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Preface 
 
 
Climate change and ozone depletion represent very current scientific issues; understanding the 
factors causing these changes and assessing the impact of human activities on atmospheric 
processes is a challenge for modern Earth sciences. Global and systematic monitoring of the 
atmospheric composition is a key-point for such scientific studies, and a wide variety of 
observing systems have been designed to this purpose. Among them, satellite-based instruments 
have been proven to be very effective in last two decades. The advantage of atmospheric 
sounding performed from space, with respect to ground based techniques, resides in the very 
high number of available measurements per day and in the global coverage of the Earth surface, 
allowing for a detailed investigation of the atmospheric status. 
A number of different techniques are at hand, using different instruments and viewing 
geometries. The major problem of remote sensing techniques, with respect with in-situ 
measurements, is that the atmospheric parameters are not directly sounded, but have to be 
retrieved from the measured data, which are intrinsically of indirect nature, as they result from 
the interaction between the electromagnetic radiation and the atmospheric compounds. The 
retrieval phase requires the solution of the inversion problem, which is never trivial and can be 
computationally very intensive, especially for non-linear problems. Moreover, satellite-based 
instruments generally provide huge amounts of data, and very large data sets (increasing in time) 
have to be processed. Hence, faster algorithms, leading to real-time monitoring, are necessary. 
Neural Network retrieval schemes represent here a promising technique to achieve this goal, 
since they can be trained to perform a very fast non-linear inversion of atmospheric parameters 
from satellite spectral measurements. In this work the application of Neural Networks for the 
retrieval of a key atmospheric parameter, such as the ozone vertical distribution, from satellite 
measurements will be analysed, leading to designing a real-time algorithm for very fast data 
processing. 
The work is presented as follows. Chapter 1 introduces the problem of atmospheric ozone, from 
the point of view of chemical processes involved in its formation and depletion, and monitoring 
activities aiming at evaluating its distribution. In Chapter 2 the theory of the inversion problem is 
formalised, and different methodologies aiming at its solution are presented. In Chapter 3 a brief 
introduction to artificial neural networks is given, and the basic ideas needed to understand the 
application of neural NNs to the inversion problems are presented. In the context of regression 
problems, the type of NN called multi-layer perceptron is discussed in details. Chapter 4 
describes the Global Ozone Monitoring Experiment (GOME) instrument, and all retrieval 
techniques aiming at retrieving the information on the ozone vertical distribution from its 
measurements. In Chapter 5 the design of neural network inversion methods for the retrieval of 
ozone profiles from GOME data is presented. The analysis and validation of the obtained results 
is reported in Chapter 6. In Chapter 7 other activities concerning the application of neural 
networks for the inversion of atmospheric parameters from remote sensing data are presented. 
Main conclusions of the investigations described in this thesis are summarised, and an outlook 
for future research activities is presented. 
The study presented in this thesis has resulted in three scientific papers, appended at the end of 
the document. The work has been financed by the GeoInformation PhD Programme of the 
Università Tor Vergata of Rome, in collaboration also with the European Space Research 
Institute of the European Space Agency (ESA-ESRIN), and with the Service d’Aéronomie of the 
Institut Pierre Simon Laplace in Paris. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 1 
 
Introduction 
 
1.1 Introduction 
 
Atmospheric ozone has a recognized key-role in absorbing the short solar ultraviolet 
wavelengths, and its vertical distribution affects significantly the chemical and physical 
processes that dynamically link the troposphere and the stratosphere. Despite the small amount 
of ozone in the atmosphere, the solar radiation at wavelengths below 310 nm do not penetrates to 
the lower atmospheric layers, because of the large absorption cross sections characterizing ozone 
molecules (Figure 1.1). In this way the ozone layer acts as a filter for the harmful UV solar 
radiation and contributes to the radiative balance of the upper troposphere and lower 
stratosphere, influencing the radiative forcing of climate. Furthermore, tropospheric ozone is the 
source of the hydroxyl radical which controls the abundance and distribution of many 
atmospheric constituents, including greenhouse gases [1].  
In the past decades the public concern regarding the impact of human activities on the Earth’s 
atmosphere significantly growed, and a considerable effort has been made by researchers in 
order to understand the role of anthropogenic gas emissions in the atmospheric chemistry and its 
relation with the stratospheric ozone depletion, the global climate changing and the increasing 
pollution of the troposphere [2]. Nevertheless, the relative importance of factors controlling the 
abundance of O3 in the lower atmosphere are currently poorly understood. The possibility to 
improve the scientific knowledge in such a domain relies on monitoring a large set of 
atmospheric state parameters. This monitoring activity has been performed for a long time with 
in situ measurements, which include a multitude of ground-based and balloon-borne techniques 
providing high-quality data with long time series. These techniques generally provide a good 
spatial and temporal resolution, but a limited geographical coverage. Despite the large number of 
stations operating worldwide, their distribution is far from being uniform, and not negligible 
uncovered areas exist, especially in under-developed regions. Remote sensing measurements 
from satellites can offer an useful alternative for monitoring purposes, allowing a regular and 
global coverage with an acceptable spatial and temporal resolution. 
While in situ techniques are characterized by a physical contact between the sensor and the 
atmosphere, the rationale of remote sensing measurements relies on the interaction between 
atmospheric molecules and electromagnetic waves, and on the capabiliy to extract information 
from such interaction. To this purpose inversion algorithms are needed, which allow to obtain the 
information of atmospheric parameters from the sensor measurements. 
The second European Remote Sensing Satellite (ERS-2), launched in 1995 by the European 
Space Agency (ESA), carries the Global Ozone Monitoring Experiment (GOME) instrument, 
whose objective is to measure a range of atmospheric trace constituents with the main interest on 
global ozone distribution. The GOME sensor is a spectrometer, measuring the solar radiation 
scattered from the Earth’s atmosphere and/or reflected by the Earth’s surface in nadir viewing 
geometry. The objective of this thesis mainly concernes the development of inversion algorithms 
for the retrieval of atmospheric parameters from satellite measurements, aiming at the same time 
at demonstrating the potential of observations made by GOME, and future instruments of the 
same class, to provide valuable global information on the atmospheric state. 
 
 



1.2 Atmospheric structure and composition 
 
1.2.1 Temperature distribution 
 
The atmosphere is the gas envelope surrounding the Earth. Its major constituents are nitrogen 
(N2), oxygen (O2) and argon (A), but many other species, such as hydrogen (H2), water vapour 
(H2O), ozone (O3), carbon monoxide (CO) and nitrogen dioxide (NO2) characterize the chemical 
composition of the atmosphere and its properties, even if present in much smaller concentration. 
In Table 1.1 the principal constituents are reported, as well as their abundances. 
The distribution of species in the atmosphere is not uniform: different layers, with very distinct 
chemical and dynamical properties, can be identified on the base of a typical atmospheric 
temperature profile (Figure 1.2). The lowermost part of the atmosphere, called troposphere, is 
characterized by a negative temperature gradient with increasing altitude of about 6–10 K/km, 
mainly determined by the absorption of thermal radiation emitted at the Earth’s surface. The 
extension of the troposphere is approximately 11-km altitude, but large differences occur 
between high-latitude regions (6-7 km) and tropical regions (18 km). The absorption of Earth’s 
thermal radiation induces a low static stability, leading to convective circulation on timescales of 
hours to day, which produces a vertically well-mixed region. The atmosphere above the 
troposphere, up to approximately 50-km altitude, is no longer dominated by the Earth’s thermal 
radiation, but instead the absorption of ultraviolet (UV) solar radiation by ozone determines the 
vertical temperature structure. In the equilibrium state of the various photo-chemical reaction 
cycles, the trace gas ozone is more abundant in this region; almost 90% of all atmospheric ozone 
resides in this region. The resulting positive temperature gradient with increasing altitude implies 
a large static stability suppressing vertical motions (from here the name of stratosphere), and 
produces an important horizontal mixing in this region. The region above the stratosphere, up to 
approximately 85-km altitude, is again characterized by a negative temperature gradient with 
increasing altitude, as UV absorption by ozone is no longer dominant due to the lower ozone 
concentrations. The region above the mesosphere is commonly referred to as “upper 
atmosphere” and is dominated by ionization processes due to the absorption of extreme UV solar 
radiation by molecular and atomic oxygen. The temperature increases dramatically with altitude 
and, depending on which process gets the emphasis, the region is called thermosphere or 
ionosphere. The boundaries at the top of the troposphere, the stratosphere and the mesosphere are 
called the tropopause, the stratopause and the mesopause, respectively.  
 
1.2.2 Atmospheric composition: the ozone 
 
Despite its small concentration with respect to other gases, the ozone represents a key component 
in the atmospheric structure. Since almost all the ozone in the atmosphere is present in the 
stratosphere, this region is usually also referred to as the ozone layer. In Figure 1.3 a tipical 
ozone vertical distribution is reported. The height of the vertical column above the surface when 
bringing all the ozone molecules to standard pressure and temperature gives an indication of the 
thickness of this layer, and is generally measured in Dobson unit (DU); 1 DU corresponds to 
0.01 mm of this column. An average layer of about 350–400 DU absorbs all solar radiation with 
wavelengths below 300 nm and it significantly reduces the UV radiation reaching the Earth’s 
surface in the wavelength range 300–330 nm; in this way it acts as a protection screen for the 
harmful effects of this radiation, which may cause damage to biological organisms or cause skin 
cancer to (susceptible) human beings [3]. In the past decades, scientists have revealed significant 
changes in the extension of the ozone layer, of which the formation of the so-called ozone hole in 
the springtime above the poles is the most well-known. Small changes in the thickness of the 
ozone layer are accompanied by large increases in the levels of UV radiation reaching the 
Earth’s surface [4]. In the troposphere the concentrations of ozone are generally very low, and 



the main source of ozone is transport from the stratosphere. Nevertheless, near the surface, in the 
so-called boundary layer, i.e. the turbulent layer of the troposphere reaching from the surface to 
about 0.2–2 km, ozone is produced in photo-chemical reactions involving some pollutant 
compounds resulting from human activities, such as nitrogen oxides, hydrocarbons, and carbon 
monoxide, and is commonly known as photo-chemical smog. High ozone concentrations in the 
boundary layer are toxic and may cause health problems to human beings [3]. 
 
1.2.2.1 Stratospheric ozone 
O3 formation in the stratosphere is initiated by photodissociation of O2 by solar UV radiation 
below 242 nm: 
 
O2  +  hν  →  O  +  O 
 
where hν denotes the energy associated with an incident photon. The O atom reacts rapidly with 
O2 to form O3 in the presence of a third body, denoted M, usually N2 or O2, which acquires 
kinetic energy in the process: 
 
O  +  O2  +  M  →  O3  +  M 
 
This reaction is the only significant known source of O3 in atmosphere; if M is not present then 
O3 would be formed in unstable vibrational states and rapidly dissociate. O3 itself dissociates by 
absorbing UV radiation in the range 240-320 nm, and also reacts with O: 
 
O3  +  hν  →  O2  +  O 
 
O  +  O3  →  2O2   
 
This system is referred to as the Chapman mechanism [5] and leads to a steady-state, i.e. the rate 
of ozone loss is equal to the rate of ozone formation; the O3 concentrations characterizing this 
steady-state are approximately a factor of two higher than observations. The discrepancy is 
attributed to additional loss cycles, usually driven by an highly reactive (free radical) catalyst, X: 
 
X  +  O3  →  XO  +  O2   
 
XO  +  O  →  X  +  O2   
__________________ 
 
O  +  O3  →  2O2
 
Important cycles have been identified where X can be HOx, NOx [6] or halogen species (in 
particular Cl and Br) [7]. The relative importance of each cycle depends on the abundance of X 
and the availability of O; HOx cycles are particularly important in the upper stratosphere (above 
40 km), NOx in the mid-stratosphere (25-40 km). In the lower stratosphere heterogeneous 
reactions (i.e. also involving liquid or solid phase) are significant in lowering NOx, increasing the 
importance of the HOx  and halogen loss-cycles [8]. 
The removal of Ox by these cycles is limited by the removal of radicals into relatively stable 
reservoir species, by reactions such as: 
 
ClO  +  NO2  +  M  →  ClONO2  +  M 
 
Under normal circumstances, almost all of the chemically active (stratospheric) chlorine is in the 
form of HCl or ClONO2. Br compounds are much less abundant in the atmosphere than Cl, but 



the related loss cycles are more efficient per molecule due to the much lower fraction in reservoir 
form [8]. 
Huge reductions in lower stratospheric O3 at high latitude are already well known from several 
decades [4]. The phenomenon have been observed in both hemispheres, more consistently in the 
Antarctic. The principal cause has been identified in the enhanced release of active chlorine from 
reservoir species, promoted by heterogeneous multi-phase reaction on polar-stratospheric cloud 
(PSC) particles [9]. PSC formation requires the very low temperatures (< 200 K) encountered in 
the polar vortex, when, in the absence of sunlight, the stratospheric air masses cool and descend, 
developing a circulation mechanism which produces the vortex. The core of the vortex becomes 
stably isolated from the air outside and the persists until eventual warming and mixing occurs in 
the spring. 
Reactions including the following occur much more readily when the 2nd reactant on the left 
hand side is absorbed onto the surface of a PSC particle (denoted here by subscript “(s)”) [8]: 
 
ClONO2  +  HCl(s)  →  Cl2  +  HNO3(s) 
 
ClONO2  +  H2O(s)  →  HOCl  +  HNO3(s) 

 
HOCl  +  HCl(s)  →  Cl2  +  H2O  
 
The chlorine species produced in each case all rapidly photolyse, given sun-light in the Spring, 
releasing Cl which reacts with O3: 
  
Cl  +  O3  →  ClO  +  O2
 
Once the ClO concentration reaches a certain level, the following cycle rapidly destroys O3: 
  
ClO  +  ClO  +  M  →  ClOOCl  +  M 
 
ClOOCl  +  hν    →  Cl  +  ClOO 
 
ClOO  +  M  →  Cl  +  O2  +  M 
 
2[ Cl  +  O3  →  ClO  +  O2] 
_______________________ 
 
2O3   →  3O2
 
The destruction is particularly severe due to the removal of NOx , sequestered as HNO3 in PSC 
particles. 
 
1.2.2.2 Tropospheric ozone 
The ozone concentration in the troposphere is not straightforward determined by direct emission 
from the surface, but by the evolution of the tropospheric chemistry system, modulated by 
transport within the troposphere, exchange with the stratosphere and deposition at the surface 
[2]. The chemistry system involving O3 is mainly controlled by the local distribution of nitrogen 
oxides (NOx) and by the oxidant OH, produced from O3 photolysis and combination with water 
vapour molecules [8]. In the presence of high concentrations of NOx, the molecular oxygen (O2) 
is oxidated to O3 by means the following reactions: 
 
HO  +  CO  +  O2  →  HO2  +  CO2
 



HO2  +  NO  →  HO  +  NO2
 
NO2  +  hν    →  NO  +  O* 
 
O*  +  O2  +  M  →  O3  +  M 
 
In the regions with low concentrations of NOx the ozone is destroyed by the same radicals which 
indirectly promote its formation in the presence of high concentration of nitrogen oxides: 
 
HO  +  O3  →  HO2  +  O2
 
HO2  +  O3  →  HO  +  2O2
 
CO  +  O3   →  CO2  +  O2
 
The tropospheric ozone concentration is therefore determined by the chemical equilibrium: 
 
[O3]  =  k [NO2] / [NO] 
 
Tropospheric NOx originates predominantly from fossil fuel combustion [2]. Natural sources are 
about a factor of 3 lower and include soil emissions and lightning [10]. Although the lifetime of 
NOx is short (few hours near the ground, few days at higher altitude), it can can be transported at 
large distances from localised sources via reservoir species, e.g. peroxyacetylnitrate (PAN). 
Tropospheric convection is important in transporting NOx to high altitude and low temperature 
regions, where both NOx and PAN are more stable [11]. 
O3 production is strongly favoured in urban regions under high-pressure meteorological 
conditions, since the vertical stability (associated with a temperature inversion) allows the 
primary pollutants, including NOx and hydrocarbons, to accumulate. Such conditions typically 
occur in summer, when photolysis rates are also enhanced. High concentrations of NOx and VOC 
are also present in plumes from biomass-burning, which regularly occurs (particularly in tropical 
regions) during the summer season [2][8]. Halogen compounds have a minor role in tropospheric 
ozone loss, with the exception of sudden depletion episodes observed in polar spring and 
attributed to a catalytic cycle involving BrO and heterogeneous chemistry on sea-ice [12]. 
 
1.3 Atmospheric ozone measurements 
 
Several methods used to measure atmospheric ozone exist, and some of them are described in 
this section. This is not intended to be a comprehensive survey but a useful summary to highlight 
the basic characteristics of the various O3 measurement techniques. 
 
1.3.1 Ground-based techniques 
 
The total column of O3 can be measured from the ground using UV-absorption spectroscopy; in 
particular, the most common instruments are the spectrophotometers developed by Dobson and 
Brewer respectively. The Dobson instrument is based on the differential absorption method in 
the UV band, where ozone exhibits strong absorption features. This method exploits the ratio of 
sunlight intensities at two wavelengths characterized by different ozone absorption properties. 
The Brewer spectrometer is similar in principle to the Dobson, but the determination of the 
ozone column amount is obtained from a combination of five wavelengths in the UV spectral 
range [1]. A analogous instrument is the Systeme d’Analyse par Observation Zenithale (SAOZ), 
a UV-VIS spectrometer which measures the solar radiation scattered at the zenith angle in the 



spectral range 300-600 nm, with a resolution of 0.8 nm [13]. The application of the Umkehr 
principle to Dobson-Brewer instruments allows to obtain the ozone concentration at 10 different 
altitude layers [1], giving an estimation of the ozone vertical profile. The height-resolved ozone 
distribution can be also obtained by mm-wave radiometers [14], which exploit a different 
spectral range. 
Also ozone-sondes can provide in-situ measurements of the ozone profile. This technique is 
based on the reaction of O3 with potassium iodide, and provides high precision measures with a 
good vertical resolution (about 50 m), but is limited as follows [1]: 
 

• the maximum altitude observed is around 30 km 
• the stations from which the sondes are launched are limited in number and typically in 

the Northern-Hemisphere mid-latitudes 
• differences in operation between stations and changes in adopted technology limit the 

long term consistency of the method, especially when data from more than one station 
have to be compared 

 
In recent years, lidar instruments (which measure the attenuation and delay of a Rayleigh 
backscattered 
laser beam) have provided data of similar quality to the ozone-sondes, spanning an altitude range 
of approximately 5-45 km. Temporal sampling is potentially better than sonde observations, but 
generally limited to cloud-free, night-time conditions [15]. 
 
