2.16: Reference Neuron Model (up) and the unsupervised learning
schema (down).
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can be identified as the acquisition of the experience. Kohonen’s networks
are able to preform the operations of grouping and reduction of redundancy
in a unsupervised way.

2.2.3 Mathematical Model

It is estimated that the human brain is composed of 1011 neurons and
each neuron can create from 103 to 104 synaptic connections. Each area of
the brain is dedicated to the decodification of particular stimuli. When an
external input is received, neurons are activated in groups, according to their
specialization and the type of input. That phenomena can be interpreted as
“bubble” of activity, due to a collective activity of specialized neurons. The
bubble can be viewed as an round area where there is “activity” surrounded
by a flat inactive surface. The evolution of that phenomena can be modeled
by means of non-linear differential equations. In particular the model of
leaky integrator can be used. In mathematics, a leaky integrator equation
is a specific differential equation, used to describe a component or system
that takes an input but gradually leaks a small amount of input over time.
The equation is of the form:

dx/dt = C −Ax (2.62)

where C is the input and A is the rate of the “leak”.
Referring to Fig. 2.15 and Eq. (2.62), the equation that describe the

activity of the jth neuron is [23]:

dηj/dt = Ij − γ(ηj), ηj ≥ 0 (2.63)

The neuron, then, acts like a leaky integrator, and the leakage effect in
this model is nonlinear. In a similar way as in many other simple models,
considering the synaptic weights (Fig. 2.18), the input activation Ij may be
approximated by:

Ii =
n∑
j=1

µijξj (2.64)
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Figure 2.17: A graph of a leaky integrator.

Figure 2.18: Nonlinear dynamic model for a neuron.
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Figure 2.19: Kohonen Neural Network.

considering Eq. (2.63) together with Eq. (2.64) and two layers network (Fig.
2.19):

dηj/dt =
n∑
i=1

wjiξi − γ(ηj) +
n∑
k 6=j

µkjηkj (2.65)

where

• ηj is the activity of jth neuron;

• ξi is the ith component of the input and n is the total number of
inputs;

• wji is the weight of the connection between the jth neuron and the ith
input (synapse);

• γ is a term that considers the leaks of the process;

• ηkj is the connection between jth and kth neurons.

It can be shown that Eq. (2.65), if all neurons that constitute the net
are considered, is able to model the bubble model. With this model the
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information contained in the inputs are transferred to the synapses and
their variation is regulate by the following differential equation:

dwji/dt = αηjξi − β(ηj)wji (2.66)

where α check the velocity of learning and β(ηj) the “forgetfulness”. It is
possible to note that the temporal evolution of synapses depends on the
activity of the neurons and relative connection. That is different depending
on whether the neuron is in the bubble or outside the bubble, two cases
may be distinguished:

• Neuron inside the bubble. In this case the neuron is in the maximum
of the activity (ηj ≈ 1). If the other terms in Eq. (2.66) are normalized
in order to obtain αηj ≈ β(ηj):

dwji/dt = α(ξi − wji) (2.67)

where it is possible to note that the synapse changes tying to balance
the corresponding input;

• Neuron outside the bubble. This neurons have a negligible activity,
for this reason ηj ≈ 0. Eq. (2.66) become:

dwji/dt = 0 (2.68)

synapses of this neurons are not modified.

2.2.4 SOM Structure

The Kohonen neural network consists in a series of inputs and in a n-
dimensional grid of neurons. Each input is connected to all neurons of the
grid: the resulting matrix of weights is used to propagate the inputs of the
network to the neurons on the map. An example in monodimensional space
it is shwon in Fig. 2.20.

Considering Fig. 2.20 the mathematical formulation that describes the
net is:

yj =
i=1∑
n

wjixi (2.69)
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Figure 2.20: Example of a mono-dimensional network, on the left input
neurons that are fully connected to the output neurons on the right.

where wji indicates the weight of the connection between the neuron jth
and the input ith and vectors x, w and y are defined as:

x = [x1, x2, · · · , xn]T (2.70)

wj = [wj1, wj2, · · · , wjn]T (2.71)

y = [y1, y2, · · · , ym]T (2.72)

where j = 1, 2, · · · ,m and m is the total number of the neurons in the net.
The phenomenon of the bubble, resulting in the only change of neurons

contained in it, is simulated through the introduction of the concept of
neighborhood of a neuron. The neuron that wins the competition (winner
neuron) is chosen with a strategy that take account of the outputs of all
neurons. Normally is selected the neuron that shows the maximum output
or the neuron whose vector of weights is closer to the input. In the first
case it is necessary to normalize the vectors, in the second case it is not. If
the second case is considered, the winner neuron can be mathematically:

c = arg min
j
{d(x,wj)} (2.73)
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Figure 2.21: Radius of interaction, R = rc − rj .

If the distance d(x,wj) is is considered Euclidean, Eq. (2.73) become:

c = arg min
j
{‖x,wj‖} (2.74)

The interaction that the winning neuron has with its neighbors is defined
according to a neighborhood function , which normally takes value between
0 and 1. This interaction determines a modification of the weights dependent
on neighborhood function and the response of the neuron. It can be used
for this purpose Gauss’s function:

λcj = e−
|rc−rj|2

2σ2 (2.75)

where rc is the position vector of the winning neuron, rj is the position
vector of the jth neuron of the map and σ is named proximity parameter.
When the process starts the σ parameter has a high value, thus the area over
which the bubble acts is wide. During the learning phase the previous area
is gradually decreased so that only the neurons closer to the more activated
neuron are affected and it is possible the convergence of the algorithm. The
weights of the neurons in the bubble are, therefore, updated according to
the following formula:

wj(t+ 1) = wj(t) + ηλcj(x(t)− wj(t)) (2.76)
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where η is the learning rate and decreases gradually during the learning
phase.

2.2.5 Parameters Setting

Different parameters must be defined in order to synthesize a SOM. The pa-
rameters are: dimension, learning rate, neighborhood function and training
cycles. In the following subsection a description of these parameters will be
given.

2.2.5.1 Dimension

SOM networks normally grow in the plane or in space. Three-dimensional
configuration does not give a substantial advantage during the elaboration
of information and usually causes a complication in the management of the
map itself. A bi-dimensional configuration is usually preferred. The number
of neurons can change from a few to many. The choice may be influenced
by the complexity of the input data.

2.2.5.2 Learning Rate

The choice of the trend of η parameter as a function of the time must follow
simple rules: in the early 1000 cycles its value should be ≈ 1 and then
decreased until it reaches its minimum value. A possible formulation is:

η = ηmax

(
ηmin
ηmax

) t
tmax

with

{
ηmin = 0
ηmax = 1

(2.77)

2.2.5.3 Neighborhood Function

The type of neighborhood does not have much influence, however, it is
important to choose opportunely the parameter σ: if it is too small network
could, after the training phase, not be ordered globally. It is possible to
avoid this problem by assigning to that variable a value greater than the half
of the diameter of the network. During the training cycle, σ must change to
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reduce the neighborhood in order to obtain the winning neuron (σ = 0.5).
Neighborhood function can be defined as:

σ = σmax

(
σmin
σmax

) t
tmax

(2.78)

where tmax is the parameter that represents the training cycles.

2.2.5.4 Training Cycles

The training process is a stochastic process, so the final accuracy depends on
the number of steps made in the phase of convergence that must be rather
long. A empiric rule for an acceptable accuracy, is to select 500 training
cycles for each neuron of the network.

2.2.6 Learning Process

The learning process of a SOM is based on three basic properties:

• Competition: every time that an input is fed in the net only the
“stronger”neuron is activated and becomes the winner.

• Cooperation: the winning neuron is connected to its neighbors, and
defines the center of an area in which the input will cause a change
the weights of the neurons.

• Upgrading of synapses: weight vectors of winner vector and of and
its neighbors will be updated according to learning algorithm.

The cycle that defines the learning process of the Kohonen neural
networks can then schematized in this way:

1. Selection of basic parameters;

2. Initialization of the weights of the map: random values are chosen,
avoiding that the weights of two different synapses are the same;

3. Selection of the input vector in a random or cyclically way;
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4. Selection of the winning neuron;

5. Upgrading of the weights of the map;

6. Decreasing of σ and η parameters;

7. Restarting from step 3.

The algorithm ends when σ becomes minor of a predetermined value or
when the weights of the map have a stable value. When the learning process
ends, after that the synapses are frozen, for each input vector x SOM assign
an output considering the position or the synapses of the winning neuron.
The output space is discrete, represented only by n points arranged in a
two-dimensional grid. The input-output elaboration performed by Kohonen
network has many properties, the most important is the “Organization” of
the neurons, form which its name: Self-Organizing Maps. Finally, when the
network is used referring to the synapses vector, it implements an vector
encoder.