1.3.2 Satellite observations 
 
The orbits in which satellite-based ozone-profiling instruments can be successfully employed are 
limited to Low Earth Orbits (LEOs), with altitudes typically between 600 and 900 km, which 
generally provide a global coverage of the Earth’s surface in few days. 
As well as absorbing in the UV, O3 has vibrational-rotational spectral signature in the mid infra-
red (mid-IR) and a pure rotational signature extending into mm-wave spectral range. Remote 
sensing instruments for measuring atmospheric ozone from space therefore rely on spectroscopic 
or radiometric techniques, depending on the spectral interval used to perform the measurement.  
Active techniques for atmospheric ozone observations, which exploit an actively induced 
detected signal, are currently restricted to the Differential Absorption Lidar (DIAL) technique 
[15][16]. Although in recent years several remote sounding satellites have been equipped with 
lidar instruments, the technology, which is mainly limited by the laser reliability and its power 
consumption, is still immature for employing ozone DIAL systems from space. 
Passive techniques, on the other hand, have been successfully experimented during the last 
decades; ozone sensing from space can be performed by observing the Earth’s natural thermal, 
solar, lunar and/or stellar radiation in different viewing geometries.  
The electromagnetic radiation reflected or emitted from the Earth’s atmosphere or at the surface 
can be measured by looking in the nadir or limb direction (Figure 1.4). Nadir observations 
generally provide a good horizontal resolution and sampling, but with a limited vertical 
resolution, which depends on the optical properties of the atmosphere and on the possibility to 
resolve in altitude the spectral signature. Limb sounders scan the atmosphere in the vertical, 
viewing tangentially to the surface. Observed radiances are therefore predominantly sensitive to 
relatively narrow atmospheric layers close to each tangent point, allowing profiles with relatively 
high vertical resolution to be retrieved. Limitations of the technique are relatively poor horizontal 
resolution and sampling, and possibly lack of sensitivity to the lower atmosphere, due to 
obscuration by tropospheric humidity, clouds, aerosols or molecular scattering. 
 The radiation can also be observed with a direct line of sight (LOS) between the source and the 
detector, which is done with solar, lunar or stellar occultation techniques (Figure 1.4). The high 
signal-to-noise ratio allows measurements to be made down to and below the tropopause, with 



high vertical resolution. Observations are, however limited by geometrical constraints, such that 
only a few tens of profiles can be measured per day. 
 
1.3.2.1 Nadir-viewing instruments 
The total column of O3 has been continuosly measured by the series of Total Ozone Mapping 
Spectrometer (TOMS) instruments since 1978 [17].  
The first instrument capable to provide an estimation of the ozone profile, named Backscatter 
Ultra-Violet (BUV), started its measurements in the early 1970s. It was followed by the Solar 
Backscatter UV (SBUV, 1978-1984) [18] and by a series of SBUV-2 instruments [19] [20] 
starting in late 1984 on the operational satellite series of the National Oceanic and Atmospheric 
Administration (NOAA). This series is now continued as an U.S. national program with SBUV-2 
instruments mounted on NOAA’s next generation National Polar-orbiting Operational Satellite 
System (NPOESS). All these instruments perform the spectral measurement of the solar 
radiation backscattered by the atmosphere at 12 channels in the UV range, and can obtain height 
resolved ozone profiles by exploiting the large gradient in O3 optical depths across the Hartley-
Huggins bands.  
The Global Ozone Monitoring Experiment (GOME), on board the second European Research 
Satellite (ERS-2) launched by the European Space Agency in 1995, has advanced this technique, 
providing the continuous spectrum between 240 and 790 nm, i.e. from the UV to the near-
infrared (NIR) with relatively-high spectral resolution (~0.2 nm) [21]. The wider spectral range 
of observation allows to obtain information on the ozone distribution coming from  the visible 
range (Chappuis band) by a Differential Optical Absorption Spectroscopy (DOAS) technique. 
Also the GOME instrument will be followed by a GOME-2 generation carried on the 
Meteorological Operational (MetOp) satellite series as part of the European polar orbit satellite 
system now scheduled to start in 2006 [22]. The Scanning Imaging Absorption Spectrometer for 
Atmospheric Cartography (SCIAMACHY) on ESA’s Environmental Satellite (Envisat) launched 
in 2002 can be considered as the successor of GOME, providing nadir observations of the solar 
backscattered radiation from 240 to 2380 nm [23].  
In July 2004 the Ozone Monitoring Instrument (OMI) was successfully launched on the Earth 
Observing System Aura (EOS-Aura) satellite. OMI has similar capabilities for ozone profiling as 
the GOME and SCIAMACHY instruments, but with a much higher spatial resolution and a daily 
global coverage [24]. 
 
1.3.2.2 Limb-viewing instruments 
The Limb Radiance Inversion Radiometer (LRIR) and its successor the Limb Infrared Monitor 
of the Stratosphere (LIMS) instruments performed thermal emission measurements in the mm-
wave and mid-ir spectral range since 1975 [25]. These instruments can provide both day-time 
and night-time observations, exploiting the O3 emission lines for the ozone profile retrieval. The 
same principle has been used by the three instruments launched in 1991 as payload of the NASA 
Upper Atmosphere Research Satellite (UARS), the Cryogenic Limb Array Etalon Spectrometer 
(CLAES) [26], the Improved Stratospheric and Mesospheric Sounder (ISAMS) [27] and the 
Microwave Limb Sounder (MLS) [28]. Also the sub-millimetre radiometer (SMR) [29] on the 
Swedish experimental satellite Odin, launched in 2001, and the Envisat Michelson 
Interferometer for Passive Atmospheric Sounding (MIPAS) instrument [30] exploit such a 
technique to obtain ozone distribution. 
In the second half of the 1990s the Improved Limb Atmospheric Spectrometer instruments 
(ILAS-I and ILAS-II) were launched (on ADEOS-I and –II, respectively), and performed limb 
spectral observations of the solar scattered radiation [31]. Unfortunately, both only produced 
data for a short period due to satellite problems. Other sensors have been conceived to perform 
limb-observations of the solar scattered radiation in the UV, VIS and NIR range, like the Optical 
Spectrograph and Infrared Imager System (OSIRIS) [29], also carried on the Odin satellite, and 



SCIAMACHY on Envisat. Constituent retrieval from such observations is still a challenge, as 
the radiative transfer problem is much more complicated than that of pure thermal emission.  
 
1.3.2.3 Occultation-viewing instruments 
Limb-viewing occultation sensors observations started with the Stratospheric Aerosol and Gas 
Experiment (SAGE) in 1978 and are still operational [32]. Other instruments involve the second 
and third Polar Ozone and Aerosol Measurement (POAM-II and POAM-III on the French 
SPOT-3 and SPOT-4 satellites) [33], the Halogen Occultation Experiment (HALOE on UARS, 
still operational) [34], but also the previously-mentioned ILAS-I, ILAS-II and SCIAMACHY 
instruments. 
All these instruments view sun-rise and sun-set over the Earth horizon to measure the directly 
transmitted solar radiation along the line of sight. This technique has the limitation of providing 
only about 14 sun-rise and 14 sun-set measurement occasions per day, and in a specific latitude 
band, which changes with season or in time depending on the satellite orbit. 
The technique has been recently extended to include lunar (e.g. SCIAMACHY) and stellar 
occultation, like the Ultraviolet and Visible Imagers and Spectrographic Imagers (UVISI) [35] 
and the Global Ozone Monitoring by Occultation of Stars (GOMOS) [36]. 
 
1.3.2.4 Tropospheric ozone measurements 
 
TOMS observations have been used to deduce the tropospheric ozone column by a number of 
techniques: e.g. climatological distributions (monthly/seasonal) were obtained by differencing a 
stratospheric column inferred from SAGE and the total column from TOMS [37]. Another 
approach is the convective cloud differential (CCD) method, which produces monthly averages 
by assuming zonal symmetry in the tropical stratospheric ozone column which it derives from 
measurements over high altitude cloud [38]. Differencing this column from cloud free 
measurements at the same latitude gives a tropospheric column estimate (limited to the tropics), 
purely from TOMS data. 
 
1.4 Thesis outline 
 
The main objective of this thesis is to present an inversion technique aiming at the retrieval of 
ozone profiles from satellite measurements. The research maily focuses on data obtained from 
the GOME instrument, and relies on a particular inversion methodology based on the use of 
artificial neural networks (NN). This involves several important aspects, such as the selection of 
input measurements, the design of the retrieval procedure and the validation of obtained results.  
In the following, the content of different chapters will be summarized. In Chapter 2 the theory of 
the inversion problem is formalized, and different methodologies aiming at its solution are 
presented. In Chapter 3 a brief introduction to artificial neural networks is given, and the basic 
ideas needed to understand the application of neural NNs to the inversion problems are 
presented. In such a context, the type of NN called multi-layer perceptron is discussed in details. 
In Chapter 4 a detailed overview of the GOME instrument is given, and the principal retrieval 
methods applied to obtain the information on the ozone distribution are described. In Chapter 5 
the design of a neural network inversion algorithms for the retrieval of ozone profiles from 
GOME data is presented, focusing on all critical issues involved in the design. In Chapter 6, the 
validation of the retrieval results obtained by the NN algorithms presented in Chapter 5 is 
reported. The validation activity is performed either with ground-based measurements or satellite 
observations. In Chapter 7, the main conclusions of the investigations described in this thesis are 
summarized, and an outlook for future research is given. 
The study presented in this thesis was financed by the GeoInformation PhD Programme of the 
Università Tor Vergata of Rome, in collaboration with the European Space Research Institute of 



the European Space Agency (ESA-ESRIN), and with the Service d’Aéronomie of the Institut 
Pierre Simon Laplace in Paris. 
 
 
References 
 
[1] Assessment of trends in the vertical distribution of ozone, WMO SPARC/IO3C/GAW Ozone 
Research and Monitoring Project Report, No. 43, 1998. 
 
[2] IPCC Climate Change: The Scientific Basis. Third Assessment Report (TAR), Cambridge 
University Press, Cambridge, UK, 2001. 
 
[3] Atmospheric chemistry and global change 
 
[4] Farman, J.C., Gardiner B.G., Shanklin J.D., Large losses of total ozone in Antarctica reveal 
seasonal ClOx/NOx interaction, Nature, 315, 207-210, 1985. 
 
[5] Chapman S., A Theory of upper atmospheric ozone, Mem. R. Meteorol. Soc., 3, 103-125, 
1930. 
 
[6] Crutzen P.J., The influence of nitrogen oxide on the atmospheric ozone content, Quart. J. R. 
Met. Soc., 96, 320-325, 1970. 
 
[7] Molina M.J. and Rowland F.S., Stratospheric sink for chlorofluoromethanes-chlorine atom 
catalyzed destruction of ozone, Nature,249, 810, 1974. 
 
[8] Seinfeld J.H. and Pandis S.N., Atmospheric chemistry and physics : from air pollution to 
climate change, Wiley, ISBN 0471178160, 1998. 
 
[9] Solomon S., Garcia R.R., Rowland F.S., Wuebbles D.J., On the depletion of Antarctic ozone, 
Nature, 321, 755-758, 1986. 
 
[10] Hauglustaine D.A., Emmons L., Newchurch M., Brasseur G., Takao T., Matsubara K., 
Johnson J., Ridley B., Stith J., Dye J., On the role of lightning NOx in the formation of 
tropospheric ozone plumes: a global model perspective, Journal of Atmospheric Chemistry, 38 
(3), 277-294, 2001. 
 
[11] Singh H.B., Kanakidou M., Crutzen P.J., and Jacob D.J., High-concentrations and 
photochemical 
fate of oxygenated hydrocarbons in the global troposphere, Nature, 378 (6552), 50-54, 1995. 
 
[12] Roscoe H.K., Kreher K., Friess U., Ozone loss episodes in the free Antarctic troposphere, 
suggesting a possible climate feedback, Geophysical Research Letters, 28 (15), 2911-2914, 
2001. 
 
[13] Sarkissian A., Vaughan G., Roscoe H.K., Bartlett L.M., O’connor F.M., Drew D.G., Hughes 
P.A., Moore D.M., Accuracy of measurements of total ozone by a SAOZ groundbased zenith sky 
visible spectrometer, Journal of Geophysical Research – Atmospheres, 102 (d1), 1379-1390, 
1997. 
 
[14] D. Maier, N. Kampfer, J. de la Noe,W. Amacher, A. Barcia, P. Baron, B. Barry, G. Beaudin, 
J. Cernicharo, B. Ellison, J.D. Gallego, M. Gustafsson, A. Karpov, U. Klein, K. Kunzi, J. Louhi, 



J. Mallat, D. Matheson, J.R. Pardo, R. Peter, A.V. Raisanen, P. Ricand, R. Siddans, C. Viguerie, 
and M. Wuthrich., European minor constituent radiometer: a new millimeter wave receiver for 
atmospheric research, International Journal of Infrared and Millimeter Waves, 22 (11), 1555-
1575, 2001. 
 
[15] Mc Dermid I.S., Godin S., Walsh T.D., Lidar measurements of stratospheric ozone and 
intercomparisons and validation, Appl. Opt., 29, 4914-4923, 1990. 
 
[16] Measures, R. M., Laser Remote Sensing, John Wiley, New York, 1984. 
 
[17] McPeters R.D. and Komhyr W.D., Long-term changes in the total ozone mapping 
spectrometer relative to world primary standard Dobson spectrometer 83, J. Geophys. Res., 96, 
2987-2993, 1991. 
 
[18] Mcpeters R.D., Hudson R.D., and Bhartia P.K., The Vertical Ozone Distribution In the 
Antarctic Ozone Minimum Measured By SBUV, Geophys. Res. Lett., 13 (12), 1213-1216, Suppl. 
S Nov, 1986. 
 
[19] Miller A.J., Flynn L.E., Hollandsworth S.M., DeLuisi J.J., Petropavlovskikh I.V., Tiao G.C., 
Reinsel G.C., Wuebbles D.J., Kerr J., Nagatani R.M., Bishop L., and Jackman C.H., Information 
content of Umkehr and solar backscattered ultraviolet (SBUV-2) satellite data 
for ozone trends and solar responses in the stratosphere, Journal of Geophysical Researc-
Atmospheres, 102 (d15), 19257-19263, 1997. 
 
[20] Hilsenrath E., Newman P.A., Cebula R.P., DeCamp P.W., Kelly T.J., Coy L., Ozone change 
from 1992 to 1993 as observed from SBUV on the ATLAS-1 and ATLAS-2 missions, 
Geophysical Research Letters, 23 (17), 2305-2308, 1996. 
  
[21] J.P. Burrows, M. Weber, M. Buchwitz, V. Rozanov, A. Ladstatter Weissenmayer, 
A. Richter, R. DeBeek, R. Hoogen, K. Bramstedt, K.U. Eichmann, and M. Eisinger. The 
global ozone monitoring experiment (GOME): Mission concept and first scientific results. 
Journal of the Atmospheric Sciences, Vol 56, Iss 2, pp 151-175, 1999. 
 
[22] Kerridge B.J.K., Siddans R., Latter B.L., Burrows J.P., Weber M., De Beek R., Aben I., 
Hartman W., GOME-2 Error Assessment Study, Final Report EUMETSAT Contract, No 
EUM/CO/01/901/DK, 2002. 
 
[23] Noel S., Bovensmann H., Wuttke M.W., Burrows J.P., Gottwald M., Krieg E., Goede 
A.P.H., Muller C., Nadir, limb and occultation measurements with SCIAMACHY, Advances In 
Space Research, 29 (11), 1819-1824, 2002. 
 
[24] OMI Ozone Products, Vol. II of OMI Algorithm Theoretical Basis Document, OMI-ATBD-
02, V. 2.0, NASA Goddard Space Flight Center, Greenbelt (MD), 2002. 
 
[25] E.E. Remsberg, J.M. Russell, J.C. Gille, L.L. Gordley, P.L. Bailey, W.G. Planet, J.E. 
Harries, The Validation of NIMBUS-7 LIMS Measurements of Ozone, Journal of Geophysical 
Research - Atmospheres, 89 (nd4), 5161-5178, 1984. 
 
[26] [4] P.L. Bailey, D.P. Edwards, J.C. Gille, L.V. Lyjak, S.T. Massie, A.E. Roche, J.B. Kumer, 
J.L. Mergenthaler, B.J. Connor, M.R. Gunson, J.J. Margitan, I.S. McDermid, T.J. McGee, 
Comparison of cryogenic limb array etalon spectrometer (CLAES) ozone observations with 



correlative measurements, Journal of Geophysical Research – Atmospheres, 101 (d6), 9737-
9756, 1996. 
 
[27] B.J. Connor, C.J. Scheuer, D.A. Chu, J.J. Remedios, R.G. Grainger, C.D. Rodgers, F.W. 
Taylor, Ozone in the middle atmosphere as measured by the improved stratospheric and 
mesospheric sounder, Journal of Geophysical Research – Atmospheres, 101 (d6), 9831-9841, 
1996. 
 
[28] L. Froidevaux, W.G. Read, T.A. Lungu, R.E. Cofield, E.F. Fishbein, D.A. Flower, R.F. 
Jarnot, B.P. Ridenoure, Z. Shippony, J.W. Waters, J.J. Margitan, I.S. McDermid, R.A. Stachnik, 
G.E. Peckham, G. Braathen, T. Deshler, J. Fishman, D.J. Hofmann, S.J. Oltmans, Validation of 
UARS microwave limb sounder ozone measurement, Journal of Geophysical Research – 
Atmospheres, 101 (d6), 10017-10060, 1996. 
 
[29] D. Murtagh, U. Frisk, F. Merino, M. Ridal, A. Jonsson, J. Stegman, G. Witt, P. Eriksson, C. 
Jimenez, G. Megie, J. de la Noe, P. Ricaud, P. Baron, J.R. Pardo, A. Hauchcorne, E.J. Llewellyn, 
D.A. Degenstein, R.L. Gattinger, N.D. Lloyd, W.F.J. Evans, I.C. McDade, C.S. Haley, C. Sioris, 
C. von Savigny, B.H. Solheim, J.C. McConnell, K. Strong, E.H. Richardson, G.W. Leppelmeier, 
E. Kyrola, H. Auvinen, L. Oikarinen, An overview of the Odin atmospheric mission, Canadian 
Journal of Physics, 80 (4), 309-319, 2002. 
 
[30] B.J.K. Kerridge, W.J. Reburn, R. Siddans, S.L. Smith, P.D. Watts, J.J. Remedios, F. Lama, 
J.J. Barnett, D. Murtagh, J. Stegman, F. Merino, P. Baron, H. Roscoe, D. Hausamann, M. Birk, 
F. Schreier, B. Schimpf, M. Lopez-Puertas, J.M. Flaud, T. von Clarmann, G.P. Stiller, A. Linden, 
S. Kellman, M. van Weele, H. Kelder, P. van Velthoven, M. Gauss, I. Isaksen, D. Hauglustaine, 
C. Clerbaux, and O. Boucher, Definition of Mission Objectives and Observational Requirements 
for an Atmospheric Chemistry Explorer Mission, ESA Contract 13048/98/NL/GD, Final Report, 
2001. 
 
[31] Sasano Y., Suzuki M., Yokota T., Kanzawa H., Improved Limb Atmospheric Spectrometer 
(ILAS) for stratospheric ozone layer measurements by solar occultation technique, Geophys. Res. 
Lett., 26, 197-200, 1999. 
 
[32] D.M. Cunnold, W.P. Chu, R.A. Barnes, M.P. Mccormick, R.E. Veiga, Validation of SAGE-
II Ozone Measurements, Journal of Geophysical Research – Atmospheres, 94 (d6), 8447-8460, 
1989. 
 
[33] Lumpe, J. D., R. M. Bevilacqua, K. W. Hoppel, C. E. Randall, POAM III Retrieval 
Algorithm and Error Analysis, J. Geophys. Res., 107, 4575, 10.1029/2002JD002137, 2002. 
 
[34] C. Bruhl, S.R. Drayson, J.M. Russell, P.J. Crutzen, J.M. McInerney, P.N. Purcell, H. 
Claude, H. Gernandt, T.J. McGee, I.S. McDermid, M.R. Gunson, Halogen occultation 
experiment ozone channel validation, Journal of Geophysical Research – Atmosphere, 101 (d6), 
10217-10240, 1996. 
 