2.2.7 SOM characteristics

After the learning phase, SOM is able to preform several tasks closely related
to its characteristics, as described in the following.

2.2.7.1 Codification of input Space

The input x which is sent to the the neural network is represented by a point
in the N-dimensional inputs space. In this area there are characteristics
regions of the analyzed context in which is associated the information of the
process that is under examination. These regions play an important role in
signals elaboration and there are algorithms that try to locate them. One
of the most important applications of these algorithms is the encoding, that
concerns in the connection of that regions with a particular point, named
“centroid”, which is the representative value (prototype) of the entire region.
The objective of a coder is to minimize the error that is committed replacing
the input x with its prototype , calculated on the entire space and taking
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into account the density of probability of x. Kohonen’s network behave
like an encoder. Each neuron is connected to the input and its synapses
(weights) represent a point in the input space. To that neuron corresponds
also a region in the input space, that is the region of inputs x that make
the neuron winner.

Therefore, the network divides the space into regions, each associated
with a neuron, with the corresponding centroid coinciding with the vector
of its synapses. In order to consider Kohonen network like and encoder, the
following steps are required:

1. Elaboration of x input;

2. Determination of the winner neuron;

As a result of the vector encoding must be considered the synapses of winner
neuron.

2.2.7.2 Organization

The discretized output space of the Kohonen network is characterized
by organized topology in the sense that the position of a neuron in the
map corresponds to a specific information. Considering a two-dimensional
network and input data related on two orthogonal variables named δ and ε.
It can be shown that after the learning phase neurons on the rectangular
grid correspond, if the two orthogonal direction are considered, to the two
variables. In that case the grid represents a coordinated plane with abscissa
δ and ordinate ε. In the case that the variables are more than two, still
considering a two-dimensional network, the organization evolves respect the
two variables that affect implied more. The final order then appears more
disturbed as much as the influence of other secondaries variables. When
this property is used, the Kohonen’s network appears like a map divided
into regions each of which is associated with a particular information.
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2.2.7.3 Approximation of data density of probability

The SOM reflects the statistical of input data and tends to recreate their
density of probability. With this behavior the net shows a greater sensitivity
on the data most recurrent neglecting those rare. In some situations this
could be useful, but for classification purposes can be a disadvantage because
the aim is to recognize all classes, even those few present in the image.

2.2.8 SOM visualization: The U-matrix

The neural network is interpreted as a set of points in n-dimensional space,
with n number of components of the input vector. After the training phase,
these points arrange in a organized manner in the map, so can be useful to
visualize them. The problem is how to represent a set of multidimensional
data in a 2–D space. Is then useful the U-matrix visualization method,
which is a simple way for display the distances between different neurons of
the map. The U-matrix construction is quite easy, to each neuron n in the
map is associated a value given by the following formula:

Umtx(n) =
∑

m∈NN(n)

d(w(n), w(m)) (2.79)

where:

• d(w(n), w(m)) refers to the distance operator, used during the training
of the net, that acts on the mth and the nth vectors;

• NN(n) defines the set of neurons neighboring with the nth;

Then, starting form a SOM having n × n dimension, when Eq. (2.79) is
used it is possible to obtain a n× n U-matrix, as shown in Fig. 2.22.

2.2.9 SOM Clustering

Trained SOM can be seen as a classifier, every time that an input vector is
fed in to the net, a neuron is activated and defines the class for the considered
input vector, but the problem is that in very large networks the number of
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Figure 2.22: U-matrix of a SOM n× n before and after the training phase.
It is possible to note, in the figure on the right, the achieved organization of
the SOM.

output classes is high. In addition, two or more neighboring neurons are
often very close in terms of Euclidean distance, for this reason they may
not belong to separate classes. For the previous reason it is important to
perform a clustering of the elements of the trained SOM. Considering Fig.
2.22, on the right is shown the SOM after the training. Three brighter areas
are visible, which may represent three different clusters. The methods used
for this second processing may be different: hierarchical method or divisive
(like K-means). Another method is the re-use of the SOM algorithm. In this
Thesis two SOMs are used: the neurons of the first bigger trained network
are classified (clustered) with smaller second SOM (Sect. 2.2.9.3).

2.2.9.1 Hierarchical approach

The hierarchical methods follow two different strategies: bottom-up and
top-down. The steps of the approach are:

1. Initialization: each input is connected to a different class;

2. Analysis of the distance among the clusters;

3. Merging of the nearest clusters;

4. Algorithm repetition from step 2 until only one cluster is obtained.
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The process result is a data grouping in order to form a hierarchical tree.
The resulting dendogram does not permit a unique data clustering; as shown
in Fig. 2.23 there are three different way to perform a 3-clusters grouping.

Figure 2.23: Dendogram of 14 points in a 1-D space.

2.2.9.2 K-Means approach

The k-Means based clustering algorithms divide the data in n clusters and
try to minimize a defined error function. Usually the number of clusters is
previously defined. The algorithm may be summarized as follows:

1. Determination of the number of the clusters;

2. Initialization of the scattering centers;

3. Analysis of data distribution;

4. Analysis and modification in the allocation of scattering centers;

5. If the clusters do not change, there is the convergence of the algorithm
and the process ends. Otherwise the algorithm must be repeated from
step 3.
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The K-means approach is often preferred to the hierarchical, but usually
utilizes assumption like as circular shape of the clusters. In addition, the
learning process is stochastic and the results may differ among themselves.

2.2.9.3 SOM based re-clustering approach

As described, SOM can be used as classifier or encoder. In the first case,
the class is determined by the winner neuron , while in the other case, for
each input, it is estimated the winner neuron and its vector of weights is
considered for the output. It may be useful to perform a first data encoding
and a subsequent classification. The first biggest trained network becomes
itself input for another smaller SOM which performs the classification of
the encoded data. The algorithm may be summarized as follows:

1. Setting of the parameters related to the first SOM;

2. Initialization of the weights in the first SOM with the input data;

3. Selection of a input vector to fed in the first SOM;

4. Winning neuron determination in the first SOM;

5. Upgrading of the weights of the first SOM;

6. Decreasing of σ and η parameters in the first SOM;

7. Algorithm repetition from step 3 until σ and η of the first SOM reach
a value lower of a priori determined threshold;

8. Setting of the parameters related to the second SOM;

9. Initialization of the weights in the second SOM with the vectors of
the first SOM;

10. Selection, from the first SOM, of a input vector to fed in the second
SOM;

11. Winning neuron determination in the second SOM;
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12. Upgrading of the weights of the second SOM;

13. Decreasing of σ and η parameters in the second SOM;

14. Algorithm repetition from step 10 until σ and η of the second SOM
reach a value lower of a priori determined threshold;

After the phase previously described, it is possible to start with the classifi-
cation of the data:

1. Selection of the input vector to fed in the first trained SOM (e.g. the
first pixel of an image);

2. Selection of the winning neuron in the first SOM;

3. Elaboration of the weights vector related to the winning neuron in
the first SOM (step 2) by the second trained SOM;

4. Selection of the winning neuron in the second SOM and storing of the
relative output;

5. Algorithm repetition from step 1 until all pixel are classified.

In Fig. 2.24(a) is shown a [10× 10] U-matrix and in Fig. 2.24(b), 2.24(c)
its clustering by means of a [2× 2] and [2× 1] SOM respectively.

After the clustering procedure performed with the [2 × 2] SOM, four
regions are identified (0, 1, 2, 3), whereas when a [2× 1] SOM is used only
two classes are identified.
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(a) U-Matrix (b) SOM2x2

(c) SOM2x1

Figure 2.24: SOM based re-clustering.
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Chapter 3
PolSOM and TexSOM in
Polarimetric SAR Classification

Two novel methods of unsupervised classification of polarimetric SAR data
are now proposed and critically discussed by comparing their performance
with those of other approaches, in particular with H/A/α–W algorithm
(Sect. 2.1.14) and with Lee’s category–preserving (Freeman–Durden) algo-
rithm (Sect. (2.1.15)), which are currently the most widely used methods
for classifying this type of data (Sect. (1)).

The developed neural network algorithms are named PolSOM and Tex-
SOM, since both methods are based on the Self-Organizing Map (SOM)
unsupervised neural networks. From a certain point of view, TexSOM can
be considered an evolution of PolSOM. The SOM approach in this work is
independent of the sensor, has a modular structure and is able to provide
real–time results. The developed algorithms have been tested on both
airborne and space borne polarimetric SAR data acquired at L–band by
AirSAR and at C–band by RADARSAT-2.

77
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3.1 Introduction

The potential of SAR in discriminating different kinds of surfaces and
objects has been widely analyzed. Extensive experimental SAR polarimetry
was essentially fostered by the AirSAR and SIR systems. Part of the
polarimetric data used in the following were acquired by the JPL/NASA
airborne AirSAR (Fig. 3.11) on a hilly area in Tuscany (Sect. ( 3.2.1.1)).
The others were acquired by the RADARSAT-2 SAR on the Colli Albani
Area in Latium (Sect. ( 3.2.2.2)). Ground truth has been obtained by

Figure 3.1: JPL Airsar.

both in–situ inspections and by careful photo–interpretation of very–high
resolution optical images, in order to assess the classification results by
reliable confusion matrices.

3.2 Data Set

3.2.1 NASA/JPL AIRSAR

The P–, L–, and C– band data from AirSAR were delivered in compressed
Stokes matrix format, with 10 bytes per pixel, and calibrated to represent
the normalized radar cross section σ0 (m2/m2). In particular, the used data
are PolSAR CM products, generated by v3.56 processor. Each CM frame
product contains three files, one for each frequency and data storing uses a
compressed Stokes matrix procedure. Details on AirSAR data compression
and decompression are in Appendix A.
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Figure 3.2: Airsar acquisition geometry.

3.2.1.1 Montespertoli Test Site and Ground Truth

Many test sites have been used for the analysis of polarimetric SAR data.
The Flevoland test site in the Netherlands has probably been the most
intensively observed [78], [91]. The Foulum Danish EMISAR test site,
Denmark, is also worth citing [130]. The preceding sites are in relatively
flat areas, with fairly regular and relatively large homogeneous fields. Less
frequent are the results for undulating, heterogeneous and fragmented
landscapes, where classification can become quite challenging. The new
SOM algorithms where tested on this kind of complex landscape, typical of
Central Italy.

One of the Italian test sites for the Multi-sensor Airborne Campaign
(MAC-Europe), which took place in the summer of 1991 in several European
countries, was located near Montespertoli [111], a rural area in south-west of
Florence (Fig. 3.3), which well represents the Thyrrenian-Appenine complex
landscape: the area is dominated by hills with average elevation around 250
meters and, in the remaining part, mainly in the river Pesa valley, is rather
flat and intensively cultivated. More than half of the Montespertoli site has
hilly woodland, vineyards, olive groves, pastures, and some urbanization.
The flat area has irregular fields with sunflower, corn, sorghum, colza, wheat,
and alfalfa. The ground data, collected in correspondence of the flights [73],
include information like tree height, forest density, crop type and stage of
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Figure 3.3: AirSAR Test Site.
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development and, for a significant set of fields, significant soil and vegetation
parameters, such as Leaf Area Index (LAI), Plant Water Content (PWC),
dimensions of leaves and stalks, soil moisture content (SMC) and roughness.
Forests are dominated by pubescent oak and European turkey oak species,
with a limited presence of European hornbeam and Italian cypress. Forests
are dense, with basal areas (i.e., normalized trunk base areas) in the range
of 70–150 m2/ha, trunk densities in the range of 2000− 8000 ha−1, while
tree heights are in the range 10− 20 m. Olive groves basal areas are ≈ 10
m2/ha for all selected fields, densities are 300 ha−1 , while tree heights are
≈ 3 m. The AirSAR data were acquired between 22 June 1991 and 14 July
1991. The Plant Water Content (in kg/m2) was ≈ 0.5− 5.0 for sunflower,
≈ 0.2 − 1.5 for corn, ≈ 0.2 − 1.0 for sorghum and ≈ 0.2 − 3.0 for alfalfa.
Wheat and colza were in their ripening stage at the time of the middle
flights. The density of sunflower and corn plant is < 10 m−2, their stalk
diameter is around 1-3 cm, and their average leaf area around 10-40 cm2 .
Colza, wheat, and alfalfa have plant density in the range 80-500 m−2, stalk
diameter about 0.2-1.2 cm and leaves of length <1 cm or absent. Fig. 3.4
shows the ground truth map of the Montespertoli area. The polarimetric
data set has been extracted from the database created by the Tor Vergata
led ERA-ORA European project (“http://eraora.disp.uniroma2.it/”).

3.2.1.2 Montespertoli data overview

Tab. 3.1 lists the analyzed Montespertoli AirSAR polarimetric data. As
detailed in the table, the considered data where acquired on 22 June 1991,
29 June 1991 and 14 July 1991. On each date, three look angles where
used for all acquisition bands, so that a set of 27 images was collected. The
acquisitions are 16-look with 1279 rows and 1024 columns. The ground
resolution is about 12 m.

Out of the available images, the one of 22 June 1991 at 50◦ was chosen
and analyzed in detail (image label: CM3151).

Fig. 3.5 displays an RGB combination of images at P– L– and C– band,
respectively, where the R channel corresponds to σ0

HH , G channel to σ0
HV

and B channel to σ0
V V .
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Figure 3.4: Ground Truth.
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File Name CCT ID Band Date Target look angle
F11 CM3151P P 22 Jun 91 500

F21 CM3151L L 22 Jun 91 500

F31 CM3151C C 22 Jun 91 500

F41 CM3166P P 22 Jun 91 350

F51 CM3166L L 22 Jun 91 350

F61 CM3166C C 22 Jun 91 350

F71 CM3196P P 22 Jun 91 200

F81 CM3196L L 22 Jun 91 200

F91 CM3196C C 22 Jun 91 200

G11 CM3292P P 29 Jun 91 500

G21 CM3292L L 29 Jun 91 500

G31 CM3292C C 29 Jun 91 500

G41 CM3314P P 29 Jun 91 350

G51 CM3314L L 29 Jun 91 350

G61 CM3314C C 29 Jun 91 350

G71 CM3326P P 29 Jun 91 200

G81 CM3326L L 29 Jun 91 200

G91 CM3326C C 29 Jun 91 200

H11 CM3355P P 14 Jul 91 500

H21 CM3355L L 14 Jul 91 500

H31 CM3355C C 14 Jul 91 500

H41 CM3380P P 14 Jul 91 350

H51 CM3380L L 14 Jul 91 350

H61 CM3380C C 14 Jul 91 350

H71 CM3396P P 14 Jul 91 200

H81 CM3396L L 14 Jul 91 200

H91 CM3396C C 14 Jul 91 200

Table 3.1: Analyzed data.



84 PolSOM and TexSOM in Polarimetric SAR Classification

(a) CM3151C (b) CM3151L

(c) CM3151P

Figure 3.5: RGB representation of σ0: R, σ0
HH ; G, σ0

HV ; B, σ0
V V , measured

on 22 June 1991 at 500.

CM3151C
CM3151L
CM3151P
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Figure 3.6: Multi-band total power image: R, C-band; G, L-band, B, P-band
total power.

A multi-band image has been generated from the total power images of
each band, by the average co- and cross polarized power:

XTP =
1
4

(σ0
XHH

+ 2σ0
XHV

+ σ0
XV V

) (3.1)

where (X = C,L, P ). The C-band total power CTP is fed in the red channel,
and LTP and PTP in the green and blue, respectively, to produce the
multi-band total power image shown in Fig 3.6.

A subset of the data relative to the area for which the ground truth
data had been collected has been considered in the classification exercise.
This sub-area, of 274 pixels by 385 pixels is shown in Fig. 3.7 with the
superimposed ground truth.
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Figure 3.7: The sub-area considered for classification with superimposed
ground truth.

3.2.2 RADARSAT-2

A set of images acquired in a full polarimetric mode by the C–band
RADARSAT-2 on the Tor Vergata Colli Albani test site was provided
through MDA Geospatial Services Inc. by the Canadian Space Agency
within the Science and Operational Application Research for RADARSAT-2
program. A time series of 10 images of the site were collected in the last
5 months of 2008. An image subset was selected for testing the developed
classification algorithms.

3.2.2.1 Tor Vergata Colli Albani Test Site and Ground Truth

The Colli Albani area and the contiguous Tor Vergata University campus
are in the outskirts of Rome, Italy, and form an interesting land cover study
site, given their heterogeneity and high urbanistic dynamics. Cereals and
vegetables fields are encountered together with extended vineyards and
olive groves, mixed with woodland, recent and historic residential areas,
isolated buildings of various dimensions and ages, industrial and commercial
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Figure 3.8: Tor Vergata Colli Albani Area.

complexes and miscellaneous artificial surfaces. The study area, shown in
Fig. 3.8 includes also part of the city of Rome for an overall extension of
about 800 square kilometers (6194× 3248 pixels).

The ground truth was manually edited (Fig. 3.9), since the area is
well known, several metric-resolution optical image are availble and in-situ
inspections were also performed for ground truth validation.

3.2.2.2 Tor Vergata Colli Albani data analysis

The selected image over which the classification exercise was performed is
an SLC fine resolution Quad–polarization, with a resolution of about 10 m
in slant range geometry. Radar measurements are recorded in GeoTIFF
format, one file for each polarization. Calibration files are also provided in
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Figure 3.9: Tor Vergata Colli Albani ground truth .
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Figure 3.10: RADARSAT–2 image foder tree.