[35] Swartz, W. H., J.-H. Yee, R. J. Vervack Jr., S. A. Lloyd, P. A. Newman, Photochemical 
ozone loss in the Arctic as determined by MSX/UVISI stellar occultation observations during the 
1999/2000 winter, J. Geophys. Res., 107(D20), 8296, doi:10.1029/2001JD000933, 2002. 
 
[36] Bertaux, J. L., G. Megie, T. Widemann, E. Chassefiere, R. Pellinen, E. Kyrölä, S. Korpela, 
P. Simon, Monitoring of ozone trend by stellar occultations: The GOMOS instrument, Adv. 
Space Res., Vol. 11(3), 237-242, 1991. 



 
[37] J. Fishman, C.E.Watson, J.C. Larsen, and J.A. Logan, Distribution of Tropospheric Ozone 
Determined From Satellite Data, Journal of Geophysical Research – Atmospheres, 95 (d4), 
3599-3617, 1990. 
 
[38] J.R. Ziemke and S. Chandra, Seasonal and interannual variabilities in tropical tropospheric 
ozone, Journal of Geophysical Research – Atmospheres, V104(d17), 21425-21442, 1999. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure 1.1. Ozone absorption cross section. 

 
 
 
 
 
 
 

 
Figure 1.2. Temperature profile. 

 



 
Figure 1.3. Ozone profile. 

 
 
 
 

 
Figure 1.4. Satellite viewing geometries. 

 
 
 
 
 
 

N2 78.08 (%) Kr 0.00012 (%) 

O2 20.95 (%) H2 0.00005 (%) 

CO2 0.03 (%) CH4 0.00015 (%) 

A 0.93 (%) NO2 0.00005 (%) 

Ne 0.00182 (%) H2O 0 - 4 (ppm) 

He 0.00052 (%) O3 0 - 7 (ppm) 

 
Table 1.1. Atmospheric composition. 

 
 
 



Chapter 2 
 
The inversion problem 
 
The retrieval of atmospheric constituent profiles from spectral measurements is not a well-
determined problem, in the sense that more than one atmospheric state may give rise to 
indistinguishable measurements. This is due to the following reasons: firstly, the experimental 
errors and the measurement noise are always present, and have to be taken into account; 
secondly, the atmospheric parameters to be estimated are generally continuous functions, while 
the set of spectral measurements is discrete. The spatial resolution at which the atmospheric 
structure can be detected is limited by the observation technique. Therefore, the inversion 
problem is generally also under-constrained: this class of problem can only be solved by 
imposing limits (constraints) on the range of allowed atmospheric states, and a number of 
approaches exist to define these constraints. In this chapter the basic concepts of the inversion 
theory are given, and different solution methods are presented. 
 
2.1 Inversion problem formalisation 
 
The state of the atmosphere can be represented by a set of parameters (e.g. constituent mixing 
ratios, temperature, etc.), collected together in a state vector, x. In defining this vector, 
continuous variables (e.g. vertical profiles of constituent mixing ratios) are represented in terms 
of discrete values. Usually these are weights in the linear expansion of the constituent profile in 
terms of basis functions: 
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There are many possible choices for basis functions; among them, the most widely used are the 
top-hat functions, spanning atmospheric layers (the profile being represented as constant within 
the layers), and the triangular functions, peaking (with a value equal to 1) at altitude zi and 
decaying linearly to 0 at zi-1 and zi+1. In Figure 2.1 a tipical triangular function used to represent 
O3 vertical profiles is reported. 
The set of spectral measurements obtained by a sensor are grouped in a measurement vector, y. 
Assuming the existence of a forward model function, F, which provides an estimate of the 
measurement vector from a defined state vector and a set of other parameters (grouped in the 
vector b) specifying the radiative transfer calculation and the sensor characteristics, the 
measurement vector can be expressed as follows: 
 

y = F(x, b) + ε                                                 (2.2) 
 
where ε represents the measurement error, i.e. the observed spectral noise. 
On the other hand, the inverse model function, I, permits to calculate an estimation of the state 
vector, x`, from the spectral measurements: 
 

x` = I(y, b, c, ε)                                               (2.3) 
 



where the vector c collects all the auxiliary parameters used to constrain the inversion model. 
Assuming the measurement error sufficiently small with respect to the measurement vector, the 
forward model can be linearized around a reference state vector, xr, and approximated by:  

 
F(x, b) = F(xr, b) + Kx(x-xr, b) + Kb(x, b-br)                       (2.4) 

 
where K, known as the weighting functions matrix, contains the first derivatives of the forward 
model F with respect to the state vector: 
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Also the inverse model can be linearized, defining the contribution function matrix, D, which 
contains the partial derivatives of the inverse function with respect to the measurement vector: 
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Using equations (2.2) and (2.4), the problem can now be written in a linear form: 
 

y = F(xr, b) + Kx(x-xr, b) + Kb(x, b-br) + ε                          (2.7) 
 
or simply: 
 

y` = y - F(xr, b) = Kxŵ + e                                       (2.8) 
 
where ŵ = (x – xr) represents the optimal estimation of (2.8), and (ŵ + xr) is the optimal estimate 
for the original state vector. The measurement error (ε) and uncertainties on forward model 
parameters (b) are both taken into account by e. 
This formalism, taken from [1], [2], [3], is independent from the inversion method actually used. 
However, the derivation of Dy and Kx requires the selection of a particular inversion algorithm, 
i.e. the forward model parameters, as well as a reference state for the linearization. For non-
linear inversion problems, further the reference state is from the true state, the less likely the 
above mentioned matrices will characterize the solution. The best a priori knowledge of the 
atmospheric state (xa) is therefore generally used as the reference state for the linearization.  
The difference between the retrieved and the true state vector, i.e. the retrieval error, can be 
expressed as follows: 
 

x`- x = δ = (A – I ) (x - xa) + Dy Kb(b – ba) + Dy ε                               (2.9) 
 
where I represents the identity matrix and A, referred to as the averaging kernels matrix, is given 
by the product DyKx and represents the derivatives of the estimated vector x` with respect to the 
true vector x. The first term on the right hand side of equation (2.9) is generally known as the 
smoothing error, and originates from the fact that the limited spatial resolution of the inversion 
method can not reproduce all the features of the true state of the atmosphere, which is naturally 
not discrete. The second term represents the forward model error, and shows how the 
uncertainties on forward model parameters are mapped into retrieval errors. The last term is 
called the measurement error, and represents the contribution of instrumental noise to the 
retrieval error. 
The smoothing error will always be present, even if we consider an ideal not-noisy sensor and a 
forward model perfectly reproducing the electromagnetic behaviour of the atmosphere (this error 



contribute is intrinsically related to the fact that the inversion problem is ill-posed). Once the 
measurement and the forward simulation are done, the term  
 

e = y - F(x, ba) = Kb (b – ba) + ε                                   (2.10)  
 
can be calculated, and represents the observation error [4]. 
The retrieval error can be therefore expressed as a sum of two terms, the smoothing error and the 
observation error: 
 

δ = s + o = (A – I ) (x - xa) + Dy e                                 (2.11) 
 
This error can not be calculated analytically (x and b are not known); nevertheless it can be 
statistically estimated if the covariance matrices characterizing the uncertainties of measurements 
(Sε), forward model parameters (Sb) and retrieved parameters (Sx) are available. The statistical 
characterization of the observation uncertainties (Se) can be therefore expressed as:  
 

Se = Kb Sb Kb
T + Sε                                             (2.12) 

 
the smoothing errors (Sm) and the observation errors (So) are then described in a similar way: 
 

Sm = (A – I) Sx (A – I)T                                       (2.13) 
 

So = Dy Se Dy
T                                                     (2.14) 

 
The statistical description of the retrieval error can be finally calculated by: 
 

Sδ = Sm + So                                                        (2.15) 
 
 
2.2 Solution of the inversion problem 
  
The inversion problem formalised in the above section can be solved using different approaches. 
As many other estimation problem, the atmospheric parameter retrieval can be placed in the 
framework of the general Bayesian theory, from which almost all other methods, such as the 
optimal estimation and regularization, can be derived. In the following section the general 
concepts of the estimation theory will be given, and the principal estimation methods will be 
dscribed.  
 
2.2.1 Bayesian estimation 
 
The Bayesian approach solves the inversion problem by determining the a posteriori probability 
distribution function (pdf), p(x|y), of the state vector x, given the measurement y. Following the 
Bayes theorem: 
 

p(x|y) = 
)p(

))p(|p(
y

xxy                                               (2.16) 

 
where p(x) is the a priori probability distribution function of the state x, p(y|x) is the pdf of the 
measurement given the state and p(y) is the normalization factor calculated as follows: 
 



p(y) = ∫ )dx)p(|p( xxy                                             (2.17) 
 
Known the a posteriori pdf, the average a posteriori solution can be calculated: 
 

x` = ∫ )dx|p( yxx                                                    (2.18) 
 
which represents the mean state averaged over the a posteriori pdf. This solution is the one 
minimising the expected values of the retrieval error variance. A different solution can be found 
by maximising the a posteriori pdf: 
 

x` = maxx {p(x|y)}                                                 (2.19) 
 
This maximum a posteriori solution is equal to the previous one if the pdf is symmetrical around 
the mean state; in this case the maximum value of the distribution corresponds to the mean state. 
 
2.2.2 Regularisation 
 
The underlying idea of this approach is to reduce the inversion problem to a set of linear 
equations [5] [6] [7]: 
 

Cx = y                                                          (2.20) 
 
where x is the n-dimensional state vector, y the m-dimensional measurement vector and C the (m 
x n) kernel matrix. The inversion problem is generally still under-constrained, as the rank of C, 
p, is smaller than m and n, i.e. the rows of C are not linearly independent. Moreover, even if a 
solution is found, the ill-posedness of the problem results in large retrieval errors. The ordinary 
least square solution, given by: 
 

x` = minx {||Cx – y||}                                            (2.21) 
 
where || || is the standard 2-norm, is very sensitive to measurements errors and can not be used in 
practice. In order to reduce the sensitivity to measurements errors a regularisation function can 
be used, which results in applying a constrain on the expected solution: 
 

x` = minx {||Cx – y|| + λ ||B||}                                     (2.22) 
 
where B represents the imposed constrain and λ is a trade-off factor between the two terms, ||Cx 
– y|| e ||B||. An important group of inversion techniques using regularisation, with a constrain 
related to the solution magnitude, is usually referred to as constrained least square methods. 
However, other type of methods, with a constrain of statistical nature, are generally used for 
atmospheric parameters inversion, and are traditionally known as optimal estimation methods. 
 
2.2.3 Optimal Estimation 
 
The Bayesian solution obtained assuming Gaussian statistics is usually known as the Optimal 
Estimation solution for the considered inversion problem. 
According to [3], maximising the a posteriori solution represented by (2.19) is equivalent to 
minimise the following expression: 
 

[y - F(x, ba)]T Se
-1

 [y - F(x, ba)] + (x - xa)T Sx
-1 (x - xa)              (2.23) 



 
which is analogous to equation (2.22), with the trade-off parameter λ represented here by the 
matrices that statistically characterize the errors. The state vector minimising the expression is 
given by: 
 

x` = xa + Sx Kx
T

 Se
-1 [y - F(x`, ba)]                             (2.24) 

 
with the Kx matrix evaluated at (x`, ba). Since the inversion problem is generally not linear, the 
solution has to be found numerically, and gradient descent techniques are typically used. In the 
case of steepest descent algorithm the minimisation is pursued by iterating as: 
 

x`i+1 = x`i – αgi                                            (2.25) 
 
where gi contains the first derivatives of the function expressed by (2.23) evaluated at (x`i), and α 
represents the learning rate. For the Newtonian algorithm: 
 

x`i+1 = x`i – Hi
-1gi                                          (2.26) 

 
where Hi is the Hessian matrix, i.e. contains the second derivatives evaluated at (x`i). The 
steepest descent algorithm is safer during first iterations, avoiding secondary minima, while the 
Newtonian method converges faster when approaching the global minimum. The Marquardt-
Levenberg algorithm merges the two characteristics by means a trade-off parameter, γ: 
 

x`i+1 = x`i – (Hi + γI) -1gi                                     (2.27) 
 
For γ → ∞ we obtain the steepest descent algorithm, for γ → 0 the Newtonian method. At each 
iteration step, the solution is expressed by: 
 

x`i+1 = x`i +( Sx
-1 +Ki

TSe
-1Ki + γI)-1 {Ki

TSe
-1[y - F(x`i)] + Sx

-1[xa - x`i]}    (2.28) 
 
where Ki is evaluated at each iterated state. In Eq. (2.28) the second derivatives are typically 
small and have been ignored. 
The iterations are stopped when a suitable criterion is satisfied. A common option is to consider 
the difference x`i+1 = x`i. As a Gaussian statistic has been assumed for the n-dimensional state 
vector x, the variable (x` - x)TSδ

-1 (x` - x) follows a χ2 distribution of expected value n. 
Approaching the solution the difference (x`i+1 - x`i) should be much smaller than (x` - x), and the 
criterion to be satisfied can be written as: 
 

(x`i+1 - x`i) TSδ
-1(x`i+1 - x`i) << n                                  (2.29) 

 
The obtained solution, x` = x`i+1, can be tested applying the χ2 test on the differences [y - F(x`, 
ba)]TSe

-1[y - F(x`, ba)] and (x - xa)T Sx
-1 (x - xa), whose expected values are m (measurement 

vector dimension) and n (state vector dimension) respectively. 
A retrieval characterization is illustrated in Figure 2.2 and Figure 2.3. The example is taken from 
the O3 retrieval algorithm developed at the Rutherford Appleton Laboratory (RAL) for the 
processing of GOME data. In Figure 2.2 an example of an ozone profile retrieved from GOME 
spectral measurements (Band 2B) is reported (red line) and compared with the corresponding a 
priori profiles (dashed line) and correlative sonde profiles (black line). In Figure 2.3 the 
averaging kernels characterizing the retrieval are given; each function represents, for a specific 
retrieval level, the sensitivity of the retrieved value with respect to a variation of the true state at 
that level. The Full Width at Half Maximum (FWHM) of the averaging kernel functions gives an 
indication of the vertical resolution of retrieved profiles. 
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Figure 2.1. Triangular basis function. 

 
 
 
 

 
Figure 2.2. Example of ozone profile retrieved by an Optimal Estimation scheme (red line) 

compared with the corresponding a-priori profile (dashed line) and a coincident profile measured 
with an ozone-sonde (solid black line). 

 
 
 
 



 
Figure 2.3. Averaging kernels characterizing the retrieved ozone profile reported in Figure 2.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 3 
 
Neural Networks 
 
In this chapter a general overview on artificial neural networks (NNs), aiming at understanding 
the basic concepts for the application to the solution of inversion problems, will be given. In such 
a context, a particular network architecture, the multi-layer perceptron, will be considered. An 
exhaustive description of the topic can be found in [1]. 
 
3.1 Introduction 
 
Studies on artificial neural networks started in the 1940s as a result of investigations on the 
structure and the functionalities of the human brain, which can be viewed as a net made of a 
large number of nerve cells, called neurons, interconnected by links called synapses. This 
structure is able to receive and transmitt informations, by means the propagation of electrical 
signals. When a stimulus (e.g. the electrical signal) is presented to a neuron, the nerve cell 
elaborates the signal and, if greater than a specific threshold, produces an output. This output is 
independent from the intensity of the stimulus, and it is transmitted to other cells via the 
synapses [2]. The behaviour of each single neuron satisfies two basic principles: 
 

• dynamic polarisaton: in the nerve cells the electrical information follows a constant and 
predictable direction; 

• connection specificity: the connections between nerve cells are not casual, but each cell is 
specifically linked with some target cells. 

 
Such a structure aims at fulfilling the basic functionalities of the human brain, which can be 
summarized, according to the modern neurophysiology, in the following: 
 

• distributed analysis: the basic functions of human brain are localised in specific areas, 
and more complicated functions result from the interconnection of such elementary 
functional regions; 

• parallel processing: each single function follows more than one connection path, in order 
to mantain its functionality, even if a connection is damaged; 

• learning process: represent the capability of a biological system to acquire a knowledge 
from the external environment, and to adapt its structure on the basis of this acquired 
knowledge; 

• content addressability: represent the capability to store the acquired knowledge and to 
perform queries among stored informations. 

 
The first mathematical model of an artificial neuron was designed by Mc Culloch and Pitts 
in1943 [3]. This model implements two important characteristics of the biological neuron:  
 

• the artificial neural unit is able to propagate the information if the intensity of the input is 
greater than a fixed threshold;  

• the transmitted information is independent from the intensity of the input.  
 



In the 1960s Rosemblatt designed a new model [4], called perceptron, introducing other two 
fundamental characteristics:  
 

• the artificial neuron receives the inputs via an activation function, which is generally not 
linear;  

• each connection between neurons is characterized by modifiable weights.  
 
According to this model, the neuron processes the information receivesd in input as follows: 
 

o = f(WTi + b)                                                                    (3.1) 
 
where o is the output value of the neuron, i is the vector containing inputs, W is the vector of 
weights characterizing the inputs, b an additional bias term and f the activation function. In the 
following section we will consider a class of artificial neural networks referred to as multi-layer 
perceptrons (MLPs). In this model the neural units, i.e. the perceptrons, are organised in layers. 
If the connectivity among neurons in the same layer, or with units of previous layers, is allowed, 
we obtain recurrent neural networks; otherwise we have feed-forward neural networks, where the 
information propagates only in the direction of successive layers. 
Different activation functions are typically used; among them the linear function: 
 

f(a) = a                                                                          (3.2) 
 
or the logistic function: 
 

                   -1   if  a < 0     
f(a) =                                                                                    (3.3) 

                    1   if  a ≥ 0 
 
This function is not differentiable, and is generally substituted by the sigmoidal function: 
 

f(a) = ae−+1
1                                                                     (3.4) 

 
or by the hyperbolic tangent function: 
 

f(a) = tanh(a)                                                                     (3.5) 
 
A neural network based on the multi-layer perceptron model can be viewed as a structure 
composed of many computational elements, i.e. the neurons, organised in layers, operating in 
parallel and massively connected by links characterized by different weights. The net necessarely 
has an input layer, composed by a number of units equal to the number of inputs , an output 
layer, which produces expected results, and eventually one or more hidden layers, characterized 
by a variable number of units. A neural network is completely defined by the following 
characteristics: 
 

• the topology, i.e. the number of input, hidden and output units; 
• the properties of each neurons, i.e. the activation function, weights and threshold values; 
• the rules for the output calculation; 
• the rules for the learning process, i.e. how the weights are modified in order to improve 

the performance of the net. 
 



Neural networks can be used to solve a wide range of problems, such as pattern recognition, 
classification, filtering, decision and regression problems and so on [1]. In this work we will 
consider feed-forward multi-layer perceptrons for the solution of the inversion problem stated in 
Chapter 2. 
 