Figure 3.11: RADARSAT–2.

.xml format. A folder tree of the image is shown in Fig. 3.11.
The image was acquired on 8 September 2008 in a descending pass. All

information is contained in the product.xml file. The three files lutBeta.xml,
lutGamma.xml and lutSigma.xml contain the look–up tables for the con-
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Figure 3.12: Tor Vergata Colli Albani RADARSAT–2 image.

version digital number to β, γ or σ rispectively. In Fig. 3.12 the selected
RADARSAT–2 image is shown.
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Figure 3.13: Typical architecture of a SOM network.

3.3 PolSOM

3.3.1 Introduction

Neural networks have some advantageous features, including non-linear
input–output mapping, ability to adaptive learning and endurance to cor-
rupted inputs. An interesting property is their ability in handling (e.g.,
classify) multiple data with different or unknown distributions [131]. How-
ever, main disadvantages of neural networks derive from the unknown set
of rules for their topology and parameter setting. This leads to many im-
plementation uncertainties, including the initialization of the weight values,
the selection of the appropriate learning algorithm, etc. [131].

A new approach in designing the neural network is proposed in this
work to overcome the above difficulties. The first objective, indeed, was to
understand how the network behaves and evolves during the classification
process. This analysis has allowed to avoid the commonly used random
initialization of weights and to manage the net in a controlled way. The
activities that have been carried out are outlined in Tab. 3.2 and detailed
in the next sections.
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Activity description Reference
Section

1. PolSOM IDL code developing 3.3.2
2. Input data pre–processing 3.3.3
3. New SOM Training technique 3.3.4
4. AirSAR C–, L– and P–band polarimetric data 3.3.5

classification with POLSOM
5. Comparison among PolSOM classification results 3.3.5

obtained with different AirSAR bands
6. AirSAR C–, L– and P–band polarimetric 3.3.6

data H/A/α–W classification
7. Comparison between PolSOM algorithm 3.3.6

and H/A/α–W algorithm
8. RADARSAT-2 PolSOM classification 3.3.7
9. RADARSAT-2 classification preserving 3.3.8

polarimetric scattering characteristics
10. Comparison between PolSOM 3.3.8

algorithm and Lee’s algorithm

Table 3.2: PolSOM development scheme.

3.3.2 PolSOM IDL code developing

The first version of a PolSOM IDL code was developed in 2005 and used to
classify a SAR polarimetric image, as detailed in [132]. That release was
not optimized and its use was not easy. A new release of the software was
implemented by Marco Del Greco in 2006 during his Master Thesis [133].
Both versions had no graphical interface and worked through command
line. A new software release is being currently implemented, in which some
bugs are fixed and a new graphical user interface is provided. The ongoing
PolSOM release is schematized in Fig. 3.14.
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Figure 3.14: PolSOM Graphical User Interface.

3.3.3 Input data pre–processing

Fig. 3.15 shows the backscattering coefficients at the principal polarizations,
together with the phase difference (HH-VV) of the selected CM3151 L-band
AirSAR data acquisition.

The power color-composite Fig. 3.16 suggests that the backscattering of
particular regions is mainly contributed by a single polarization (e.g., HH
polarization in parts of the urban area, HV in woodland, VV in some fields),
while different scattering mechanisms (Fig. 3.18) generally coexist over the
imaged area.

The HH − V V phase (Fig. 3.17), in turn, shows a typical behavior in
peculiar regions, like the urban area (Fig. 3.19), where it is frequently close
to π.

Hoekman [134] demonstrated that the polarimetric properties of a target
can also be expressed by nine independent single–polarization observables.
The property suggests the use of the scattering intensities at the 9 principal
polarizations instead of the scattering matrix, without loss of information
and with the advantage of requiring non–polarimetric segmentation software
[134]. Following the approach, a 9–components vector was synthesized for
each pixel from the data for each band. The principal polarizations are: HH,
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(a) HH (b) HV

(c) VV (d) phase

Figure 3.15: Input data.

HH
HV
VV
phase
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Figure 3.16: L–band composited image: R, σ0
HH ; G, σ0

HV ; B, σ0
V V .

Figure 3.17: HH − V V phase color-coded image.
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Figure 3.18: Scattering mechanisms and associated scattering matrices.

Figure 3.19: Urban area: principal polarizations power RGB composite
(right) and HH − V V phase color image (left).
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HV , V V , RR, RL, LL, Lin450Lin450, Lin450Lin1350, Lin1350Lin1350,
where R is for right-hand circular polarization, L for the left one and Lin
for linear polarization.

The images in Fig. 3.20 suggests how the different polarizations put
into evidence the L–band different features of targets, thus allowing a
polarimetric analysis.

3.3.4 New SOM Training technique

Given their concept and implementation, SOM networks do not need training
and for this reason they are suited for unsupervised classification. How-
ever, as explained in Sect. (2.2), this kind of network is sensitive to the
probability density functions of the input data. Such a feature can be
an advantage for some applications, but could become a disadvantage for
remote sensing purposes, because classes represented with fewer pixels could
be underestimated.

Consider a set of points, ranging between 0 and 100, in the bi-dimensional
plane, having a exponential density of probability (Fig. 3.21).

If these points are classified using a [6× 6] SOM, the network topology
approximates an exponential function.

Each point of Fig. 3.22 represents the weights vector for each neuron of
the [6× 6] SOM. Note that the neurons tend to reproduce the probability
function of the input data: in fact the neurons gather in the area where
the input values cluster. The same conclusions can be reached if a U–
matrix is used. U–matrix representation is the way to visualize the network
status for more than the two-dimensional case (more than 2 inputs). As
explained in Sect.2.2.8, U–Matrix data visualization does not depend on
the number of inputs of the net. Each neuron, with associated coordinate
(i, j), is characterized by a vector of weights whose dimension depends on
the number of inputs. For each neuron, the values of distances from its
neighbors can be added and the result divided by their number. This mean
value is stored in the U–matrix at the same coordinate of the considered
neuron. This procedure leads to a graphic representation of the relations
between the neurons: the dark areas on the map correspond to closely
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(a) HH (b) HV

(c) VV (d) RR

(e) RL (f) LL

(g) Lin4545 (h) Lin45135

(i) Lin135135

Figure 3.20: Intensity images at the 9 principal polarizations.

HH
HV
VV
RR
RL
LL
Lin4545
Lin45135
Lin135135
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Figure 3.21: Simulated set of points.

Figure 3.22: Weights of a 6× 6 SOM classifier of the data set in Fig. 3.21.
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Figure 3.23: Comparison between weights vector diagram (left) and U-
matrix representation (right) for the 6× 6 SOM classifier of the data set in
Fig. 3.21.

packed neurons, while the clear areas correspond to sparse neurons.
Now it should be clear that a SOM classifier needs a proper preparation

for optimally receiving the data. This procedure can be seen as a training
of the net that can be performed in a supervised (Sect. ( 3.3.4.1.2)) or
unsupervised Sect. ( 3.3.4.2)) way. In the starting phase a supervised
procedure was implemented to observe the expected improvements. In the
subsequent phase, an unsupervised training method was implemented and
tested. A procedure common to both methods has been the use of the
9-dimensional vectors corresponding to the principal polarizations (3.3.3).

3.3.4.1 Supervised Training

Polarimetric images are often visualized by Pauli decomposition and sub-
sequent RGB representation of the three components. The red channel
represents |HH − V V |, the green |HV | and the blue |HH + V V |. The
AirSAR image used in the classification exercise has been first decomposed,
both for a proper understanding of its information content and for a better
comprehension of the SOM classification procedure. Pauli decomposition–
based images for C–, L– and P–band of the considered CM3151 data are
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Figure 3.24: Pauli decomposition for C band (CM3151).

shown in Fig. 3.24, Fig. 3.25 and Fig. 3.26 respectively.

A [10 × 10] SOM was used, based on an empirical approach, since a
direct relation between number of neurons and accuracy of the result is
difficult to establish. One hundred neurons represent a compromise between
processing time and result accuracy. Since a [10 × 10] SOM cluster the
image in 100 classes, a second [16× 1] SOM was used to reduce the number
of classes to 16 (Fig. 3.27). The input of the second network coincides with
the output of the first network. Hence 16 classes were considered in the
preliminary analysis to have a direct comparison with other methods.

The first classification result for a random weight initialization is shown
in Fig. 3.28. Urban and forest, even if characterized by different scattering
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Figure 3.25: Pauli decomposition for L band (CM3151).