3.2 Multi-layer perceptron architecture 
 
MLPs have one or more hidden layers between the input and output layer, and neither recursive 
nor backward connections. A tipical structure of a MLP is reported in Figure 3.1. The weight 
characterizing the connection between the node i belonging to the layer l and the node j of the 
following layer is denoted as wij

l. The weighting matrix for the layer l is: 
 

        w11    ...    w1m
Wl =                                                                                         (3.6) 

        wn1    ...    wnm
 
where n is the number of nodes in the layer l and m is the number of nodes of the successive 
layer. Denoting Il the input vector of the layer l, and bl the vector containing the biases, the 
output vector of the layer is expressed as follows: 
 

Ol = fl( Wl-1 Il + bl )                                                            (3.7) 
 
where fl represents the activation function of all nodes of the layer l. MLP networks include at 
least one layer with not-linear but differentiable activation function; note that, even if it is not 
mandatory, the output layer is generally characterized by a linear activation function, in order to 
avoid the output vector of the NN from being limited to a restricted range. Nevertheless, in some 
cases it can be useful to limit the output range of the MLP, and the typical sigmoidal or 
hyperbolic tangent functions are used. Designing a multi-layer perceptron involves several 
actions. First, we need to set-up the topology of the network, i.e. the number of layers, the 
number of nodes for each layer and the activation functions. Then, we have to build-up a suitable 
training set, which will be used to fix the parameters of the network, i.e. weights and biases of 
the nodes. Finally, deciding the training strategy, that will adjust network parameters in order to 
give a solution for the considered problem. 
 
3.2.1 Topology 
 
In this work MLPs will be used to approximate a mapping function between an input and an 
output space, i.e. between the vector containing input measurements and the vector containing 
physical parameters to retrieve. As a consequence, the number of input and output units is 
automatically given by the dimension of the input and output space. Various theoretical 
investigations demonstrate that a neural network having one single hidden layer, formed by a 
suitable number of hidden units, is capable to approximate any not-linear mapping function [1] 
[5]. In this study only neural networks with one hidden layer will be considered, and the problem 
of selecting the proper number of hidden units will be addressed (Chapter 5). The sigmoidal 
function, which has the properties of the logistic function but being continuous and 
differentiable, is chosen to be the activation function for all the nodes; this choice can be useful 
in this case, as the output range is constrained to have only positive values. 
The internal parameters, i.e. weights and biases determining the estimation properties of the 
network, will be fixed during the training procedure. However, an initial value is needed. 
Usually, they are set randomly, but with some care. Assuming sigmoidal activation functions, it 
is important that the initial values of weights do not drive the neurons into saturation, as the error 



surface will be flat and the convergence very slow. On the other hand, they should not be too 
small, leading otherwise the activation functions to be quasi-linear [1]. In this work symmetric 
Gaussian distributions, with zero mean and standard deviation set according to the number of 
input units, has been used. 
 
3.2.2 Training 
Given a set of N input-output pairs {y,x}, where y represents the measurement vector and x the 
reference state vector corresponding to y, the objective of the MLP is to approximate the 
mapping function between the input and output space. In statistical terms, the MLP provides an 
estimation of p(x|y), i.e. the probability of the output variables conditioned to the input variables. 
Weights and biases characterizing the MLP will then be set to provide the estimation, that is the 
approximation of the conditional density function p(x|y,w), where the vector w represent all the 
neural internal parameters. This density estimation can be performed by different classes of 
methods. The first class, known as parametric methods, assumes a specific function to model the 
density function, e.g. a Gaussian distribution. In this case the number of parameters does not 
depend on the size of the data set. The second class, referred to as non-parametric methods, uses 
a histogram-based approach, without assuming a pre-defined function. Here the number of 
estimation parameters grows with the size of the dataset. In such a context, MLPs can be 
considered as a semi-parametric method, since a general class of functions is used, and the 
number of internal parameters can be increased to build a more flexible model, even if this 
number does not depend on the size of the dataset.  
The training process, also called the learning phase, consists in finding the set of parameters 
which maximise the estimation properties of the net. This means that, during the training, a 
function depending on the weights and measuring the estimation capability of the MLP has to be 
maximised. Such a function is the conditional probability mentioned above, p(x|y,w), also called 
the likelihood of weights, L (w). Assuming that inputs and outputs in the training dataset, 
{yi,xi}i=1,N, are independent, the function can be expressed as follows: 
 

L (w) = Πi=1,N  p(xi|yi,w) p(yi)                                                     (3.8) 
 
Maximising the likelihood function is equivalent to minimise the error function 
 

E (w) = Σi=1,N  –ln p(xi|yi,w)                                                       (3.9) 
 
Under the assumption that the target data {xi} comes from a deterministic function, we can 
model such a function with a MLP of output o(y,w); in this case the likelihodd can be written as 
[1]: 
 

p(x|y,w) = 
2),(

21 xwyo −−
β

e
Za

                                                     (3.10) 

 
where β is a parameter of the distribution and Za the normalisation factor. 
Combining equation (3.9) and (3.10), the error function to estimate can be written: 
 

E (w) = 
2

,1
),( i

Ni
i xwyo −∑ =

                                                 (3.11) 

 
We can therefore see that the set of weights which maximise the conditional density function 
p(x|y,w) is obtained by minimising the sum of square errors of the difference between the output 
vector of the MLP, o(y,w), and the corresponding target vector, x. As described in Chapter 2, the 



expression (3.11) corresponds to the average a posteriori solution, and it is equivalent to the 
minimum variance solution [1]. The minimisation of square errors can be performed by the 
gradient descent techniques already presented in Section 2.2.2 and Section 2.2.3. 
This solution is known as the least square error solution, and it is generally used to determine the 
weights of the MLP. Nevertheless, other criteria than maximisation of the likelihood can be 
taken into account, leading to different error functions. For instances, the least square solution is 
not optimal in the case of several input units having the same output value, or in the case of 
outliers having a large contribution to the errors, without being very representative of the dataset. 
In these cases the use of other norms different from the standard 2-norm can significantly 
improve the estimation properties of the MLP. 
 
3.2.3 Generalisation 
 
The main objective of neural network inversion algorithms is to approximate the mapping 
function between two sets of data. It is crucial to underline that the ultimate goal of a NN based 
retrieval algorithm is to use this function to make estimations on new data; therefore, NNs should 
be able to catch the general relation between the input and output spaces, not the specific features 
of the two limited data sets. In general, more complex is the model (e.g. the number of 
estimation parameters), better is the fit of data. This is risky in terms of generalisations 
properties, as specific features characterizing the selected dataset can be included in the fit. This 
phenomenon is called over-fitting, and produces small biases between estimated and true data, 
but large variances. On the contrary, simpler models are not capable to completely represent the 
significant relations underlined by the two datasets, producing results characterized by small 
variances but large biases. This implies that an optimal complexity for the estimation model 
exists, allowing the best trade-off between the two conflicting requirements [1]. This can be 
achieved by different strategies. 
 
3.2.3.1 Structural stabilisation 
Since the neural network estimation parameters are essentially fixed by the number of biases and 
weights, and consequently by the number of neurons, the best compromise between the proper fit 
of data and the generalisation properties essentially depends on the network topology. However, 
the selection of the optimal number of neural unit is not trivial, and in practise involves testing a 
relatively large number of MLPs. This process can be very labourious, and other approaches are 
generally considered. 
 
3.2.3.2 Regularisation 
In order to control the model complexity, it is possible to modify the considered error function, 
measuring the difference between the desired and reference output of the net, with a 
regularisation function, usually known as weight decay [6]. The new error function can be 
expressed as: 
 

ED + λ EW  = 22

,1
),( wxwyo λ+−∑ =

i
Ni

i                                        (3.12) 

 
where λ is a trade-off multiplier and w represents the matrix of neural weights. Smaller are the 
weights, smaller is the possibility for the NN to over-fit the training set. 
 
3.2.3.3 Early stopping 
Such a technique, also called cross-validation, essentially consists in monitoring the evolution of 
the error function during the learning phase, either on the training set or on an independent 
validation set, which contains input-output patterns different from the training set [7]. The 
overall retrieval error computed for the training set keeps on decreasing with the number of 



training cycles, approaching a value of convergence. Conversely, the error on the validation set 
reaches a minimum value, after which it will start increasing if the process training is continued, 
indicating the over-fitting. This is the point to interrupt the learning phase, as the NN has 
achieved its best generalisation properties. 
An example of the application of the early stopping procedure is given in Figure 3.2. The plot is 
taken from a real experiment carried out during the design of neural network inversion schemes 
for GOME data (see Chapter 5). The black line represents the total error, computed over all the 
input-output pairs and for all output units, corresponding to the training set, while the red line 
shows the total error for the validation set. The minimun of the red curve indicates the point 
where the trained MLP has achieved its best generalisation properties. 
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Figure 3.1. General structure of a neural network. 

 
 

 

 
 

Figure 3.2. Early stopping procedure. The black line represents the NN error evaluated on the 
training set, while the red line the error assessed on the test set. 

 
 



Chapter 4 
 
The Global Ozone Monitoring Experiment 
 
4.1 Introduction 
 
The Global Ozone Monitoring Experiment (GOME) is a nadir-viewing, across-track scanning 
spectrometer, designed to measure solar back-scattered radiation from the atmosphere with a 
contiguous spectral coverage in the range from 240 to 790 nm. 
The instrument is boarded on the second Earth Remote Sensing (ERS-2) satellite, launched on 
April 1995 by the European Space Agency (ESA). The instrument has been in almost continuous 
operation since its launch, though recently with somewhat degraded performance. Measured 
spectra are used for deriving different geophysical parameters, with a special emphasis on the 
global, height-resolved information on the ozone distribution in the atmosphere. GOME data are 
conventionally referred to by the processing level: 
 

• Level 0 (L0): raw data transmitted from the satellite; 
• Level 1A (L1A): re-formatted data with some trivial unit conversion and calibration 

parameters appended; 
• Level 1B (L1B): calibrated data expressed into scientific units (e.g. radiance values) 
• Level 2 (L2): retrieved geophysical products (e.g. total column ozone) 

 
This chapter firstly gives an overview on the GOME instrument, in particular on the operational 
mode and calibration of measurements. The main sources of error are then identified, followed 
by a brief survey of the geophysical parameters operationally determined. In the second part of 
the chapter, a quite comprehensive summary of existing processing algorithms aiming at the 
ozone profiles retrieval is given. The inversion algorithm designed by the Rutherford Appleton 
Laboratory is described with more details, as it plays an important role in this work (see Chapter 
5). 
 
4.2 The instrument 
 
The instrument optics is reported in Figure 4.1. Light back-scattered from the atmosphere is 
viewed at nadir via a scan mirror, which allows the instrument’s instantaneous field-of-view 
(IFOV) to be scanned across the satellite ground track. From the scan mirror, light passes 
through a telescope to the spectrometer entrance slit [1]. From here, light is divided into 4 
channels: a pre-disperser prism allows Channel 1 and Channel 2 (below 405 nm) to be separated 
from Channel 3 and Channel 4; a second prism splits Channel 1 (235-316 nm) and Channel 2 
(311-405 nm), while light to Channel 3 (395-611 nm) and Channel 4 (605-793 nm) is divided by 
a beam-splitter. The spectrum in each channel is generated by a blazed holographic diffraction 
grating, which disperses the incident radiation onto the detector array [2]. Each array contains 
1024 Si diode detector pixels (described in [3]), most of which receive dispersed light from the 
grating. Some pixels at the ends of the arrays are either physically shielded from incident light 
(blind pixels) or geometrically positioned so as not to receive direct illumination, but to respond 
to stray-light. The electronic charge generated by incident photons on the detector pixel is 
accumulated for a particular integration time, before being discharged and read-out via an 



analogue to digital converter (ADC). Level 0 (L0) data are formed by the count, expressed in 
binary units (BUs), recorded by the ADC. In the absence of light, the detectors still accumulate 
charge, quantified as dark current, which is a source of spectral noise and has to be accounted for 
in calibration. Other processes in the detectors and associated electronics give rise to additional 
noise, independent from the input signal and the integration time, collectively referred to as read-
out noise. Both dark current and read-out noise are functions of temperature; therefore, an active 
Peltier cooler is used to reduce the detector temperature to 200-230 K. Additional detectors are 
included to measure the polarisation state of the incoming light: the pre-disperser prism directs a 
fraction of the light from the telescope to three polarisation monitoring detectors (PMDs). 
Solar irradiance measurements are obtained switching the scan mirror to the calibration unit. 
Solar radiation reaches the scan mirror via a diffuser, in order to reduce light intensity and ensure 
uniform illumination of the slit. The calibration unit also contains a PtNeCr line lamp, which acts 
as a reference for the wavelength calibration of the instrument. 
 
4.3 Operation 

 
The ERS-2 satellite has a sun-synchronous orbit, with an altitude of 790 km, an equator crossing 
time at the descending node of 10:30 am local solar time and an inclination of 98.5°. ERS-2 
completes 14 orbits a day, with a repeat cycle of 31 days. The principal observing mode of 
GOME is illustrated in Figure 4.2. The instrument scans across track a 960 km swath, centred on 
the nadir. The forward-scan from East to West is performed in 4.5 s, while the back-scan takes 
1.5 s. Integration periods are synchronised to give 3 pixels (320 km across by 40 km along-track) 
on the forward scan for all the spectral bands - excepted Band 1A (240-268 nm) - and 1 pixel on 
the back-scan. Band 1A is integrated over 2 complete scans, and so has a ground pixel size of 
960x80 km2. Given the orbital parameters of ERS-2, GOME gives observations over the whole 
Earth’s surface in 3 days. Occasionally, the instrument scans off-orbit track to view the pole 
directly, though such data has not been used in this work. 
The electronic devices allow reading-out detector pixels with different integration times. This is 
exploited in Channel 1, where the signal has the greatest dynamic range. The shortest 
wavelength, referred to as Band 1A, have an integration time of 12 s, while the remainder of 
Channel 1, Band 1B, as well as Channel 2, Channel 3 and Channel 4 are integrated for 1.5 s. The 
calibration of GOME observations relies on a database of key-data, mostly generated through 
pre-flight testing of the instrument, and is performed through several steps [4]: 
 

1. dark current subtraction: the dark current BUs for each integration period are subtracted, 
and the measured signals are then normalised by the integration time; 

2. stray-light subtraction: stray-light represents the illumination of the detectors originating 
from anywhere other than the intended grating. This effect, significant for Channel 1 and 
Channel 2, can be considered spectrally uniform and proportional to the total incident 
light flux, and it is corrected using pre-flight parameters characterisation; 

3. conversion to radiance units: leakage and stray-light corrected signals are converted into 
radiance units, according to the pre-flight characterisation of the radiance sensitivity to 
un-polarised incident light and the bi-directional scattering distribution function (BSDF) 
of the calibration unit diffuser; 

4. polarisation correction: the incident radiance from the Earth is assumed to be un-
polarised; the total intensity is estimated by correcting for the polarisation sensitivity of 
the instrument. 

 
Calibrated radiance spectra are then sun-normalised, assuming that the emission of radiation 
within the atmosphere is negligible, and neglecting the Ring effect, i.e. the apparent excess 
intensity in the Fraunhofer lines in scattered sunlight primarily caused by Raman scattering. Sun-



normalised radiances (Level 1B data) are generally used as the basic measurement in UV-visible 
remote sensing of the atmosphere, since the instrumental gain error, common to both solar 
irradiances and back-scattered radiances, cancels. Moreover, Fraunhofer spectral structures are 
removed by the ratio, leaving only the spectral signatures due to the interaction between solar 
radiation and atmospheric components. Figure 4.3 shows some examples of spectra recorded by 
the GOME instrument. The two panels on the top represent solar irradiance spectra, expressed in 
(photons/s/cm2/nm) as a function of wavelength, from 240 to 350 nm for the panel on the left and 
from 290 to 370 nm for the panel on the right. The two central panels show the back-scattered 
radiances spectra (expressed as photons/s/cm2/nm/sr) for the same wavelength ranges. The two 
panels on the bottom finally represent the normalised radiances. 
 
4.4 Radiometric errors 

 
In this section a brief overview of the main radiometric errors characterizing GOME 
observations is given. It is useful to distinguish between [5]: 
 

• Noise, i.e. the purely random (spectrally and temporally) error, which determines the 
precision of the measurement. These errors are assumed to be Gaussian, i.e. with 
probability density function given by: 
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• Systematic error, which is correlated on some observable spectral or temporal scale. 

 
Measurement accuracy, i.e. the deviation of the observation from the true quantity being 
measured, is given by the combination of noise and systematic error. 
 
4.4.1 Noise 
 
The limit of measurement precision depends on the noise affecting the number of detected 
electrons [3], which follows a Poisson distribution with associated standard deviation: 
 

ee NN =∆                                                                   (4.2) 
 
The number of detected electrons, Ne, depends on different quantities: 
 

• the incident radiance (photons/s/cm2/nm/sr) 
• the effective telescope area (cm2) 
• the transmission of the optics  
• the view solid angle (sr) 
• the pixel spectral width (nm) 
• the integration time (s) 
• the detector quantum efficiency 
• the leakage current (A) 
• the electron charge (Coulomb) 

 
Two additional noise sources must be considered: the read-out noise, i.e. the random error 
introduced each time the charge accumulated in a detector pixel is measured, and the digitisation 



noise, i.e. the errors introduced by the ADC in reported counts. The signal-to-noise ratio gives a 
representation of the random error, expressed in radiance units, for each spectral detector 
element.  
 
4.4.2 Systematic error 
 
4.4.2.1 Peltier Cooler Interference 
Early in the mission, it was noted that calibrated Band 1A spectra were subject to spurious, 
highly significant, quasi-random perturbations correlated with Fraunhofer spectral structures. 
This was attributed to an increased dark current driven by interference from the Peltier cooler 
[4]. A scheme aiming at the removal of spurious signals based on correlation with the cooler 
state was implemented in the GOME Data Processor (GDP); nevertheless some perturbations in 
Band 1A dark current still persist after the correction. 
 
4.4.2.2 Diffuser spectral features 
When comparing GOME spectral measurements with modelled spectral signatures, it has been 
noticed in various studies that systematic differences exist [6] [7] [8] [9]. Such residual structures 
have been partially attributed to spectral perturbations introduced by the diffuser BSDF (not 
corresponding to pre-flight tests), which are quite significant compared to minor trace gas 
absorption signatures. 
 
4.4.2.3 Scan mirror degradation 
Since the beginning of the mission, the scan mirror reflectance has been observed to be 
degrading, particularly below 300 nm. Under the assumption that this degradation is independent 
from the scan mirror angle (σ), it can be easily corrected, so as having a little consequence for 
sun-normalised radiance. However, since January 1999, the degradation of the scan-mirror 
exhibits dependence from the mirror angle, which has been attributed to the build-up of a 
contaminant layer [10]. Errors propagate directly into sun-normalised radiances [11], and are 
expected to have serious implications for ozone profiles retrieval. Empirical correction schemes 
are generally developed in order to process post-1999 data [12]. 
 
4.4.2.4 Etalon effects 
The radiance sensitivity to un-polarised light incident on the scan mirror, h, and the polarisation 
sensitivity of the instrument, η, are determined in part by etalon structures, due to reflection or 
transmission within layers or between thin surfaces. Spectral features associated with the etalon 
may shift in wavelength, as a result of small perturbations to the physical etalon in question, 
giving rise to potentially significant errors in calibrated radiances. Perturbations to h are not 
significant for sun-normalised radiances, assuming that the etalon has the same impact on both 
involved optical paths, and that the etalon does not change over a time scale less than a day (i.e. 
the frequency of solar observations). On the other hand, perturbations to η are more significant, 
since the polarisation correction only applies to the back-scattered (Earth) radiance. 
 
4.4.2.5 Polarisation correction 
The fractional polarisation of the back-scattered light (p) varies rapidly in the spectral range 300-
325 nm, which can be therefore particularly affected from radiometric calibration errors arising 
from the lack of adequately resolved polarisation measurements. Degradation of the UV PMD-1 
has been observed from direct-sun observations. The degradation is much faster than the 
corresponding main channel degradation, leading to further errors in the polarisation correction 
scheme [7] [13]. 
 