3.3 PolSOM 103

Figure 3.26: Pauli decomposition for P band (CM3151).
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Figure 3.27: PolSOM scheme.

properties, are assigned to the same class. Arable land and permanent crops
are discriminated, with a better sensitivity in separating colza and vineyard.

The next step consisted in a supervised training to make the net more
apt to polarimetric data processing. Pixels clearly characterized by double-
bounce, surface and volume scattering mechanisms have been singled out
and mixed together to built the training set. The selection of the pixels has
been performed with two different criteria.

To this end, the polarimetric signatures have first been computed, and
the subsequent pixel selection carried out as follows:

• One pixel for the double bounce scattering mechanism, in the urban
area (Fig. 3.29), having:

1. phase–difference (HH–VV) value=π;

2. high values of HH.

• One pixel for surface scattering mechanism, in the bare soil area (see
Fig. 3.30), having:
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(a) L-Band_SOM_Classification

(b) Ground_Truth

Figure 3.28: L-Band SOM classification with random weight initialization. .

L-Band_SOM_Classification
Ground_Truth
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1. phase–difference (HH–VV) value≈ 0;
2. low values of HV.

• Six pixels (to be averaged) for volume scattering mechanism, in the
forest area (see Fig. 3.31), having:

1. phase–difference (HH–VV) value≈ 0;
2. high values of HV.

(a) UR_co (b) UR_cross

Figure 3.29: Urban polarimetric signature at L-Band.

(a) BS_co (b) BS_cross

Figure 3.30: Bare Soil polarimetric signature at L-Band.

The selection was performed at C–, L– and P–band, so that three
9-components (Sect. ( 3.3.3)) representative vectors (Fig. 3.32) were synthe-
sized (one with the intensity values of the double-bounce pixel, the second

UR_co
UR_cross
BS_co
BS_cross
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(a) Fo_co (b) Fo_cross

Figure 3.31: Forest polarimetric signature at L-Band.

Figure 3.32: 3 Input vectors with 9 components.

with the surface pixel values and the last one with the average values of the
forest pixels) to construct the training set for each frequency.

3.3.4.1.1 Gaussian training data set. Gaussian noise was then added
to the three representative vectors in Fig. 3.32, resulting in the trained

Fo_co
Fo_cross
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Figure 3.33: U-Matrix after Gaussian training.

U-Matrix corresponding to the [10× 10] SOM shown in Fig. 3.33.
Note that the portion of U-Matrix referring to surface scattering is

clearly separated from the others. The double bounce and the volume
scattering show less separation. This first analysis hints at a more difficult
discrimination between the latter two mechanisms compared to the first.

Figure 3.34: U-Matrix and representative vectors.

Fig. 3.34 displays the neurons activated by the representative vectors
synthesized by the procedure of Sect. (3.3.3). The vectors are not placed
at their maximum respective distance; however, they are well separated
and the network has allocated a high number of neurons for each principal
mechanism (dark areas, i.e., high neuron density).
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Figure 3.35: Four classes L–band classification using Gaussian training: red,
urban; green, forest; blue, rapeseed and vineyards; yellow, crops.

The PolSOM implemented as described by the above procedure has
finally classified the chosen L-band image, obtaining the result shown in
Fig. 3.35. The overall accuracy is higher than the one of the first classification
(Fig. 3.28), but there is still some confusion between urban and forest, as
previously suggested by the analysis of the U-Matrix.
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3.3.4.1.2 Mixed Training data set. Especially at decametric spatial
resolution, very few targets are characterized by pure scattering mechanisms,
hence a new way to train the SOM is needed. The scheme is based on the
generation of a mixed training data set starting form the three pure scattering
mechanisms. To this aim, appropriate combinations of pure mechanisms
have been formed by adding weighted pairs of the three representative
vectors, as shown in Fig. 3.36.

Figure 3.36: Mixed training data set synthesis.

An interesting exercise consists in the U–Matrix visualization of the
status of the network during the training process. The evolution of the
network with progressing training (i.e., with increasing p parameter) is
shown in Fig. 3.37. The network progressively adapts to recognize mixed

Figure 3.37: Evolution of U-Matrix in the course of mixed training.

mechanisms, allocating less neurons for the identification of pure mechanisms.
The evolution of the three original pure-mechanism representative vectors
can be also visualized on the U-Matrix (Fig. 3.38). It is important to
note that the distance among the pure-scattering representative vectors has
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Figure 3.38: Pure-scattering vectors on the U-Matrix as mixed training
progresses.

an increasing trend as training progresses and, at the end of the process,
the vectors are placed at the maximum relative distances. This means
that the PolSOM is “better prepared” to accept the input data, in terms
of separation among different scattering mechanisms. The result of the
classification obtained after this mixed training procedure is shown in
Fig. 3.39 and compared with that obtained by Gaussian training: the overall
accuracy has increased by about 3%, and now exceeds 85%.

3.3.4.2 Unsupervised Training

To make further automatic the method, an unsupervised procedure has
been developed for selecting the pixels from which the 9-components repre-
sentative vectors can be synthesized. The Pauli decomposition is used to
this purpose, as detailed in the following scheme:

• Double–bounce scattering mechanisms: the training set includes pix-
els having, at the same time, high values of Pauli’s double-bounce
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component and low values of volume component;

• Surface scattering mechanisms: a percentage of pixels having predom-
inant Pauli surface component;

• Volume scattering mechanisms: the procedure is reciprocal to the
double-bounce.

The SOM trained by the unsupervised method has classified the polari-
metric L–band image with the results shown in Fig. 3.40 for a three-class
discrimination1.

To compare the results of Fig. 3.40 with those of Fig. 3.40, this latter
has to be reclassified in three classes: the loss of accuracy caused by the
automatic training is ≈ 4%. As expected, automatism causes a loss of
performance, which is “the price to pay” to achieve a fully automatic
real-time classification.

At the end, it is worth pointing out that, even if the selection of the
appropriate pixels for synthesizing the 9-components representative vectors
is performed in a supervised way, the classification method may be still
considered unsupervised. Indeed, the selection of pixels is manual, but based
on objective basis like the electromagnetic theory (polarimetric signatures,
Pauli decomposition, etc.).

Examples of fully automatic classification methods for general polarimet-
ric data are not found in literature, probably because the filter window size
or some other parameters (i.e., number of reclustering cycles, percentage of
pixels that change class between a reclustering cycle and the subsequent,
etc. ) are difficult to compute a-priori. The aim of this study is to design a
new classification algorithm and to compare the obtained results with those
obtained by commonly used methods, hence the Mixed Training method is
used in the following. The PolSOM fully automatic classification capability
can be seen as a further advantage of this algorithm compared with others.

1As the procedure is evolving, three classes were considered instead of four, because
the starting main purpose is to optimize the method, focusing on the three principal
scattering mechanisms.
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3.3.5 AirSAR C–, L– and P–band polarimetric data classi-
fication with PolSOM

The best-performing PolSOM, i.e., the one obtained by the “mixed training”
method has been employed to classify the selected AirSAR C– and P–band
polarimetric images. Given the dependence of the backscattering of different
types of surface on frequency, P–band data were separated into three classes
only, while the C–band images into four classes. The classification of L-band
data has already been considered in Sect. 3.3.4.1.2 and is recalled here just
for a convenient comparison with the other bands.

P–band overall accuracy on three classes is 93.8 %, as shown in Fig. 3.41.
Indeed, P–band is not able to discriminate between crops and vineyard.
However, the three elemental scattering mechanisms (double-bounce, surface
and volume) connected with the urban, crops and forest classes are well
identified and correctly classified. As seen, L–band accuracy is 85.4 % on
four classes. The confusion matrix was not computed for C–band since
the accuracy is visibly low. In this case only rapeseed fields are clearly
recognized, while other crop classes are confused. According to results
in literature, e.g., [69], and the present PolSOM analysis, L–band fully
polarimetric SAR data appear the best for land classification.

3.3.6 AirSAR C–, L– and P–band polarimetric data H/A/α–
W classification and comparison

The AirSAR CM3151–L, –C and –P images have been classified also by the
H/A/α–W method [11], outlined in Sect. ( 2.1.14). From an inspection
of Figs. 3.44, 3.45 and 3.46 and of the corresponding confusion matrices
it appears that the results yielded by the PolSOM technique are in each
case at least comparable with those by the H/A/α–W method. It is also
confirmed that the L–Band performs better for both classification methods.

As a final comment to this analysis, the neural algorithm trained by
an electromagnetics-based methodology seems to perform consistently and
looks a reliable tool for analyzing Earth Observation data.
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3.3.7 RADARSAT-2 PolSOM classification

The RADARSAT–2 image was classified by the the same technique adopted
for the AirSAR image, to confirm that PolSOM can process polarimetric
data independently from the location (air or space) of the sensor platform.