 
 



4.4.2.6 Solar calibration unit 
The observation of GOME solar spectra showed erroneous periodical variations on solar 
irradiances; the effect is attributed to errors in the diffuser BSDF (only in the direct-sun optical 
path) and so straightforwardly propagates into sun-normalised radiance errors [7] [14]. 
 
4.4.2.7 Pixel scene 
The sequential read-out of the detectors during the across-track scan means that each detector 
pixel sees a slightly different ground scene, which can produce different radiances, e.g. caused 
by the presence of clouds. These radiance differences are therefore recorded in the measured 
spectrum. The structure of the scene can produce broad-band spectral errors, giving rise to 
discontinuities between the overlap regions of the channels (e.g. where the first pixels read-out in 
Channel 2 overlap in wavelength with the last pixels in Channel 1, but view significantly 
different ground scenes). 
 
4.4.2.8 Temperature variation 
As already mentioned, the instrument temperature can affect the spectral calibration. Significant 
variations in the instrument temperature have been observed during the GOME life-time [15]: 
from 1995 to 2002 an increase of 1 K has been observed. Moreover, there is also a seasonal 
variation correlated with the Sun-Earth distance of 1.5 K (maximum temperatures in 
December/January) that has to be taken into account. 
 
4.5 Geophysical products 

 
4.5.1 Overview 
 
The Level 2 (L2) geophysical products produced by the GDP [16] include: 
 

• column amounts of O3, NO2, BrO, HCHO estimated by the DOAS technique; 
• cloud fraction and cloud top height, calculated with the Initial Cloud Flagging Algorithm 

(ICFA). 
 
In addition, different agencies and research groups have developed their own Level 2 processing 
schemes, aiming at the retrieval of various atmospheric parameters, such as NO2, H2O and SO2 
column densities [17] [18] [19] [20], aerosols optical depth [21] [22] and ozone profiles [23] [24] 
[25] [26] [27]. In particular for the retrieval of ozone profiles, a number of institutes have 
proposed a large variety of methods; all these algorithms exploit different spectral ranges and 
different inversion techniques to extract the information on the ozone vertical distribution. 
Results from all these schemes have been extensively inter-compared in the framework of the 
ESA GOME Ozone Profile Working Group. A brief overview on existing retrieval algorithms 
for GOME ozone profiles is reported in the next section. 
 
4.5.2 GOME ozone profiles retrieval algorithms 
 
Currently, different approaches are used to retrieve the information on the ozone vertical 
distribution from GOME measurements, and they mainly differ in the use of external information 
and a-priori constraints. The principal techniques are: 
 

• Optimal Estimation 
• Philips-Tikhonov Regularization 
• Data Assimilation 



 
The following paragraphs summarise the main characteristics of each of these methods. 
 
4.5.2.1 Optimal Estimation approach 
As already stated in Chapter 2, normal least-squares fitting does not work for ill-posed problems 
(like the ozone profile retrieval from UV-reflectance measurements), since it amplifies 
measurement noise resulting in profiles with unphysical, large amplitudes. The well-known 
Optimal Estimation approach solves ill-posed problems by using a-priori information. The use of 
a-priori profiles tends to stabilize the inversion when relating simulated measurements (from the 
forward model) to atmospheric parameters. Retrieved ozone profiles from the Optimal 
Estimation method can be regarded as the a-priori profiles updated with the information 
contained in the spectral measurements. Using the same formalism already presented in Chapter 
2, and neglecting the terms accounting for auxiliary parameters (b) and the measurement errors 
(ε), we can write: 
 

O3, retrieved = AO3, true + (I – A)O3, a priori                                       (4.3) 
 
where O3, retrieved, O3, true and O3, a priori are vectors of ozone number densities, and correspond to 
the values of the retrieved, true and a-priori profile, respectively. A is the so-called averaging 
kernel matrix, or model resolution matrix, and it constitutes a mapping between the true anomaly 
(i.e. the difference between the true and the a priori profile) and the retrieved anomaly (i.e. the 
difference between the retrieved and a priori profile). According to the theory of the Optimal 
Estimation, A is given by: 
 

A = Sa KT (K Sa KT + Sε)-1 K                                                 (4.4) 
 
where Sa and Sε are the a-priori and the measurement error covariance matrices, respectively, and 
K is the so-called weighting function matrix. K describes how the forward model F(x), which 
relates the spectral measurement to the true state vector, is sensitive to changes in the state 
vector. 
When applied to the ozone profile retrieval from nadir UV spectra, the averaging kernels 
quantify the limited sensitivity of the spectral measurements to fine-scale structures of ozone 
profile and to the ozone values below the ozone maximum. In addition, the kernels depend on the 
errors characterizing the inputs to the inversion algorithm. For example, as evident from 
equations (4.3) and (4.4), for larger a-priori errors the averaging kernel matrix tends towards the 
identity matrix and hence the OE solution becomes less dependent on the a-priori profile. 
Conversely, for smaller a-priori errors the averaging kernel elements go to zero, and the solution 
tends to the a-priori profile. For the measurement errors the situation is reversed. Note that the 
averaging kernel matrix is influenced not only by the input measurements of the retrieval system, 
but also by the a-priori selected climatology. 
Equation (4.3) quantifies the deviation between the true and the retrieved profile, which is 
especially important when comparing the retrieved profile to correlative measurements. Note the 
two extreme cases: when A is the identity matrix, the retrieved and the true profiles are equal; 
when all elements of A are zero, the retrieved profile equals the a-priori values. 
Different algorithms based on the Optimal Estimation approach have been developed for the 
retrieval of ozone profiles from GOME measurements. Hereafter most of them are presented, 
and the main differences between different practical implementations are underlined. 
The Institute of Environmental Physics at the University of Bremen in Germany (IUPB) has 
developed the FURM (Full Retrieval Method) algorithm. This method is essentially based on the 
Optimal Estimation approach, but coupled with the information matrix method from Kozlov 
[28], which adapts the number of fit parameters to the information content of the measurement 
vector. The main purpose of this eigenvector technique consists in using the a-priori information 



in the same statistical sense as the original OE approach, but allowing a much faster fit process, 
as only those parameters for which there is information in the measurement vector are 
considered. The GOMETRAN radiative transfer model (RTM) [29], specifically designed for 
GOME retrieval applications, is used for calculations of radiances and weighting functions. 
GOMETRAN is a monochromatic model which includes a full treatment of multiple-scattering. 
Rayleigh cross sections and phase functions are based on the work of Bucholtz [30], while 
aerosol profiles and optical properties are taken from the LOWTRAN-7 aerosol model [31]. 
GDP spectra are corrected for the Ring effect (including rotational Raman scattering) using a 
look-up table. Clouds are treated as highly reflecting surfaces at 0 km altitude (i.e. clouds are 
treated with an “albedo approach”), which means that in the RTM the surface albedo is replaced 
by the weighted mean of the surface albedo and the cloud albedo, the weight being the fractional 
cloud cover (the Earth’s surface is assumed to be a Lambertian reflector with wavelength 
dependent albedo). The GDP spectra contain unresolved problems with the radiometric 
calibration, particularly between 260 and 290 nm [32]. In the retrieval they appear as spectral fit 
residuals with characteristic structures, but none of the atmospheric fit parameters can account 
for them [23][33], and the IUPB algorithm was therefore restricted to use only wavelengths 
longer than 290 nm. In a further development, a new calibration correction scheme has been 
introduced, that permits adding the wavelength range 275–290 nm to the fit window [34]. The a-
priori ozone profiles used in the IUPB algorithm are from the global ozone climatology of 
Fortuin and Kelder [35], which is based on ozone-sonde and satellite measurements. This 
climatology provides monthly zonal mean ozone profiles in 10° latitude bands at pressure levels 
between 1000 and 0.3 hPa. The a-priori variance of these profiles is fixed to 30%, and the 
complete a-priori covariance matrix is generated assuming an exponential decrease for the off-
diagonal elements from the diagonal value, using a correlation length of 5 km, which is the same 
for all altitudes. The temperature profiles are taken from the UKMO (United Kingdom 
Meteorological Office) analysis [36]. 
The Royal Netherlands Meteorological Institute (KNMI) developed the OPERA (Ozone Profile 
Retrieval Algorithm) scheme. Ozone profiles are derived from GOME data in the spectral range 
from 270 to 330 nm, co-adding measurements coming from Band 1B and Band 2. The 
radiometric and wavelength calibration characterizing the GDP Level 1 data were recognized to 
be too inaccurate for ozone profiles retrieval, and therefore several corrections were applied 
using the spectral calibration program GomeCAL (available through 
http://www.knmi.nl/gome_fd/gomecal/) [37] [38] [24]. 
Sun-normalised radiances are simulated by running the Linearized Discrete Ordinate Radiative 
Transfer model (LIDORT-A) [39], a simplified and sped-up version of the full LIDORT model 
[40]. LIDORT-A is only applied for the multiple scattered part of the radiance, and runs with a 
limited set of 20 layers. The single scattering part is computed with a dedicated, simpler and 
therefore faster, single scattering model, with the full retrieval grid of 40 layers. LIDORT-A is a 
scalar model, and it does not treat polarization and the vector nature of the radiation field. This 
produces errors in the radiance values at the top of the atmosphere that can reach, in the selected 
spectral range, 10% for high scattering angles. Raman scattering (responsible for the Ring effect) 
is not treated in the RTM, but accounted for using a high resolution spectrum convolved with the 
Raman lines [41]. 
The fractional cloud cover is treated as a Lambertian reflecting layer at the cloud top height, for 
the fraction of pixels covered with cloud. The cloud fraction and cloud-top height are obtained 
from the Fast Retrieval Scheme for Cloud Observables (FRESCO), which extracts the 
information from the Oxygen A-band [42]. Aerosols are not treated, but the FRESCO results 
incorporate aerosol presence to a certain degree. Ozone cross sections are taken from the 
temperature-parameterized data set of Bass and Paur [43] and Paur and Bass [44], corrected 
according to [45], while Rayleigh cross sections are computed using empirical formulae [46]. 
Other trace gases than ozone are not treated and assumed not to affect the retrieval in the selected 
spectral range. The a-priori ozone profile information comes from the global ozone climatology 

http://www.knmi.nl/gome_fd/gomecal/


of Fortuin and Kelder [35], with covariance information derived from the same data set (which 
corresponds to a correlation length of 4–5 km) [47]. 
The Smithsonian Astrophysical Observatory (SAO) algorithm also uses the Optimal Estimation 
approach to derive the ozone vertical distribution, and has a particular emphasis on improving 
tropospheric ozone retrieval [48]. For retrievals in the troposphere, fitting precision is very 
important and improved wavelength and radiometric calibration is needed. Therefore the 
algorithm requires a detailed treatment of these aspects, including Ring effect and polarisation 
correction.  
Ozone profiles are retrieved from GDP spectra corrected with GomeCAL. To reduce 
measurement errors, and because of the relatively broad ozone absorption structure between 289 
and 307 nm, 5 neighboring pixels (in wavelengths grid) are co-added and sampled at every 2 
pixels. The LIDORT model is used to simulate radiances and weighting functions. The scalar 
radiances obtained by LIDORT are corrected to incorporate polarization using a look-up table. 
Surface albedo and parameters for other trace gases (NO2, SO2, BrO) are also given as inputs to 
the model. Auxiliary parameters are provided in order to account for the Ring effect. In the 
characterization of the atmosphere, the SAO algorithm uses monthly mean stratospheric aerosol 
data from SAGE-II [49] and tropospheric aerosol model fields from Global Earth Observing 
System CHEM model (GEOS-CHEM) [50]. Clouds are treated as Lambertian surfaces, and 
cloud fraction and cloud-top pressure come from the GOME Cloud Retrieval Algorithm 
(GomeCAT) [51]. Daily temperature profiles from ECMWF (European Centre for Medium-
Range Weather Forecast) and surface pressures from NCEP/NCAR (National Centers for 
Environmental Prediction/National Center for Atmospheric Research) are also used by the 
model. A-priori ozone profiles are initialized with the climatology provided by the Total Ozone 
Mapping Spectrometer (TOMS-Version 8) [52]. Standard deviations at 40–50 km are assumed as 
70%, 60%, 50%, 40%, 30%, 20% for 50, 48, 46, 44, 42, 40 km, respectively. For a-priori 
standard deviations between 0 and 40 km, whatever is the largest between 40% and the original 
a-priori standard deviation is used. The off-diagonal elements of the covariance matrix are 
assumed to exponentially decrease, with a correlation length of 6 km. 
The National Oceanic and Atmospheric Administration (NOAA) applied the Version 8 SBUV/2 
algorithm, developed for the SBUV instruments, to the GOME data [53]. Unlike the previous 
four OE algorithms, this algorithm was not specifically designed for GOME data. The SBUV 
data are measured at the following wavelengths (nm): 251.99, 273.51, 283.27, 287.62, 292.26, 
297.54, 301.93, 305.80, 312.50, 317.51, 331.23, and 339.84 with a bandwidth of about 1.1 nm. A 
triangular filter centered at those values has been used to convert GOME spectral data to the 
SBUV bandpass. Because the GOME data have large errors below 270 nm, an extrapolation was 
used to provide the standard input for the SBUV retrieval algorithm at 251.99 nm. The SBUV 
algorithm uses a single-scattering forward model calculation coupled with adjustments from 
multiple scattering tables created from the TOMS forward model (TOMRAD) [54]. This solution 
accounts for all orders of scattering, as well as the effects of polarization. It includes a pseudo-
spherical correction, molecular anisotropy [55], and rotational Raman scattering [56]. Clouds are 
taken into account using climatologies of monthly cloud top pressures and snow/ice coverage. If 
snow or ice is present, the clouds are treated as though they are at the surface. 
The SBUV algorithm normally incorporates its own a-priori ozone profile database. This 
database was created from 15 years (1988–2002) of ozonesonde measurements and SAGE and/or 
UARS-MLS data. Over 23.400 sonde profiles from 1988 to 2002 were used in producing this 
climatology. Average profiles from ozonesondes and SAGE are merged over a range of 4 km. 
The dataset gives the climatological averages for eighteen 10° latitude bands and 12 months. The 
a-priori covariance is constructed as follows: the diagonal elements correspond to 50% variance 
and the non-diagonal covariance elements fall off with a correlation length of approximately two 
Umkehr layers (about 10 km). The measurement covariance is diagonal and corresponds to 
radiance errors of 1% in each band. Temperature profiles derive from an interpolation of 
climatological tables by month and latitude similar to the a-priori ozone profile in size. They are 



from a combination of balloon sonde for the lower part, and fields from the National Centre for 
Environmental Prediction (NCEP) for the upper part. 
 
4.5.2.2 Philips-Tikhonov Regularization Approach 
The Philips-Tikhonov Regularization (PTR) approach [57] [58] has been little used for the 
analysis of atmospheric spectra, e.g., to retrieve ozone profiles. However, it has been extensively 
studied in the mathematical field of inversion. The analysis of the fundamental problem by 
Hansen and O'Leary [59] and Hansen [60] provides a basis for the application of PTR to remote 
sensing problems. In contrast to the OE approach, the PTR approach does not require a-priori 
ozone profiles and corresponding covariance matrices. The same basic equation of OE (4.3) is 
applied, but the vector representing the a-priori profile, xa priori, is set to zero. 
Such a technique has been implemented for the ozone profiles retrieval from GOME 
measurements by the by the Space Research Organization of Netherlands (SRON) [61]. In 
addition to the least squares minimization between forward model calculations and measurement, 
this algorithm includes the minimization of the first derivative norm of the profile as a side 
constraint. The minimization of the least squares condition and the minimization of the first 
derivative norm are balanced by a regularization parameter. The rationale behind the 
minimization of the first derivative norm as a side constraint is that the measurement is 
insensitive to fine scale structures of the ozone profile. These vertical structures do not influence 
the residual norm but strongly influence the first derivative norm. The regularization parameter 
should be chosen such that the retrieved profile contains all vertical structures that influence the 
measurement, while the structures to which the measurement is insensitive should be filtered out. 
Such a value of the regularization parameter is found from the L-curve [60], which is a 
parametric plot of the first derivative norm versus the least squares norm (the curve shows an L-
shaped corner). The regularization parameter corresponding to the corner of the L-curve yields a 
good balance between the two minimizations: a decrease of the regularization parameter would 
not improve the residual norm, but would lead to a strong increase of the first derivative norm; 
on the other hand, an increase of the regularization parameter would make the residual norm 
larger. Therefore, when using this value of the regularization parameter, all profile information 
that is present in the measurement is retrieved, while the part of the profile to which the 
measurement is insensitive (e.g., fine-scale structures in the profile) is filtered out. 
The SRON inversion algorithm stems from calculations performed by a forward model based on 
the Gauss-Seidel iteration technique, which fully includes multiple-scattering and polarization, 
described in detail in the paper of Hasekamp and Landgraf [62]. The inclusion of polarization in 
the radiative transfer calculations reduces errors of up to 10% with respect to the commonly used 
scalar simulations, which generally neglect the polarization properties of light. The SRON 
algorithm can be therefore directly applied to the GOME measurements, which are thus not 
corrected for polarization [63]. 
The algorithm includes some additional fit parameters, such as the Lambertian-surface albedo 
and the amplitude of a pre-calculated Ring spectrum. Also the effect of clouds is accounted for, 
by using the independent pixel approximation, which separates the radiative transfer calculations 
for cloudy and cloudless scenes. Values for the cloud fraction and cloud-top height are taken 
from the Fast Retrieval Scheme for Cloud Observables (FRESCO). 
 
4.5.2.3 Data Assimilation Approach 
In the operational phase, GOME is primarily used to retrieve total ozone column densities from a 
spectral window around 330 nm, using the Differential Optical Absorption Spectroscopy 
(DOAS) technique [64] [16]. In order to derive ozone profiles and a daily global 3 dimensional 
(3D) ozone analysis, the column observations are assimilated into a 3D chemical-transport model 
(CTM). While the CTM is driven by meteorological wind and temperature fields, GOME 
observations are sequentially assimilated into the model using an optimal interpolation scheme 
[65]. The vertically integrated total column contents of the model are considered as the first-



guess values. The analyzed column values are then vertically distributed, weighted by the 
corresponding (first-guess) model profile (expressed in ozone mixing ratios). The assimilation 
scheme accounts for time of observation, for spatial weighting between observation and grid, and 
for model and observation errors. By applying this method, a global synoptic 3D ozone analysis 
is available every 6 hours. Note that, unlike methods presented above, this approach does not use 
the profile information contained in GOME spectra; it can be considered an interesting addition, 
as it represents the complete a-priori knowledge of the ozone vertical distribution, considering all 
relevant chemical and physical processes, and the meteorological analyses. 
For the assimilation approach, the German Aerospace Center (DLR) used the 3D global CTM 
called ROSE/DLR, based on the ROSE model described in detail in [66]. The model covers all 
relevant gas-phase stratospheric chemical processes. Heterogeneous processes on Polar 
Stratospheric Clouds (PSCs) and on sulfate aerosols are also included in the model. It accounts 
for about 100 reactions, including oxygen, hydrogen, carbon, nitrogen, chlorine and bromine 
species. The chemical rate constants and cross sections are taken from [67]. Chemical rate 
equations are solved by considering an equilibrium state for short-lived species (e.g., ClO, NO, 
HO, and BrO) and a semi-implicit scheme for the integration of more stable reactants (e.g., 
HNO3, N2O, and CH4). Short-lived species are grouped and integrated using families (e.g., ClOx 
and NOx), while long-lived species are transported using the semi-Lagrangian scheme [68]. 
Wind and temperature fields are derived from 24-hour analyses of the UKMO [36]. For the 
assimilation of GOME total ozone column observations, the model is run with a 5.6° x 5° 
longitude-latitude spherical discretization. It covers the stratosphere from 8 to 56 km, using 37 
levels with a vertical step size of 1.3 km. 
The optimal interpolation applied for sequential data assimilation considers the time of 
observation, the spatial weighting between observation and grid, the model errors, and the 
observation errors. At each assimilation time step, the model’s volume mixing ratios are 
integrated to total column values, which are then interpolated to the observation grid, i.e. the 
geo-location of GOME total column observations. Observational increments (i.e., departures 
from the model) are then determined, and a linear-weight matrix operator (or gain operator) 
transforms the resulting anomalies back to the model space [69]. Finally, the analyzed total 
columns are vertically redistributed, weighted by the first-guess model profiles. Model’s first-
guess and GOME observation errors are set to 18% and 4%, respectively; error covariances are 
parameterized by hyperbolic functions depending on the horizontal distance between the model 
grid-point and the observation [70]. The basic time step of the CTM is one hour, and therefore all 
GOME observations within this interval are binned. A correction for the model bias is applied 
offline, and it is based on zonal-mean seasonal comparison results with SAGE-II data [71]. 
 