As before, a mixed data set was synthesized from the polarimetric
analysis of the image, which is in SLC format. No multilooking was applied to
preserve the phase information 2. RADARSAT–2 data are at C–band, which,
as shown before, is not the best choice for complex landscapes classification.
For that reason classification is limited to the three fundamental classes of
double–bounce, surface and volume scattering. Fig. 3.47(b) shows a subset of
RADARSAT–2 PolSOM classification result together with the Pauli image of
the same area (Fig. 3.47(a)). The region of interest includes the Engineering
Faculty of Tor Vergata University, Rome, Italy. Even if the speckle is
very pronounced in the SLC image and affects the classification results,
the overall three-class accuracy exceeds 69%. The spekle was not filtered
because it was interesting to assess the classification accuracy in almost
real-time situations, when filtering procedures are not easily performed.

3.3.8 RADARSAT–2 classification preserving polarimetric
scattering characteristics and comparison with Pol-
SOM

The RADARSAT–2 image has then been classified by the algorithm proposed
by Lee in [14] and previously described in Sect. 2.1.15). Lee’s algorithm
preserves the purity of dominant polarimetric scattering properties for all
pixels using a combination of scattering models based on the Freeman-
Durden decomposition. After the first step, for each scattering category
(double–bounce, volume and surface), a second classification is performed,
but pixels in a scattering category are constrained to be classified together
with other pixels in the same scattering category. This implies that the final
classification accuracy is strongly dependent on the first step. The number

2In AirSAR MLC format case, multilooking was directly applied by JPL on data
during the L1 processing phase, hence phase information was preserved
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of classes is limited to three as before, for suitable comparison.
Fig. 3.48 reports a comparison between the two algorithm, including

the respective accuracy matrices. PolSOM overall accuracy is 69.55% while
Lee’s algorithm overall accuracy is 68.83%. Again, as in the case of AirSAR,
the results of the two methods are comparable. PolSOM perform similarly
to well consolidated and used algorithms.
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(a) Gaussian_Training

(b) Mixed_Training

Figure 3.39: Comparison between accuracies obtained with Gaussian Train-
ing and Mixed Training.

Gaussian_Training
Mixed_Training


3.3 PolSOM 117

Figure 3.40: L-Band Classification with automatic training.
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Figure 3.41: P-Band PolSOM classification.
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Figure 3.42: L-Band PolSOM classification.
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Figure 3.43: C–band SOM classification.

Figure 3.44: L–band PolSOM classification vs. H/A/α–W.
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Figure 3.45: P-Band PolSOM classification vs. H/A/α–W.

Figure 3.46: C-Band PolSOM classification versus H/A/α–W classification.
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(a) Pauli

(b) PolSOM_Classification

(c) Confusion_Matrix

Figure 3.47: RADARSAT–2 PolSOM Classification of the Engineering
Faculty area of Tor Vergata University, Rome, Italy.

Pauli
PolSOM_Classification
Confusion_Matrix
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Figure 3.48: PolSOM RADARSAT–2 classification versus Lee category
preserving classification (Freeman–Durden).
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3.4 TexSOM

3.4.1 Introduction

With the term TexSOM we define a PolSOM using textural information,
derived from the textural analysis of the polarimetric data. The term textural
information, in the framework of TexSOM algorithm, assumes a wider
meaning. Textural information, indeed, can be pixel based, like as other
polarimetric approaches ([91]) or contextual. In this last case information
is derived from data itself, mixing, at the same time, pixels and objects.
The contextual analysis and the idea to mix together pixels and objects
represents a new approach in polarimetric SAR data analysis, so far not yet
proposed in the literature, at least at the writer’s knowledge. The TexSOM
approach is made possible by the peculiar ability of neural networks both
in performing parallel computations and in jointly processing heterogeneous
data. The modular approach followed in designing the TexSOM algorithm,
also, does not impose restrictions on the number of input data and their
nature. A TexSOM algorithm can classify a single polarimetric SAR scene,
like others algorithms, or can process, without any need of substantial
change in the algorithm, vectorial data, interferometric coherence data, etc..
From an application point of view, these characteristics provide substantial
advantages, also because results of external processing and/or data from
different sensors, can be integrated into a global polarimetric analysis.

In the following only AirSAR and RADARSAT–2 data are used and all
other additional inputs are calculated starting from the images themselves.
The aim is to compare the performances of TexSOM with PolSOM, and,
in an indirect way, with presently used algorithms. However, it should
be considered that, in general, multi–sensor or multi–data polarimetric
processing can be performed by a TexSOM.

The activities pertaining to the TexSOM development are outlined in
Tab. 3.3 and detailed in the next sections.
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Activity description Reference
Section

1. AirSAR L–Band data 3.4.2
pre–processing

2. AirSAR L–Band data 3.4.3
classification with TexSOM

3. PolSOM and TexSOM AirSAR 3.4.5
classification results comparison

4. RADARSAT–2 data 3.4.5
pre–processing and classification with TexSOM

5. PolSOM and TexSOM RADARSAT–2 3.4.6
classification results comparison

Table 3.3: TexSOM activity scheme.

Figure 3.49: Shape discrimination.

3.4.2 AirSAR L–Band data pre–processing

Pixel–based and object–based information is used in the TexSOM polari-
metric classification of AirSAR L–band data, as described in the following.

3.4.2.1 Object–Oriented methodology

When a skilled human operator analyses remote sensing data, he does not
look only at the pixels, but also at the way they are organized.

An example of contextual information is given in Fig. 3.49. In a single-
channel radar image, as an example, with roads, burned forest and burned
fields, pixels with close values are associated with single objects. It is difficult
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to classify single pixels in three separate classes, but the human brain readily
recognizes the three different targets, since the objects are viewed in their
totality and not one pixel at a time. To exploit the information provided by
the object–based analysis, some rules must be found to create objects from
the image and to take advantage from contextual information.

An object is defined as a set of adjacent pixels with common charac-
teristics. The object can be distinguished from the others because there
is a variation in the value associated with the pixels positioned on the
boundaries of the object. The procedure that identifies the contours of
the objects is the image segmentation. There are different algorithms that
perform segmentation, a common technique consisting in growing filters
that highlight pixels with common statistical characteristics. The growing
procedure is more effective if the image is homogeneous with well delineated
edges. Usually this is not the case of a radar image, where speckle affects
both the contiguity of the edges and the homogeneity of the objects.

The segmentation of the image, hence the creation of objects, can be
seen as an image processing for enhancing contrasts to better identify the
edges. For this reason, some filtering was carried out on the AirSAR image
before segmentation.

3.4.2.2 Refined Lee filtering

Lee filtering may be defined as a standard–deviation based filtering that
processes data according to statistics computed within individual filter
windows. Unlike a typical low–pass smoothing filter, the Lee filter preserves
image sharpness and detail while reducing noise. The filtered pixel is
replaced by a value calculated using the surrounding pixels [135]. The
problem of Lee filtering of polarimetric images is that the window operates
on a group of pixels, hence several scattering mechanisms are averaged in
the resulting filtered pixel. This results in an increase of depolarization and,
in turn, of the entropy (Sect. (2.1.14)) and of the height of the pedestal
(Sect. (2.1.5)).

The Enhanced Lee filter 3 [62] is an adaptation of Lee filter and similarly
3[128] reports that speckle reduction is optimized if averaging over neighboring pixels
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uses local statistics (coefficient of variation) within individual filter windows.
Each pixel is assigned to one out of three classes, which are defined as [136]:

• Homogeneous: the pixel value is replaced by the average over the filter
window;

• Heterogeneous: the pixel value is replaced by a weighted average;

• Point target: the pixel value is not changed.

Enhanced Lee filtering requires a damping factor and two cut–off parameters
of the coefficient of variation . The damping factor inversely defines the
extent of the exponential damping in the weighted average for the heteroge-
neous class, so that a larger damping factor produces less averaging. Value
of 1 is suitable for most radar images. The coefficient of variation is inversely
related to the square root of the number of looks of the original image. The
cut–off parameters can be calculated by

Cu ∼=
0.523√
N

(3.2)

Cmax ∼=
√

1 +
2
N

(3.3)

The Enhanced Lee filter was used to pre-process the AirSAR image,
adopting a [5× 5], which was found to be the best for this purpose.

The following parameters where used:

• Window size: 5× 5;

(filtering window), yields a mean covariance matrix 2.40 in section 2.1.13 with Wishart
distribution. This propriety is not possessed by the 4-look or 16-look CM3151 MLC
images provided by JPL, since a polarimetric image should be, at least, 25–look averaged.
In the development of PolSOM, experiments were carried out with filtered images, but
without noting appreciable increase of accuracy. The reason is that neural networks
perform parallel processing, hence they are more robust to noisy and corrupted data [23].
Therefore, it was decided to avoid filtering before PolSOM classification, also to design an
algorithm as automatic as possible.
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(a) PauliImage (b) PauliFilteredImage

Figure 3.50: Comparison between unprocessed Pauli image and Enaced–Lee
filtered Pauli image.

• Dumping Factor: 1;

• Cu = 0.138;

• Cmax = 1.06;

As an example, Fig. 3.50 shows a comparison between the Pauli image
synthesized from unprocessed data and the Pauli image synthesized from
filtered data. The 9-dimensions (principal polarizations) filtered image is
the input to the segmentation algorithm.

3.4.2.3 Segmentation

First major progress in object–oriented feature extraction is found in sea–
ice studies [137], coastline extraction [138] and certain approaches to data
compaction [139]. As shown in Sect. 3.3.3) the full polarimetric radar
properties can be expressed by the backscattering intensities at nine principal
polarizations. This approach has the advantage that segmentation can be
performed by using non–polarimetric algorithms [134]. For this reason,
TexSOM implements the general–purpose algorithm described in [140].

The algorithm, a multi–resolution segmentation [141] which basically
combines different procedures, requires a scale parameter, related to the

Pauli Image
Pauli Filtered Image
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dimension of the objects, hence to the classification scale. The segmentation
procedure starts at any point in the image with one-pixel objects. In the sub-
sequent steps, smaller objects are merged into bigger ones according to some
parameters (Color, Shape, Smoothness and Compactness) and the common
statistical properties of the objects. The clustering procedure ends when the
growth of the objects exceeds a threshold defined by the scale parameter.
Color, Shape, Smoothness and Compactness are connected together in the
pairs Color-Shape and Smoothness-Compactness, respectively, with the
property that if, for example, the Color parameter is increased, then Shape
correspondingly decreases. The success of segmentation relies on the correct
setting of the parameters. However, their optimization is not a problem
when radar images are at hand, since, given the highly fragmented nature
of SAR images, Shape must assume its maximum value and, consequently,
Color the minimum. On their side, the setting of Smoothness-Compactness
does not dramatically affect the result. The scale parameter was determined
by considering the scale of interest, based on the results obtained by PolSOM
on the same area4.

Fig. 3.51 reports the result of the segmentation. It turns out that the
pixel information is lost and the original raster input file transforms into a
vectorial one. The colors refer to the identification number of the objects in
the related attribute table discussed in the next section.

3.4.2.4 Object–based information

The segmentation procedure creates a polygon vector file in which each
polygon is associated with an object, a row corresponds to the polygon and
each field of that row represents a feature of the object. In this way an
attribute table is created, in which rows denote objects and columns identify
features.

An important point is understanding which features contained in the
vector file carry pieces of information that can improve the SOM accuracy.

4The scale parameter, or growth threshold, must be set in most clustering algorithms.
Indeed, H/A/α–W algorithm uses a cluster threshold in the Wishart clustering procedure
(Sect. 2.1.14).
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Figure 3.51: Segmentation result.

Many features can be computed, but those strictly affected by the kind of
image under analysis should be avoided. The used optimization procedure
takes into account the following constraints:

• processing time;

• independence from the image under analysis;

• features independence.

Four features were identified, three based on shape parameters and one on
textural information.

3.4.2.4.1 Shape–based features. An example of sets of pixels having
the same value but ordered differently in space was shown in Fig. 3.49.
When the geometry is associated with an object, discrimination among
objects is feasible from the shape properties. As an example, the geometry
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of a road is quite different from that of a field. Both objects are represented
by rectangles, but a road has the “width” to “length” ratio with very low or
very high values, according to its orientation in the image. A field, on the
contrary, has width of the same order of its length. As a further example,
in a forest stand, the border is more fragmented than that of a building or
of a field.

The shape–based features selected for the TexSOM implementation are:

• Area: this feature represents the area of the image object itself, be it
the real area in square meters or the number of the pixels contained
in the object.

• Length/width: a bounding box is constructed around the object, from
which the ratio of length to width is calculated.

• Shape index: it describes the smoothness of the image object border.
The more fractal an object appears, the higher its shape index is.
Mathematically, the shape index is the length of the border e divided
by four times the square root of its area A

SI = e/4
√
A (3.4)

where the border length e is defined as the sum of the lengths of the
edges of the object .

Fig. 3.53 shows a simple example of shape–based feature values for two
different objects5. Note that the number of pixels in the area is the same for
both objects, hence discrimination cannot be based on this single parameter.
If the vector–to–raster procedure is applied, two different four–elements
vectors are obtained. All pixels of one object are characterized by the
same feature vector, hence, the discrimination between the entire objects is
straightforward.

5The area was computed as the number of pixels.
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Figure 3.52: Border length.

Figure 3.53: Shape–based features.
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3.4.2.4.2 Texture–based feature. The approach to textural features
calculation is quite different. Textural information is computed through the
occurrence–based filter on a single image file [142]. The chosen image was
the AirSAR L–Band total power Image (Eq. 3.1) 6. The computation was
performed using only pixels surrounded by the border of the each object, In
particular, the mean occurrence–based filter was used [142] with a [3× 3]
window, since the data are MLC. At the end, the sum of the values of the
pixels belonging to each object was assigned to it.

3.4.3 AirSAR L–Band data classification by TexSOM

The peculiar design of TexSOM makes the algorithm able to jointly process
polarimetric and textural information, without particular limitations to
the kind or number of inputs. TexSOM can be defined as a multi–neural
network algorithm, which enhances the parallel–calculation properties of
the net. As mentioned before, only a limited selection of images was used
in this work, to be able to compare the TexSOM results against those of
other methods, but, thanks to its modular design, the algorithm is indeed
able to process a variety of images.

6The quantities in Eq. (3.1) are related to power, hence the Total Power image can be
also regarded as the image of the SPAN of the [T]3×3 matrix of Eq. (2.43). Ideed, since
[T]3×3 is an Hermitian positive semidefinite matrix,

[T]3×3 = λ1e1 · e∗T1 + λ2e2 · e∗T2 + λ3e3 · e∗T3 (3.5)

The SPAN can be defined as the total backscattered power contributed by the three
scattering mechanism in [T]3×3:

SPAN = λ1 + λ2 + λ3 (3.6)

The sum of the eigenvalues in Eq. (3.6) is the trace of the coherency matrix [T]3×3 [72];
hence, the SPAN can be also defined as:

SPAN = T11 + T22 + T33 where


T11 = |Shh + Svv|2
T22 = |Shh − Svv|2

T33 = |2Sx|2
(3.7)

with Tii (i=1,2,3) the principal diagonal elements of the coherency matrix [T]3×3.
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A first problem in managing heterogeneous data derives from the statis-
tics of the different inputs, which can span quite different ranges. The
procedure commonly followed consists in scaling the data to obtain range–
controlled inputs statistics. This procedure cannot be applied to polarimetric
data, because inter–channel polarimetric information would be lost. The sec-
ond problem comes from the object–based data, that require pre–processing
before feeding the network. As mentioned before, this latter problem was
solved by implementing a raster–to–vector conversion. To solve the first
problem, a new net architecture was designed.

Figure 3.54: TexSOM layout.

The scheme in Fig. 3.54 shows the assemblage of different SOMs for
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the classification process. A first polarimetric input enters a PolSOM, as
described in Sect. ( 3.3)). The second input carries object–based information,
i.e., the total power image synthesized and subsequently segmented and
vector–to–raster converted. As noted, the number of inputs to a TexSOM
is theoretically unlimited and for this reason other inputs were considered.
We tested several configurations with up to six primary inputs, like the
diagonal elements of the covariance matrix [T ]3×3, H/A/α–W parameters,
Freeman–Durden decomposition, etc.. By comparing the overall accuracy
matrices, it turned out that the best result was obtained using a three first–
level SOM configuration with inputs including, in addition to polarimetric
intensities and total power, the Pauli decomposition. All the first–level
SOMs are [10× 10], since the results of the tests indicate this configuration
as the best trade off among accuracy, processing times and independence of
the number of neurons from the input7.

The outputs from all first–level SOMs are fed into a matching–level SOM,
which represents the core SOM. Indeed, this is the SOM that performs the
classification of heterogeneous information. All the inputs fed into core
SOM range in a [0, 99] interval, since they are originated by [10× 10] SOMs,
but the inter–channel polarimetric information is not lost, because, in the
first step, homogeneous information are processed in independent SOMs.

The output of the [10× 10] core SOM is a 100 class segmentation. To
reduce this unreasonably high number of classes and grouping together
pixels belonging to close or to the same class, a further 16× 1 SOM is used,
whose output is the final output of the algorithm.