4.6 RAL retrieval scheme 
 
The Rutherford Appleton Laboratory (RAL) developed a 3-step scheme to retrieve ozone 
profiles spanning troposphere and stratosphere [27] [72]. This section will describe in detail the 
retrieval algorithm designed for GOME flight-data, as the obtained results play a key-role in 
setting up the neural network retrieval algorithms presented in Chapter 5. The fundamentals of 
the proposed scheme, i.e. the selection of spectral ranges, the requirements for accurate a-priori 
knowledge on temperature profiles and the definition of the state vector, stem from some basic 
analysis of the ozone retrieval from UV-visible back-scattered light measurements in nadir 
viewing geometry. 
 
4.6.1 Forward model parameters 
 
The RAL inversion scheme is essentially based on the OE approach. Forward model simulations 
have been carried out with GOMETRAN, which generates monochromatic spectra and 



derivatives with respect to ozone (and all known absorbers) in the spectral range 240-740 nm and 
with a spectral sampling of 0.02 nm. The atmosphere was modelled from 0 km to 100 km, with 
computational levels every 1 km. 
The instrument resolution was assumed to be 0.24 nm, 0.26 nm, 0.44 nm and 0.48 nm in Band 1, 
Band 2, Band 3 and Band 4 respectively. An integration time of 12 s was assumed below 283 nm 
and 1.5 s above, as it is currently the case for GOME. Ring effect was neglected, as it showed 
negligible impact during basic diagnostics performed before the model runs. 
Profiles of atmospheric constituents, temperature, pressure and, implicitly, the Rayleigh 
scattering profile are taken from the Atmospheric Composition Explorer for CHEMistry 
(ACECHEM) study [73] [74], in order to be representative of mid-latitude conditions. 
Accurate profiles of temperature and pressure are required to model the Rayleigh scattering and 
to extract the information from the Huggins bands temperature dependence; moreover, errors 
arising from the representation of retrieved profiles in mixing ratio units would be minimised 
(the measurements are more fundamentally related to absorbed number density). 
Temperature and geo-potential height on pressure levels are taken from the United Kingdom 
Meteorological Office (UKMO) stratospheric analyses [75], obtained from the British 
Atmospheric Data Centre (BADC). Data are available at a spatial sampling in longitude and 
latitude of approximately 3.75° x 2.5° respectively, and extends to approximately 55 km in 
altitude. 
For each GOME ground pixel, the nearest UKMO temperature and pressure profiles to the pixel 
centre are selected and extended to 100 km. The background aerosol profile is assumed from 
MODTRAN. 
Vertical grids are defined for the retrieval state vector and for the radiative transfer model 
computational levels. To minimise changes in the scheme as it is applied globally, the same sets 
of levels are always used. Retrieval levels are defined in terms of pressure, so as to follow the 
variation in tropopause height more closely than geometric altitude. They are referred to in terms 
of a scale-height in km, referred to as Z*: 
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where p is pressure expressed in hPa. Z* is comparable to geometric altitude at mid-latitudes. 
Ideally, retrieval levels should be chosen according to: 
 

• widths of averaging kernels; 
• atmospheric region of interest (boundary layer, tropopause, stratopause etc.) 

 
In practise, defining levels purely in this way is problematic since the requirements may be 
contradictory and vary as a function of space and time. Here levels are defined to be: 
Z* = 0, 6, 12 km, then at 4 km intervals up to 80 km (corresponding to the pressure levels of 
approximately 1000, 422, 177, 100, 56, 32, 18, 10, 5.6, 3.2, 1.8, 1.0, 0.56, 0.32, 0.18, 0.10, 
0.056, 0.032, 0.018, 0.01 hPa). These levels over-sample the resolution expected on the basis of 
averaging kernel analysis. 

 
4.6.2 Retrieval model parameters 
 
The measurement vector (y) is composed of sun-normalised radiance propagated through an 
instrument model to units of detected electrons. The weighting functions matrix is treated 
similarly. 



The covariance matrix (Sy) is obtained according to the noise model developed on the base of 
dedicated analysis [72]. The throughput used here (assumed constant within a channel) is based 
on [3], and varies from 1 to 3 x 10-6 electrons / (photon/s/cm2/sr/nm). 
The state vector (x) is composed of the natural logarithm of O3 mixing ratios, the surface albedo 
and the temperature profile. O3 is represented here on 6 km levels, assuming linear (in log) 
interpolation between. The square-root of the diagonal elements of the state vector covariance 
matrix (Sx) gives the expected a-posteriori precision of the estimated state. This vector is referred 
to here as the retrieval estimated standard deviation (ESD). 
Temperature profile, reported on a 2 km grid, is included in the state vector, so that a-priori 
errors on it can propagate into the O3 ESD (it is not expected that independent information on 
temperature exists). The intention here is to account for the importance of the ozone cross-
section temperature dependence. 
Conservative assumptions are made about a-priori knowledge of surface albedo and its 
wavelength dependence; the state vector contains a separate entry for albedo at 10 nm intervals. 
In all cases, triangular basis functions are used to map continuous quantities (profiles and surface 
albedos) onto the forward model computational grid. 
Values of the a-priori profile (xa) are taken from the Fortuin climatology, interpolated in altitude 
to the retrieval grid. The covariance matrix (Sa) of the a-priori vector is used to constrain the 
profile shape and it is assumed to be diagonal. A-priori errors (i.e. the square-root of diagonal 
elements of Sa) are specified to be 100% (relative to the a-priori profile) for O3. A-priori errors 
equal to 1 are assumed for the surface albedos, while the a-priori errors on temperature are varied 
to investigate their effect on the O3 ESD. The elements of Sa are computed assuming a 
correlation length of ∆zc = 6 km. Some deviations from the Fortuin climatology are imposed, in 
order to minimise the appearance of spurious spatial/temporal patterns in retrievals at 
tropospheric altitudes (due to a-priori influence) and to avoid too tight a-priori constraint. 
 
4.6.3 Measurement error: noise-floor 
 
Measurement errors are simulated here assuming photon-noise (∆yphot). In practice, other errors 
will often dominate. To represent such errors in a simple way, a noise-floor (∆ymin) is introduced, 
in order to define the minimum measurement error represented by Sy: 
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It is noted that a more natural way to introduce these errors would be to combine ∆yphot,i and 
∆ymin,i in a root-sum-squared fashion; however, the above approach is adopted in the retrieval 
scheme described in this section.  
The RAL retrieval scheme makes use of the estimated random error on measurements provided 
by the GDP extraction software. In any cases, Sy is assumed diagonal, and noise-floors (upper 
limits on the fitting precision) are imposed. 
 
4.6.4 Retrieval analysis 
 
A preliminary analysis aiming at selecting suitable spectral ranges and algorithm parameters was 
carried out. Several retrieval configurations were tested, in order to illustrate the potential 
information offered by GOME spectral measurements. The standard configuration assumes a 
noise-floor of 0.01%, and a temperature a priori error of 1 K. Four different configurations were 
obtained, respectively, assuming a noise-floor of 0.1% and 1%, a temperature a priori error of 
100 K, and a known surface albedo (i.e. not including it in the state vector).  
As reported in Figure 4.4, results of the retrieval analysis shows the potentialities of three main 
ozone-absorption bands: 



 
1. In the Hartley band (between 240 and 310 nm) the vertical optical depth decreases 

strongly with wavelength. Consequently the penetration depth of solar photons 
increases and the sensitivity to O3 perturbations extends to progressively lower 
altitude. The gradient in penetration depth is sharpened by the λ-4 dependence of 
Rayleigh scattering. Increasing the noise-floor up to 1% has a little impact on the 
ESD in this region. 

 
2. The Huggins bands (305-335 nm) contribute information extending down to the 

surface. This information is greatly reduced if the noise-floor is greater than 0.1%. 
Similarly, if temperature is not constrained, the ESD at low altitudes degrades greatly, 
indicating the origin of this O3 information to be predominantly via temperature 
dependence of the Huggins bands, rather than their absolute opacity. The magnitude 
of the temperature error (100 K) modelled here is chosen to be consistent with the 
surface-tropopause temperature difference. 

 
3. The Chappuis bands above 400 nm add some information to that from the Hartley and 

Huggins bands, particularly on the troposphere, but only if the surface albedo is well 
known. 

 
Figure 4.4 shows averaging kernels (with respect to true perturbations on a uniform 2 km grid) 
for the standard state vector configuration as above, for 3 noise-floors and for 3 wavelength 
coverage options, corresponding approximately to the inclusion of the Hartley, Huggins and 
Chappuis bands respectively. Kernels for the best case (bottom-left panel), i.e. 0.01% of noise-
floor and full spectral coverage, have widths (indicative of vertical resolution) of 5.5 km to 
approximately 8 km, spanning the range below 40 km. Omission of the Chappuis bands (moving 
to the centre-left panel) reduces sensitivity of the lowest retrieval level slightly. The retrieval still 
resolves the lower troposphere at the 0.1% noise-floor (centre panel) but not at 1% (centre-right). 
If the Huggins bands are not included (top panels) then no resolution within the troposphere is 
possible at the 0.1% or even 0.01% noise level. At 1% noise level virtually no information exists 
on the profile below 20 km from wavelengths below 300 nm. 
The implemented scheme focuses on the Hartley-Huggins bands below 350 nm. The range is 
spanned by Band 1A (235-307 nm), Band 1B (307-316 nm), Band 2A (311-312 nm) and Band 
2B (312-405 nm). The information content of the Chappuis bands has not been exploited here, 
because of its strong retrieval sensitivity to the errors in radiometric calibration and to the correct 
modelling of the wavelength dependencies of atmospheric optical properties [5]. 
Band 1A spans most of the Hartley Band and contains most of the height-resolved information 
on the stratosphere. This Band has a 6 times larger Field Of View (FOV) with respect to the 
other Bands (960x80 km2 compared to 320x40 km2 in wide-swath mode, 240x80 km2 compared 
to 80x40 in narrow-swath mode). Furthermore, the requirements of the retrieval in terms of 
fitting precision are different in the Hartley compared to the Huggins bands. To obtain this fitting 
precision requires a quite different approach to the forward modelling, and it was decided to 
separate the retrieval process, first fitting the Band 1A spectrum, then using the result to define 
the a-priori for subsequent retrievals from each of the smaller Band 2 ground-pixels, 
encompassed by the Band 1A pixel.  
The FOV difference between the two bands means, in principle, it may not be possible to fit a 
consistent single profile to match the observations in both ranges. In practise, one can suggest 
that the altitude range to which Band 1A is sensitive will be characterised by ozone variability at 
larger horizontal scales than Band 2, where modulation by lower stratospheric and tropospheric 
ozone, as well as cloud will be more significant. According to this, the part of the profile 
measured by Band 1A should be reasonably consistent with that part of the profile over the 
smaller Band 2 FOV. Nevertheless, it is possible that this inconsistency might arise in practise. 



Although this inconsistency problem would be largely removed, it is not desirable to average the 
Huggins Bands measurements up to the larger pixel size of Band 1A (for reasons regarding cloud 
coverage), and to maximise the sensitivity to small spatial scale lower-stratospheric and 
tropospheric ozone perturbations. 
In the wavelength range spanned by Band 1B and Band 2A there is a relatively large spectral 
variation and consequent uncertainty in the fractional polarisation, which can lead to errors of the 
order of a few percent in sun-normalised radiance. There is a trade-off between the improvement 
in ESD from including as much of this range as possible and the mapping of polarisation errors. 
After some experimentation, Band 1B and Band 2A were excluded from the retrieval. 
Measurements below approximately 265 nm have been shown to improve the retrieval only in 
upper stratosphere and above. It is also known that this spectral range is particularly prone to 
errors in dark current, stray-light and is likely to be most subject to instrument degradation over 
time, and it was discarded. From the remaining Band 1 range, the following sections are ignored 
to avoid strong Fraunhofer lines (particularly sensitive to errors in modelled leakage current, 
wavelength calibration and Ring effect) and the NO gamma-bands: 265-269 nm, 278.2-280 nm, 
284-286.4 nm and 287.2-288.8 nm. 
In order to fit the Huggins bands to the required accuracy (< 0.1%), it is necessary to model the 
Ring effect and under-sampling. A pre-requisite of such a model is an accurate knowledge of the 
slit function and the wavelength registration relative to the solar reference spectrum used in the 
model. Pre-flight spectral calibration of the instrument was insufficient for this purpose and, as 
previously noted, the on-board calibration lamp does not have adequate lines in the required 
spectral region. Instead, the scheme developed here attempts to derive the required parameters by 
fitting the GOME measured solar spectrum to a high-resolution solar reference spectrum [76]. 
After much experimentation, this problem was overcome and fitting precision better than the 
required 0.1% in the Huggins bands was achieved, as follows: 
 

• The fitting region was restricted to 322.5 to 334 nm: below this range the fit to the solar 
reference spectrum shows gross changes in spectral resolution and wavelength 
calibration. Fit residuals are also larger. The difficulty in fitting sun-normalised radiance 
below 322 nm is attributed partly to the degradation in spectral performance of the 
instrument, which cannot be adequately accounted for by the current instrument model. 

• Since Band 2 is primarily of interest for the relatively fine-scale temperature dependent 
structure, the measurements in Band 2B are treated in a manner analogous to DOAS 
technique [16]. The logarithm of the sun-normalised radiance (R) is taken and a 
polynomial subtracted: 

 
R` = loge (R) – P2 (λ, loge (R))                                          (4.8) 

 
where P2 (x,y) is a 2nd order polinomial fit to a function with values y at abscissae x.This 
removes, to a large degree, independent information on the surface reflectance which 
modulates the mean layer photon-path profile. It is therefore important to specify (not 
retrieve) an accurate surface albedo as a forward model parameter in this retrieval step. 
This is obtained from a separate retrieval from measurements in the Huggins absorption 
minima between 335 and 340 nm. It is assumed that this range is close enough in 
wavelength to the Band 2 range used for O3 retrieval that the albedo is appropriate, while 
being sufficiently insensitive to O3 absorption that the Band 1 fitted profile can be 
assumed for the Band 2 albedo fit. 

• After restricting the spectral range and adopting the quasi-DOAS approach above, 
systematic residuals remained at the 0.2% level (in sun-normalised radiance). The 
retrieval and FM were then modified to allow this pattern to be added to simulated 
measurements, scaled by a retrieved parameter. 

 



In summary, the proposed retrieval scheme consists of three steps: 
 

1. O3 profile retrieval from Band 1A 
2. Surface albedo retrieval from Band 2B (above 335nm) assuming the Band 1A O3 

result as a-priori 
3. O3 profile retrieval from Band 2B (below 335nm), using the Band 1A O3 result as 

a-priori, and assuming the fitted surface albedo 
 
As a pre-cursor to step (3), spectral calibration is performed by fitting the daily GOME solar 
reference spectrum. 
 
4.6.5 Retrieval performance 
 
4.6.5.1 Ground-pixels processed 
The following criteria are applied in selecting Band 1A pixels for processing: 
 

• Standard integration time of 12s 
• Line-of-sight zenith angle lower than 30° (i.e. polar scan pixels are ignored) 
• Pixels grossly affected by the South Atlantic Anomaly (a systematic error produced by 

GOME detectors) are discarded. 
 
4.6.5.2 Error analysis 
A detailed error analysis has been carried out, in order to assess the main error sources pertaining 
to the retrieval scheme described in previous sections. The approach adopted was as follows: 
 

• A set of observational and atmospheric scenarios was defined to encompass, so far as 
practicable, the conditions sampled. These are collectively referred to as geo-temporal 
scenarios. 

• These scenarios were used as linearization states about which to compute the sensitivity 
of the retrieved profile to measurement perturbations. 

• A set of fundamental, limiting error sources was identified. 
• The “linear mapping” approach was adopted to quantify the propagation of the errors 

sources into the retrieved state vector for the each observational / atmospheric scenario. 
• The mapped errors were combined in a root-sum-squared manner to define a base-line 

error budget for the profile retrieval. 
• By reference to this error budget, the significance of specific aspects of the retrieval 

scheme and its underlying assumptions were assessed. 
 
The most important findings of the error assessment described above are summarised as follows: 
 

1. The retrieval provides useful information on the O3 profile below 50 km. 
2. Retrieval precision, accounting for measurement noise and other quasi-random errors is 

expected to be generally in the few-percent range in the stratosphere, increasing to a few 
10s of percent in the lowest retrieval levels. 

3. Retrieved quantities should be interpreted as estimates of layer-averaged O3 number 
density, taking into account the shape of the averaging kernels, and the influence of the a-
priori. 

4. As intended, the retrieval grid is seen to over-sample the inherent resolution measured by 
the averaging kernels. Nevertheless, the lower retrieval levels still provide meaningful 
estimates of tropospheric and lower-stratospheric column densities. 

5. The instrumental and RTM errors are generally relatively small, compared to the 
climatological variance and, in most cases, the Estimated Standard Deviation. Exceptions 



are radiometric gain errors including scan-mirror degradation (which has most impact 
above 40 km) and possibly imperfect knowledge of slit function shape (expected to cause 
a significant negative bias in the troposphere, though the magnitude is difficult to 
quantify). 

6. High perturbations in aerosol and errors in the assumed temperature profile give rise to 
retrieval errors in the troposphere of order 10-20%. The temperature error is larger at 
high solar zenith angle. 

7. Radiative transfer model approximations in the retrieval scheme are seen to be adequate, 
though the number of computational layers used in the tropics could be further optimised. 
At present a positive bias of 20-30% is predicted between 6 and 12km. 

 
Accounting for a comprehensive range of error sources, information spanning the troposphere 
and stratosphere is confirmed to be recoverable from GOME measurements using the retrieval 
scheme described in the previous section. 
 
4.6.6 Validation 
 
Ozone profiles retrieved by the 3-step scheme developed at RAL have been compared to 
independent, co-located data. The principal focus of this validation work has been the 
comparison to ozone-sonde measurements, since these provide reliable, high precision 
observations spanning the altitude range most relevant to the potential application of GOME data 
[77]. Additionally comparisons have been made with observations from ground-based lidar [78] 
and the UARS Microwave limb sounder [79]. 
 
4.6.6.1 Comparison with sonde/lidar data 
Ozone-sondes provide reliable measurements of high vertical resolution from the surface to 
approximately 25-30 km, depending on balloon burst altitude. Other than the restricted altitude 
range, the main limitation of the record is its irregular sampling in space and time (large regions 
having no coverage). To extend the altitude coverage, ground based lidar data, providing 
information from approximately 10-50 km, are also used. Ozone-sonde and lidar data are treated 
here in exactly the same way. For the purposes of validation, sonde (and lidar) measurements 
have been obtained from the following data-centres: 
 

• Nadir data-centre at the Norwegian Institute for Air Research (NILU) 
• The WMO World Ozone and UV data-center (WOUDC) 
• The Southern Hemisphere ADditional OZonesondes (SHADOZ) archive 

 
The true ozone field is characterised by vertical structure at a resolution higher than that which 
can be captured by GOME, but which is better represented in the high resolution sonde (and 
lidar) data (see Figure 2.1). Direct comparison of mixing ratios with sonde/lidar values at the 
retrieval grid points is therefore likely to lead to a comparison dominated by profile 
representation errors (i.e. the variability of the true ozone profile over the vertical resolution 
scale of the retrieval). 
The following approaches are adopted to provide a more meaningful comparison: 
 

1. Both sonde and retrieved number density profiles are integrated over the layers defined 
by the retrieval grid. These integrated sub-columns, (from retrieval and from sonde) are 
compared. 

2. The sonde profile is used as the “true” profile in equation (4.3), in order to obtain a 
transformed sonde profile, according to the same observation system used for the 
retrieval. This version of the sonde profile is then compared to the retrieved profile: this 
indicates the extent to which the retrieval is consistent with the sonde profile, accounting 



for the averaging kernel and a-priori influence, but assuming the retrieval is linear over 
the range spanned by the solution state and the true profile. The smoothed sonde profile is 
compared also to the unsmoothed sonde profile, to provide closure by indicating the 
extent to which the sub-column comparison with the retrieval (see point 1) should behave 
on the basis of the measurement information, but in the absence of errors (instrumental or 
otherwise). 

 
To determine the level of agreement between a set of N coincident sonde and retrieved sub-
columns, the relative difference is formed at each level, for each pair of observations; the mean 
and standard deviation is then taken over all coincidences. To quantify the improvement of the 
retrieval over the a-priori, the same statistics have been evaluated, replacing the retrieved profile 
with the a-priori. Except in the tropics, bias is generally < 10% above 6 km; below 6 km there is 
a strong negative bias (~ -30%) in the Northern Hemisphere, while the bias at low altitude 
becomes more positive in the tropics and Southern Hemisphere. The standard deviation is < 10% 
between 20 and 40 km, except at high latitude; at lower altitude, the standard deviation reaches a 
maximum of 56% in the tropical troposphere, but it is significantly better in the Northern 
Hemisphere mid-latitudes. Importantly, there is significant improvement over a-priori standard 
deviation at all altitudes where the sonde profile itself has greater 5% variability about the 
climatology. 
At Southern Hemisphere high-latitudes it is noted that both standard deviation and bias are 
relatively poor, compared to other regions, though the improvement over climatology is very 
significant. Remaining discrepancies are attributable to the limited resolution of the retrieval. 
Cloud, as measured by ICFA, is shown to influence retrievals in the expected fashion, causing a 
negative bias which propagates upward as cloud altitude increases. 
 
4.6.6.2 Comparison with UARS MLS data 
UARS MLS offers the potential to validate GOME columns to higher altitude and with a more 
uniform global / temporal coverage than possible with ozone-sondes or lidar observations. The 
quality of the MLS observations themselves is well known. The main limitations from the point 
of view of validating GOME are the differences in orbit/viewing geometry, and the fact that the 
MLS V4 O3 data used here is expected to be reliable only above 46 hPa (Z* = 21km). Due to the 
differences in viewing / orbit geometry, the comparison has been performed in terms of zonal 
mean ozone. In the common altitude range within which both instruments have reasonable 
precision (25-50 km), the agreement in terms of zonal mean and standard deviation in the zonal 
mean is good, with a relative difference generally within 10%. 
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Figure 4.1. Optical layout of the GOME instrument. 
 
 
 
 
 

 
Figure 4.2. GOME principal observing mode. 

 
 
 
 



 

 

 
Figure 4.3. Solar irradiance, Earth radiance and sun-normalised radiance spectra measured from 

the GOME instrument. 
 



 
 

 

 

 
Figure 4.4. Averaging kernels for the RAL retrieval algorithm. 

 
 



Chapter 5 
 
Neural algorithms for the retrieval of ozone 
profiles 
 
In order to design effective and reliable NN algorithms, different steps have to be carried out: 
 

1. selection of input measurements 
2. generation of a representative training set 
3. NN training 
4. network topology optimization 
5. NN error estimation  

 
In this chapter all these steps needed to design NN algorithms aiming at the retrieval of 
atmospheric ozone profiles from GOME will presented. In particular we will focuse on the 
problem of selecting the set of input measurements to be given to the net, as it is crucial for the 
effectiveness of the neural algorithm itself. Three different approaches have been analysed, and 
will be described in the following section. Beside traditional techniques, like physical 
assumption or Principal Components Analysis, a new methodology exploiting NN not only for 
inversion purposes, but also to automatically extract, from a large set of input measurements, the 
most suitable subset for the retrieval will be presented, and obtained results assessed.  
 
5.1 Selection of input measurements 
 
Theoretically, the most suitable spectral range to retrieve the information on the vertical 
distribution of the ozone, from observations of the light back-scattered by the atmosphere, lies 
between 240 and 340 nm, and includes both Hartley (231–300 nm) and Huggins (300–370 nm) 
O3 absorption bands. The reason for this is the strong change of ozone absorption cross-sections 
in this spectral range, as well as the temperature dependence of ozone absorption in the Huggins 
band. The interval 240–340 nm is covered by Band 1 (240–315 nm) and Band 2 (313–340 nm) 
of the GOME instrument. Observations at Chappuis bands (450–800 nm), covered by Band 3 
(400–605 nm) and Band 4 (590–790 nm) can be also considered, mainly to improve total column 
ozone information, but are in practice discarded for its strong sensitivity to radiometric errors. 
Whatever the inversion scheme might be, the management of hundreds or even thousands of 
measurements available from GOME Band 1 and 2 is not trivial, and procedures to constrain the 
information in a lower dimensional space would be recommendable. This is in particular true if 
the inversion is performed with a neural network approach. Selecting the inputs to the network, 
on the base of the effectiveness of their information content in estimating the output, eliminates 
unnecessary or misleading inputs that may confuse the network. Minimising the number of input 
measurements, without a significant loss of information, affects positively the NN mapping 
ability and computational efficiency. A network with fewer inputs has fewer adaptive parameters 
to be determined, which need a smaller training set to be properly constrained. This leads to a 
network with improved generalization properties and smoother mapping capabilities. In addition, 
a network with fewer weights may be faster to train. All these benefits make the reduction in the 
dimension of the input data a normal procedure when designing NN, even for a relatively low 
dimensional input space. 



Dimensionality reduction can be achieved by means of different methods. Among them, the 
faster and simpler method is essentially based on physical assumptions, and the set of input 
measurements is selected manually by the algorithm designer. More sophisticated methodologies 
are based on mathematical analysis of the input dataset, such as the principal component analysis 
(PCA), also referred to as the eigenvector transformation, the Hotelling transformation or the 
Karhunen–Loéve (K–L) transformation, which have been recently proven to be useful in the 
application of NNs for inversion purposes. In this study we investigated the possibility to solve 
the dimensionality reduction problem by means of an automatic procedure, able to select the 
most significant wavelengths out of a wide spectral interval. According to this approach, which 
is rather general and therefore easily applicable to other retrieval problems in remote sensing, 
NNs can be a suitable tool not only in the inversion phase, but also in the dimensionality 
reduction phase. 
 
5.1.1 Methodology based on physical assumption 
 
GOME data used in this approach consist of solar irradiance and earth radiance spectra. Solar 
irradiance spectra are measured daily by GOME and are generally used as the reference light 
source spectra. The spectral interval selected for estimating ozone profiles is 321–325 nm. This 
range, characterized by a spectral calibration performed using a fourth-order polynomial, shrinks 
the frequency interval retrieval down to a subinterval of the GOME Band 2B, where the Huggins 
ozone absorption band is situated. The considered range has been chosen on the base of some 
attractive properties: 
 

• higher resolution, with respect to Hartley band (GOME Band 1A, used by most of 
algorithms presented in Chapter 4), due to a shorter integration time; 

• high signal-to-noise ratio (SNR); 
• high temperature dependence of the ozone cross sections in the Huggins band below 340 

nm [1]; 
• possibility to compute the ozone slant path content by the Temperature Independent 

Differential Absorption Spectroscopy (TIDAS) algorithm [2]. 
 
Indeed, even if it is true that in the spectral range covered by the GOME Band 1A ozone opacity 
is large (decreasing monotonically with increasing wavelength from the peak of the Hartley band 
at 245 nm), measurements in Band 2B still contain information on the ozone profile, as the 
opacities, though relatively small, may still have significant values. Moreover, the use of neural 
networks for inversion purposes is often effective because of their capability to simultaneously 
capture subtle dependencies and complex behaviour of the inversion function.  
Once the spectral interval has been selected, earth radiance measurements underpass a 
normalization procedure, in order to eliminate as much as possible the effects of instrumental 
parameters and ozone absorption on the spectral shape. 
For each wavelength belonging to the selected range, the intensity of the direct sun radiation, I0, 
and the intensity of the solar radiation scattered by the atmosphere, I, both measured by GOME 
have been considered. These two quantities can be put into a relationship using a simplified 
expression of the Beer–Lambert law: 
 

I = I0 e-τO3 f                                                 (5.1) 
 
where τO3 is the ozone absorption optical thickness, and f accounts for all the atmospheric 
broadband radiative phenomena, such as surface albedo, Rayleigh, Mie, Raman, and multiple 
scattering and absorption by other atoms and molecules. The 
logarithm of both terms in (5.1) leads to: 
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The left-hand term in (5.2) has the dimension of an optical thickness, which we can call – τtot. 
Moreover, the term ln(f) has a very weak wavelength dependence, at least in the range of 
interest. The mean value of τtot, 〈 τtot 〉, calculated over the same range gives: 
 

〈 τtot 〉 = 〈 τO3 〉 - 〈 ln(f) 〉                                         (5.3) 
 
Defining τ`tot as the difference between τtot and 〈 τtot 〉, and assuming that the term ln(f) is 
wavelength independent, we can write: 
 

τ`tot  =  τO3 - ln(f) - 〈 τO3 〉 + 〈 ln(f) 〉  =  τ`O3                        (5.4) 
 
After this transformation, all the quantities involved depend only on the atmospheric temperature 
and the ozone concentration. Given a certain reference temperature, the ozone slant absorption 
optical thickness, τsl, can be expressed as the product of the slant column density, ρ, and the O3 
absorption cross section, σ : 
 

τsl = ρ σ                                                      (5.4) 
 
In our case, the value of 303 K was considered for the reference temperature. A normalized 
optical thickness can be finally obtained for each wavelength by calculating the following ratio: 
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These normalised GOME measurements represent the quantities used as inputs to the neural 
network in the inversion phase. A number of 26 GOME wavelengths fall within the selected 
spectral range (321-325 nm), and the corresponding measurements will be used to train a NN to 
retrieve ozone profiles.  
 
5.1.2 Sensitivity analysis and Extended Pruning procedure  
 
In this section an alternative methodology to analyse which measurements, in the chosen context, 
are more sensitive to the ozone distribution is presented. Such an approach exploits a Radiative 
Transfer Model to perform a sensitivity analysis on the forward problem (how radiance 
measurements change with respect to ozone distribution variations), and a NN-based technique 
operating on the inverse problem (how estimating ozone vertical distribution on the base of 
radiance measurements) for the selection of spectral measurements - in the considered GOME 
spectral range - which might maximise the retrieval accuracy.  
To this aim a short summary of NN training technique and pruning algorithms may be useful. As 
already shown in Chapter 3, the training phase consists in finding the weights and biases 
minimising the cost function that characterize the learning process. In this work the sum of 
square errors between the output values calculated by a NN and the corresponding target values 
has been considered. The minimisation has been performed by means a scaled conjugate gradient 
(SCG) algorithm.  
The ultimate goal, however, is to generalise outside of the training set avoiding over-fitting 
situations, occurring when the NN learning has been to much polarised on the specific 
characteristics of the training set. For such a reason it is important to determine when the training 
procedure has to be stopped; this can be decided by considering the “early stopping” technique 



[9]. According to this algorithm, the performance of the net during the training (learning) phase 
is evaluated either on the training set or on a different independent validation set. In the training 
set, the overall error in the retrieval of the correct output keeps on decreasing with the training, 
approaching a value of convergence. Conversely, the error on the validation set reaches a 
minimum value, after which it will start increasing if the process training is continued. This is the 
point to interrupt the learning phase. 
Normally a pruning procedure is applied to a trained net to get its structural optimization. 
According to this kind of procedure, a network is examined to assess the relative importance of 
its weights, and the least important ones are deleted. Typically, this is followed by some further 
training of the pruned network, and the pruning and training may be repeated for several cycles. 
The most critical choice in the procedure implementation is how to decide which weights should 
be removed. To do this, we need some measure of the relative importance, or saliency, of 
different weights. In this work the simple concept that small weights are less important than large 
weights has been applied, and the magnitude of a weight value has been used as a measure of its 
importance. In order to select the most convenient inputs for a specific inversion problem, it is 
possible to prolong the pruning procedure to the input layer (we will call it “extended pruning 
procedure”). According to this method, the first inputs to be removed (we remind that an input or 
hidden unit is removed when it has lost all its connections) coincide with those containing less 
information; conversely, input units surviving to the extended pruning procedure contain the 
most of information needed for the retrieval, and are naturally selected for the inversion phase. 
A general scheme of the proposed methodology is sketched in Figure 5.1. First of all, the 
simulation of the forward problem has been set up. This has been performed by using a 
LInearized Discrete Ordinate Radiative Transfer (LIDORT) model for the generation of earth 
radiances for a user-defined set of atmospheric variables [3]. The analysis of the complete 
discrete ordinate solution in a plane parallel multi-layered multiply-scattering atmosphere can be 
carried out with this model, making it possible the study of how perturbations in layer 
atmospheric quantities will translate into changes in single-scatter albedos and in the surface 
albedo, and consequently into changes in the radiance values measured from a satellite at the top 
of atmosphere. In a second step, a set of NNs have been trained, using as inputs radiance 
measurements generated by the model, and as reference outputs the corresponding ozone profiles 
(which in the previous step were the inputs to the forward model). On this set of NNs a first 
extended pruning procedure has been applied, leading to the selection of spectral sub-intervals 
more sensitive to the ozone distribution. In the following step, a new set of NNs has been trained 
using as inputs real GOME measurements belonging to the spectral sub-intervals selected in the 
previous step, and as reference outputs the corresponding ozone profiles already retrieved by 
RAL (see Chapter 4 for details). Finally, the extended pruning has been applied again, and a set 
of specific wavelengths to be used in actual the retrieval phase has been extracted. 
 
Step 1 - Forward problem analysis 
In this work the input to the model was determined by a set of atmospheric states generated 
starting by an assumed standard atmosphere, sub-divided into 201 height levels covering the 
range of 0-60 km, and changing the ozone vertical distributions and temperature profiles. The 
generation of atmospheric states, in which hydrostatic equilibrium for pressure and temperature 
profiles has been considered, mainly focused on the variability of the total ozone content, the 
vertical position of ozone concentration peak and the vertical thermal gradient, which are the 
causes most likely to affect radiance variability. In Figure 5.2 we over-plotted several ozone 
concentration profiles characterized by different vertical positions of the concentration peaks, 
while in Figure 5.3 we reported profiles characterized by a different total ozone content. In 
Figure 5.4 and Figure 5.5 the corresponding radiance differences between modified profiles and 
the reference profile (plotted with a black line) are shown. The examined wavelength range (290-
335 nm) was limited by the availability of the ozone cross-sections data base in the LIDORT 
model [4] [5]. From these figures one can argue that the interval between 290 and 310 nm is the 



most sensitive to variations related with the ozone distribution; nevertheless, it has to be noted 
that the absolute value of radiances within the analysed interval (290-335 nm) is very different, 
and that the relative variation of radiances – with respect to radiance values corresponding to the 
reference profile – is mostly important. If we consider the difference between radiances 
corresponding to modified profiles and radiances of the reference profile, but normalised to the 
latter, also the spectral range between 310 and 335 nm shows a not-negligible sensitivity, as 
clearly demonstrated by Figure 5.6 (for ozone profiles reported in Figure 5.2). 
A similar analysis has been carried out modifying the temperature profile, which is intrinsically 
related to the ozone distribution. In Figure 5.7 we report an example where the thermal gradient 
in the troposphere has been modified (dashed line) with respect to the reference temperature 
profile (solid line), while in Figure 5.8 we show a profile with an omogeneous reduction of 
temperature values. In Figure 5.9 and Figure 5.10 the corresponding variation of radiance spectra 
are reported. From these plots we can clearly observe that the information on the temperature 
dependence of the ozone cross-section is distributed over all the spectral range between 300 and 
335 nm. 
 
Step 2 - Training of neural networks with simulated data 
The dataset generated during the first step has been used to train a set of 10 NNs. The input 
vector contains the radiances calculated by means of LIDORT, while the output vector represents 
the corresponding ozone profiles, i.e. those profiles that were the input during the run of forward 
model simulations. LIDORT is intrinsically monochromatic, and calculates the upwelling 
radiances at the TOA at 960 wavelengths. In order to simplify the procedure, the input 
measurements have been grouped in 48 spectral intervals, each one containing the average value 
of radiances belonging to it. On the other hand, ozone profiles contained in the output vector are 
reported on a grid of 20 pressure levels, which are the same used by RAL estimations (see 
Chapter 4). This choice stems from the need to have an uniform representation of the ozone 
distribution during the overall procedure, avoiding the introduction of errors due to different 
discrete representations of a continuous quantity (note that RAL ozone profiles will be used in 
Step 4 as references outputs). 
We decided to train a set of 10 NNs, which differ only in the initialization of weights and biases 
before training, in order to obtain statistically consistent results during the extended pruning 
procedure. The training phase has been performed using the Scaled Conjugate Gradient 
algorithm and the early stopping procedure (see Chapter 3 for details). The validation set used to 
determine when the net could be considered “trained” was formed with 10 input-output pairs not 
included in the trining set. 
 
Step 3 - Extended pruning procedure 
During this phase, we applied the extended pruning (as described before) to all NNs trained in 
Step 2, and a global rank of the relative importance of input units was derived. On the base of 
obtained results, a set of 5 spectral bands, within the interval 290-335 nm, has been selected, and 
are summarized in Table 5.1. In Figure 5.11 these 5 bands are plotted over the ozone absorption 
cross-section spectrum derived from LIDORT. It is interesting to note that the behaviour of the 
neural networks seem to follow some radiative transfer reasoning. The 5 subintervals are rather 
regularly distributed throughout both Hartley and Huggins bands. In particular we note the 
portion of the spectral range with the highest values of the absorption cross-section is included 
(band B1), as well as the the interval with a good sensitivity to the temperature variations (band 
B3). On the contrary, the wavelengths characterized by the smallest values (λ > 326 nm) are 
discarded. Another comment is on the importance of band B5 (320-325 nm), already selected on 
the base of physical assumptions, and put in evidence also by the extended pruning procedure.  
 