Fig. 3.55 reports the result obtained in classifying the L-band AirSAR
image already used for PolSOM classification. The overall accuracy now
exceeds 89%, with an apparent improvement in the separability of particular
classes, such as urban and forest, vineyards/rapeseed and other crops. Again,
the neural networks have provided an optimal algorithm for managing

7Up to 100 classes can be discriminated by a [10×10] SOM. This number is substantially
over sized, considering the number of classes usually present in an image, for this reason
the same SOM topology can be applied regardless of the input image. On the other hand,
[10× 10] topology represents the smallest configuration needed to correctly monitor the
network evolution by U-Matrix.
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Figure 3.55: TexSOM Classification result.

heterogeneous data in classification.

3.4.4 PolSOM and TexSOM AirSAR classification: results
comparison

If the results in classifying the AirSAR polarimetric L–band data yielded
by TexSOM are compared with those by PolSOM (Fig. 3.56), the following
considerations hold. TexSOM yielded an improvement of 3.9% over PolSOM:
this increase of accuracy is particularly significant, given the high absolute
value. It was also noted that, in particular, TexSOM benefits from the
relatively stable information provided by the “object–based” input.
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Figure 3.56: PolSOM and TexSOM results comparison.

Figure 3.57: Object–based contribution in vineyard classification.

At this purpose, the particular vineyard area highlighted on the image
shown in Fig. 3.57 can be considered. The five sub–images refer to (starting
form the left): the Pauli image, the segmentation result, the H/A/α–W
classification, the PolSOM classification and TexSOM classification. It can
be noted that in vineyard classified by TexSOM, thanks to “object–based”



138 PolSOM and TexSOM in Polarimetric SAR Classification

inputs, noise is reduced and the accuracy increased.

3.4.5 RADARSAT–2 data pre–processing and classification

As explained in Sect. 3.3.7 the classification of RADARSAT–2 data was
performed on three scattering classes: double–bounce, surface, and volume.
The TexSOM scheme used for this classification is shown in Fig. 3.58. In

Figure 3.58: TexSOM RADARSAT–2 scheme.

channel 2, from the total power image, a pixel–based textural information
has been computed by [3×3], [5×5] and [7×7] filtering windows. As before,
textural informations is processed by a dedicated SOM whose output feeds
the core SOM jointly with the output of the channel 1 PolSOM unit. Unlike
the AirSAR classification, in this case the object–based information has not
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been used, since the RADARSAT–2 image is SLC in slant-range geometry.

(a) Pauli (b) TexSOM_Classification

(c) Confusion_Matrix

Figure 3.59: RADARSAT–2 TexSOM classification of the Tor Vergata
University Engineering area, Rome, Italy.

The classification result is shown in Fig. 3.59, with the corresponding
accuracy matrix.

3.4.6 PolSOM and TexSOM RADARSAT–2 classification:
results comparison

Fig. 3.60 shows a comparison between the PolSOM and TexSOM perfor-
mances in classifying the selected Tor Vergata area, including the accuracy
matrices. TexSOM increases the accuracy by 6.2% over PolSOM. In par-
ticular, it is worth noticing how the use of texture features reduces the
classification fragmentation that strongly affects the segmentation of such
an unfiltered SLC image.

Pauli
TexSOM_Classification
Confusion_Matrix


140 PolSOM and TexSOM in Polarimetric SAR Classification

Figure 3.60: TexSOM and PolSOM classification results on Engineering
Faculty of Tor Vergata University, Rome, Italy.



Chapter 4
Conclusions

Two novel Neural Network algorithms, named PolSOM and TexSOM, based
on the Self-Organizing Map (SOM) technique, have been devised, developed
and implemented to classify polarimetric radar images in an unsupervised
manner. For the first time at the author’s knowledge, pixel–based and
object–based information has been merged together and jointly used in
classification. A Neural Network scheme was instrumental in this major
progress, given its natural ability in managing heterogeneous information.

The classification algorithms have been tested on two Italian landscapes,
particularly challenging because of the undulating, heterogeneous and frag-
mented landscapes. Both L-band airborne (AirSAR) and and C-band space
borne (RADARSAT-2) fully polarimetric SAR images formed the data set
on which the two algorithms were validated. Their performance was also
checked against the results yielded by some presently popular classifica-
tion algorithms, as the Lee’s/Freeman–Durden and the Cloude and Pottier
H/A/α-Wishart ones.

The obtained confusion matrices show that the accuracies attained by
the novel algorithms are at least comparable with those achieved by the
methods that are now considered to be the best performers in classifying
polarimetric SAR data.

141
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Given their difficult-to-track nonlinear behavior and based on results ob-
tained in the early stage of their implementation, Neural Networks are some-
times considered a kind of occasionally effective, but substantially unreliable
black-box algorithms. The experience gained in designing and implementing
the algorithms demonstrates that when the topological configuration and
the training strategy are driven by essentially physical consideration, the
Neural Network algorithm behaves in a controlled fashion and its results
are stable.

In the next future, multi-polarization (i.e. Sentinel–1) and optical (i.e.
Sentinel–2) European missions are scheduled, which are expected to provide
a huge amount of data, also thanks to improved revisit rates. The availability
of unsupervised algorithms to automatically exploit the ensemble of satellite
data in updating the land cover maps is one of the crucial factors towards
consolidating the success of Earth Observation. The ability of the proposed
TexSOM algorithm in unsupervised processing SAR data [143], SAR and
optical data [144], raster and vectorial data (Sect. (3.4.2)), hints at the
versatility of the algorithm, which is not bounded to SAR polarimetry only,
like the ones previously considered in this work, and at its potential in
possibly contributing to the success of satellite Earth Observation.



Appendix A
AirSAR data
compression/decompression
equations

Stating the following expression for the Stokes matrix [M]:

[M] =


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

 (A.1)
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in the monostatic case, the matrix is real and symmetric, therefore [M]
contains the following distinct elements:

M11 = 1
4(ShhS∗hh + SvvS

∗
vv + 2ShvS∗hv)

M12 = 1
4(ShhS∗hh − SvvS∗vv)

M13 = 1
2<(ShhS∗hv) + 1

2<(ShvS∗vv)
M14 = −1

2=(ShhS∗hv)−
1
2=(ShvS∗vv)

M22 = 1
4(ShhS∗hh + SvvS

∗
vv − 2ShvS∗hv)

M23 = 1
2<(ShhS∗hv)−

1
2<(ShvS∗vv)

M24 = −1
2=(ShhS∗hv) + 1

2=(ShvS∗vv)
M33 = 1

2(ShvS∗hv) + 1
2<(ShhS∗vv)

M34 = −1
2=(ShhS∗vv)

M44 = 1
2(ShvS∗hv)−

1
2<(ShhS∗vv)

(A.2)

From Eq. (A.1) and Eq. (A.2) following equation can be obtained:

M11 = M22 +M33 +M44 (A.3)

which shows that only nine parameters are needed to derive [M] matrix,
the tenth is connected to the Eq. (A.3). Storing of previous parameters on
magnetic media require, for each 16-look matrix Stokes, the use of 36 bytes,
as each parameter needs 4 bytes. But 36 bytes are reduced to 10, using a
special compression algorithm, that uses the following rules:

byte(1) = INT (log2M11) (A.4)

byte(2) = INT

[
254

(
M11

2byte(1)
− 1.5

)]
(A.5)

byte(3) = INT

(
127

M12

x

)
(A.6)

byte(4) = INT

[
127SIGN

(
M13

x

)√
M13

x

]
(A.7)
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byte(5) = INT

[
127SIGN

(
M14

x

)√
M14

x

]
(A.8)

byte(6) = INT

[
127SIGN

(
M23

x

)√
M23

x

]
(A.9)

byte(7) = INT

[
127SIGN

(
M24

x

)√
M24

x

]
(A.10)

byte(8) = INT

(
127

M33

x

)
(A.11)

byte(9) = INT

(
127

M34

x

)
(A.12)

byte(10) = INT

(
127

M44

x

)
(A.13)

where x is a normalization factor:

x =
(
byte(2)

254
+ 1.5

)
2byte(1) (A.14)

The equations needed to reconstruct the elements of the Stokes matrix
are:

M11 =
(
byte(2)

254
+ 1.5

)
2byte(1) (A.15)

M12 = byte(3)
M11

127
(A.16)

M13 = SIGN [byte(4)]
(
byte(4)

127

)2

M11 (A.17)

M14 = SIGN [byte(5)]
(
byte(5)

127

)2

M11 (A.18)
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M23 = SIGN [byte(6)]
(
byte(6)

127

)2

M11 (A.19)

M24 = SIGN [byte(7)]
(
byte(7)

127

)2

M11 (A.20)

M13 = byte(8)
M11

127
(A.21)

M34 = byte(9)
M11

127
(A.22)

M44 = byte(10)
M11

127
(A.23)

M22 = M11 −M33 −M44 (A.24)
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