 
 



Step 4 - Training of neural networks with measured data 
In the case of retrieval of ozone profiles from GOME data, the use of all the measurements 
available within the 5 spectral bands selected in Step 3 would lead to an inversion scheme with 
an input vector of about 200 values. For a NN algorithm to be implemented, this would involve a 
topology with hundreds of neurons in the input and hidden layers, therefore, a very complex NN, 
risky in terms of generalization capabilities. The extraction from such many wavelengths of 
those with more information content and more suitable to perform the inversion is then 
recommendable. In this step a new set of 10 NNs has been trained; the input vector contains 194 
GOME radiance measurements belonging to the bands selected in Step 3, while the reference 
output vector represents the corresponding ozone profiles provided by the Optimal Estimation 
scheme developed at the Rutherford Appleton Laboratory (RAL) [6], expressed (as already 
mentioned before) on a pressure grid of 20 levels, from the Earth surface to a pressure level 
corresponding to an height of 60 km. In this phase we used a training set with data of 22 different 
orbits (for an overall number of 3740 patterns) belonging to a time interval of one year, from 
March 1998 to March 1999, in order to include the maximum number of climatologies and to 
improve the generalisation properties of the methodology. Also in this case the training phase 
was performed using the SCG algorithm, with the early stopping procedure. The validation set 
contains 11 different orbits (i.e. 1670 input-output patterns) from the same time interval. 
 
Step 5 - New extended pruning procedure 
We again applied the extended pruning procedure to all trained NNs, in order to single out which 
wavelengths, from the global set of 194 inputs, could be the most crucial for the retrieval 
algorithm. In principle, a too little number of inputs would yield a poor accuracy in the 
estimation. Augmenting the dimensionality of the input vector would be effective up to a certain 
extent, i.e. until when the addition of further measurements, without provoking a significant 
improvement of the retrieval, would require a major computational and structural complexity. 
A set of 17 wavelengths has been finally selected; removing an additional wavelength from input 
units would produce a significant increase in the global retrieval error, while adding an 
additional input would not improve the estimation performance. The final result obtained at the 
end of Step 5 is reported in Table 5.2, where we listed, for each subinterval extracted during Step 
3, the corresponding selected wavelengths.  
We can see that the extended pruning procedure has been applied twice: one to the synthetically 
generated data, the other one to GOME and RAL data. The rationale underlying this hybrid 
analysis is that, in the selection of the final wavelengths, we should have taken into account 
either the physical effects embedded by the radiative transfer model or the instrumental effects 
contained in the spectrometer measurements. All 5 subintervals contain at least 2 wavelengths, 
and the picked-up lines generally belong to the central part of the band. Subintervals B1 and B5 
have the maximum number of wavelengths (5 and 4 respectively), and are then emphasized as 
the most important ones for ozone retrieval. The smallest number of selected wavelengths is 
obtained for B3, half-way located between subinterval B1 and subinterval B5. Indeed in this 
band absorption cross-section values are significantly smaller than those of bands B1 and B2, 
but, on the other hand, favourable conditions of band B5 are too far to be fully exploited. 
Nevertheless, it has to be noted that it is not completely discarded, as it carries useful information 
on temperature distribution. 
 
5.1.3 Feature extraction 
 
Feature extraction is a general name given to the process of generating linear or not-linear 
combinations of original input (or output) variables in order to reduce the dimensionality of data. 
PCA (Principal Component Analysis) is a widely used technique for feature extraction or 
dimensionality reduction. The conventional PCA techniques rely on eigenvector expansions 
stemming from the variance-covariance matrix describing the variability of the observed 



quantities. Mathematically, if X is an n-dimensional random variable with mean value XM, the 
covariance matrix B associated to the unknown vector X can be evaluated. The generic element 
of such a matrix will be expressed as: 
 

Bij = 〈 Xi Xj 〉                                                  (5.6) 
 
Then, a new set of variables, i.e. the n-dimensional vector Y, known as principal components, 
can be calculated by: 
 

Yj = a1jX1 + a2jX2 + … + anjXn = aj
T X                            (5.7) 

 
Where aj

T contains the n normalised eigenvectors of the covariance matrix B, solution of the 
eigenvalue problem, stated as follows: 
 

[B][a] = λ[a]                                                (5.8) 
 
The principal components transformation has several interesting characteristics: 
 

• the total variance is preserved in the transformation i.e. 
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where σi

2 are the variances of the original variables (X), λi the eigenvalues of B, with 
 

λ1 > λ2 > … > λn                                          (5.10) 
 

• it minimizes the mean square approximation error 
• in a geometrical sense, the transformation may rotate highly correlated features in n-

dimensions to a more favourable orientation in the feature space, where components are 
still orthogonal to each other, such that the maximum amount of variance is accounted for 
in decreasing magnitude along the ordered components 

 
Another common procedure is to base the PCA transformation on the correlation matrix, instead 
of covariance matrix. The correlation matrix is the standardisation of the covariance matrix 
obtained by normalising the data with the standard deviations. Such a procedure reduces all the 
variables to equal importance as measured by scale. In remote sensing of the atmosphere, this 
can be of importance if the species of interest give emission of very different magnitudes. On the 
other hand, a non-standardised form may be justified on the basis of possible differences on the 
signal-to-noise ratio (SNR) characterizing the spectral bands measuring the major magnitudes 
[7]. In order to concentrate the analysis on the fluctuations of the variables around their mean 
values, the PCA may be also applied to the new variable X`, expressing the deviation of the 
original variable X from its mean and defined as follows [8]: 
 

X` = X - 〈 X 〉                                             (5.11) 
 
In this work, we decided to apply the PCA on the dataset coming out from Step 3 of the 
Extended Pruning approach described in Section 5.1.2. This means that feature extraction will be 
performed on a measurement vector containing 194 radiance values, which belong to the 5 
spectral intervals selected during the sensitivity analysis. For applying the PCA we considered 
the following matrices: 



 
• covariance matrix B associated to the variables X 
 
• covariance matrix B` associated to the variables X` 
 
• correlation matrix R associated to the variables X 
 
• correlation matrix R` associated to the variables X`  
 

In Table 5.3 we report the ordered list of the first 20 eigenvalues calculated for the 4 cases. We 
see that most of the variance is in general contained in the first principal component, but a 
change in the variance distribution can be observed by introducing transformation of (5.11). In 
this case we have higher variance values carried on by the successive components. As a 
consequence, dealing with the transformed variables will lead to lower the SNR of the input 
corresponding to the first principal component and to increase the SNR of the following ones. 
Another comment can be derived from the analysis of the curves representing the first 
eigenvector for the 4 cases, as reported in Figure 5.12. We see that for the covariance matrices, 
band B5 is crucial for determining the value of the first component, while the role of band B1 
becomes the most significant when correlation matrices are considered. 
Referring to the retrieval performance, the best result was obtained by using the covariance 
method without applying transformation (5.11). More generally, we have better results with 
covariance matrices with respect to correlation matrices. Stemming from considerations reported 
in previous sections, this result puts again in evidence the importance of the subinterval B5 for 
ozone profiles estimation. 
Adopting the same criterium already used for the selection of wavelengths performed with the 
extended pruning, i.e. minimising the global retrieval error of network estimations, a set of 13 
features has been selected, and will be used to design the actual PCA-based retrieval algorithm. 
 
5.2 The inversion phase 
 
Input-output patterns needed for training neural networks for the actual inversion phase have 
been generated considering, for the input vector, GOME measurements selected with each one of 
methodologies described above, and the already mentioned offline-retrieved ozone profiles 
provided by RAL for the reference output vector. Two geophysical quantities have been added as 
additional inputs to the input vectors, the solar zenith angle characterizing the viewing geometry 
of GOME measurements, and the ozone slant column, which gives additional information on the 
total ozone content. 
Therefore, the input vector contains: 
 

• 28 input units for the neural algorithm based on the “physical selection”; 
• 19 input units for the neural algorithm based on the “Extended Pruning”; selection 
• 15 input units for the neural algorithm, based on the PCA feature extraction. 

  
For all the algorithms, the output layer contains 20 units, as RAL ozone profiles are expressed on 
a pressure grid of 20 levels. In this study we considered a MLP topology with only one hidden 
layer. In order to decide the number of hidden units, an empyrical approach have been adopted, 
aiming at optimising the retrieval performance of trained NNs. 
 
 
 
 



5.2.1 Optimisation of the hidden layer 
 
During the training phase, different experimental neural networks have been set up; starting from 
a hidden layer containing one single neuron, we increased the number of hidden units up to 100. 
For each network, the retrieval error has been evaluated using a test dataset, which contains 
different input-output pairs not included in the training dataset. In Figure 5.13 and Figure 5.14 
we report, for the first and second neural algorithm respectively, the retrieval error committed on 
the test set, as a function of the number units contained in the hidden layer. The error is 
expressed as the Sum of Squared Errors (SSE), evaluated for each output value and for all 
patterns belonging to the test set. 
It can be noted that an optimum number, or at least an optimum range, exists. In fact, if the 
number of hidden neurons is too small, network input-output associative capabilities are too 
weak. On the other hand, this number should not be too large, because network capabilities 
might show a lack of generality (they would be too tailored on the training set). It turns out that a 
fair compromise between these two contrasting requirements has to be found. 
In our study, we used 28 hidden units for both algorithms, as this number was contained in the 
optimal range in both cases. As far as the PCA implementation is concerned, an hidden layer of 
28 hidden units has been also chosen for sake of consistency. 
 
5.2.2 Retrieval results 
 
Once the training process has been completed, the performance of the different neural algorithms 
on the test set can be evaluated. In Figure 5.15 we show the root mean square error (RMSE), 
expressed in [molecule/cm3] x e12, calculated over the test set for the three neural algorithms and 
reported as a function of altitudes. The solid line represents the standard deviation of the profiles 
from their means and gives an indication of the a priori profiling accuracy without 
measurements. We see that first and second neural algorithms (plotted with dashed line and 
dotted line respectively), for which the input selection was based on physical assumptions (the 
first one) and on the Extended Pruning procedure (the second one), performs clearly better than 
the algorithm which used the PCA technique (dash-dotted line). The PCA transformation 
probably prevents from capturing significant features of the measured spectra. This may be due 
to the fact that PCA is limited by virtue of being a linear technique, therefore unable to capture 
more complex nonlinear correlations. On the base of this result, only the first two algorithms will 
be considered for further analysis. From now, we will refer to GOME_NN1 for the first 
algorithm and to GOME_NN2 for the second one. 
The selection procedure based on the Extended Pruning, if compared with the mothodology 
based on physical assumption, gives better results up to 40 km, despite the smaller number of 
input measurements and the simpler pre-processing. At higher altitudes,where ozone 
concentrations are extremely low, the two algorithms show very similar results. Therefore, it 
seems then that EP technique provides a very competitive approach to address the problem of 
dimensionality reduction and selection of input measurements. 
In Figure 5.16 we report the results of the comparison between ozone values retrieved by RAL 
and both neural algorithms, carried out for all the measurements in the test dataset. The scatter 
plot between RAL and GOME_NN1 ozone concentrations (expressed in [molecule/cm3] x e12) is 
represented with blue marks, while red diamonds show the same plot for GOME_NN2. 
GOME_NN2 shows less scatter around the bisector, and compares better with RAL with respect 
to GOME_NN1. The correlation coefficient is 0.980 for GOME_NN2 and 0.94 for 
GOME_NN1, and confirms the effectiveness of both neural algorithms, as well as the better 
performance of GOME_NN2. 
An example on the level of accuracy reachable by means of the Extended Pruning methodology 
is reported in Figure 5.17, where (lower plot) the contour plots of ozone profiles corresponding 
to an entire orbit taken as example from the test dataset are shown. The abscissa is the ground 



pixel sequence number, corresponding to a latitude range from –75° N to 65° S, while the 
ordinate is the height above the surface in km. The ozone values are always expressed in 
[molecule/cm3] x e12 according to the colour scale reported beside the plots. The black areas 
indicate the surface topology (e.g. mountains). From the comparison between this map and the 
one provided by RAL (upper plot), derived from measurements of the same orbit, it can been 
observed that the large scale features of the ozone field are very similar. 
In Figure 5.18 we report some examples of ozone profiles retrieved by the GOME_NN2 
algorithm (red line), compared with the corresponding RAL profile (black line), taken from the 
same orbit showed in Figure 5.17. The neural algorithm, if compared with the RAL one, 
provides a very good representation of the ozone distribution, except for the troposphere, where a 
little discrepancy can be observed. 
 
5.2.3 Retrieval error characterization 
 
Once an ozone profile has been retrieved by any method, the uncertainty on the retrieved values 
has to be estimated.  According to the formalism used for the Optimal Estimation approach 
(Chapter 2), the difference between the retrieved value (Ô) and the true state (O) of an ozone 
profile can be expressed as follows: 
 

( )( ) εya GOO +−= I-AO-Ô                                     (5.12) 
 
where I represent the identity matrix, Oa the a priori profile, A the averaging kernel matrix which 
characterizes the inversion method, G the matrix containing the gain functions (also called 
contribution functions) and ε the errors associated to the measurement vector (Y) used for the 
inversion. In the equation (5.12), the averaging kernels represent the sensitivity of the retrieved 
profile to the trace gas vertical distribution, defined as: 
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The gain function represents the sensitivity of the retrieved quantities to the input measurements: 
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The averaging kernel matrix can be evaluated applying the gain matrix Gy associated with input 
measurements (which can be easily determined once the inversion method is determined) to the 
weighting functions matrix K: 
 

KGA y=                                                    (5.15) 
 
where K characterizes the sensitivity of the instrument to the observed species and can be 
calculated from forward model simulation, by the following expression: 
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The first term of the right-hand side of equation (5.12) represents the retrieval error associated 
with the non-ideal sensitivity of the observing system to the real state, and it is generally known 



as the smoothing error. The second term, instead, accounts for the influence on the retrieval error 
of uncertainties on the input measurements. 
For the two neural network algorithms no forward simulations have been carried out, and the 
learning phase has been performed using already retrieved ozone profiles provided by RAL. As a 
consequence, the averaging kernels can not be determined straightforward from the neural 
algorithms themselves. Moreover, trained neural networks do not simply reproduce the data used 
in the training set, but are able to learn the input-output significant relationships and to generalize 
outside the training set. Therefore, the two neural network inversion schemes cannot be 
characterized by merely using RAL averaging kernels. Nevertheless, just to have an idea of the 
accuracy of ozone profiles used for NN training, we report in Figure 5.19 the estimated retrieval 
error of the RAL OE algorithm, for different measurement conditions, as reported in the legend 
below the plot. We can see that between 20 km and 50 km the retrieval error is around 5%, while 
it increases in the upper stratosphere (up to 50%)  and in the troposphere (50-70%, depending on 
the measurement conditions). In the same plot, also the a priori error is reported, and it clearly 
indicates the capability of the algorithm to provide an improved estimation with respect to the a-
priori knowledge.  
On the other hand, the Full Width at Half Maximum (FWHM) of the averaging kernel functions 
(see Chapter 4) represents the extent to which independent information is available in different 
atmospheric layers, and can provide a measure of the vertical resolution of retrieved profiles. In 
this study we assumed for the two neural estimation methods the vertical resolution of RAL 
profiles used in the training phase; hence the FWHM values, which can vary from 10-12 km in 
the troposphere to 4-5 km in the middle stratosphere (see Chapter 4 for details), can be 
considered for GOME_NN1 and GOME_NN2. 
With regards to the gain function matrix (Gy) and the measurement error (Gyε) characterizing the 
retrieval method, they can be directly determined from the neural parameters. The gain function 
Gy is defined from the partial derivatives of the retrievals with respect to the input 
measurements, and can be calculated by differentiation of the neural network global transfer 
function. For each retrieval pressure level k the global transfer function is given by: 
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where Ôk represents the retrieved value of the ozone concentration, Yi the input measurement at 
wavelength i, wji

1 the weights between the input and the hidden layers, wkj
2 the weights between 

the hidden and the output layers, βj and βk the biases of hidden and output units respectively. The 
inversion errors associated with input measurements uncertainties have been evaluated applying 
the calculated gain functions to the radiometric noise which characterizes the radiances spectral 
measurements:      
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where Ek represents the inversion error at the pressure level k associated with the spectral error εi 
characterizing the input i. The contribution of the radiometric noise affecting GOME radiance 
measurements to the global inversion error is reported in Table 5.4. The impact of measurements 
uncertainties is relatively weak at all pressure levels, with values smaller than 3% for 
GOME_NN1 and 6% for GOME_NN2. These results can be explained by the stability of the 
spectral measurements performed by the GOME instrument, but also by the robust properties of 
the neural algorithms, which results poorly affected by the instrumental noise. 



An alternative way to evaluate NN retrieval error can be carried out assuming RAL ozone 
profiles as representative of the true states of the atmosphere. The inversion error is assessed 
with respect to the validation dataset, whose examples provide a good statistical set of 
atmospheric conditions and have not been used during the training phase. To this purpose, for all 
the examples of the validation dataset, the NN retrieved profiles have been compared with the 
corresponding profiles retrieved by RAL, and the estimated error, expressed as a percentage 
between the two sets of measurements, has been calculated for both neural algorithms. The 
results are reported in Figure 5.20. The solid and dotted lines represent the error profiles of 
GOME_NN1 and GOME_NN2 respectively; the dashed line represents the standard deviation of 
RAL profiles (i.e. “true” profiles). Globally, the inversion error is expected to be less than 20% 
between 100 hPa (~ 15 km) and 1 hPa (~ 50 km), with values of 5-10% between 50 hPa (~ 20 
km) and 5 hPa (~ 40 km); outside the pressure range between 100 hPa and 1 hPa the retrieval 
errors are larger, especially at pressure levels smaller than 0.1 hPa, where the concentrations of 
ozone are extremely low. This analysis shows similar (but not equal) results to those reported for 
the RAL Optimal Estimation algorithm, and confirms that NNs can provide, on the base of 
learned rules, independent new estimations with an accuracy comparable to that characterizing 
OE methods. 
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Figure 5.1. General scheme for the input selection methodology based on the Extended Pruning. 

 
 
 

 
Figure 5.2. Examples of ozone profiles with different total ozone content. 

 
 

 
Figure 5.3. Examples of ozone profiles with ozone peak at six different height levels. 



 
Figure 5.4. Radiance difference spectra corresponding to profiles of Figure 5.2. Each coloured 
curve represents the difference between the corresponding profile and the standard profile 
(plotted with a black line in Figure 5.2). 

 
 

 
Figure 5.5. Radiance difference spectra corresponding to profiles of Figure 5.3. Each coloured 
curve represents the difference between the corresponding profile and the standard profile 
(plotted with a black line in Figure 5.3) 

 
 

 
Figure 5.6. Normalised radiance difference spectra corresponding to profiles of Figure 5.2. 



 
Figure 5.7. Standard temperature profile (solid line) modified by varying the tropospheric 
thermal gradient (dashed line). 

 
 

 
Figure 5.8. Standard temperature profile (solid line) modified with a homogenous variation of 
temperature values (dashed line). 

 
 

 
Figure 5.9. Radiance difference spectrum corresponding to profile of Figure 5.7. The curve 
represents the difference between radiances of the modified profile and the standard profile. 

 



 
 
 

 
Figure 5.10. Radiance difference spectrum corresponding to profile of Figure 5.7. The curve 
represents the difference between radiances of the modified profile and the standard profile. 

 
 

 
Figure 5.11. Spectral bands selected by means of the first phase of the Extended Pruning 
procedure. 

 
 

 
Figure 5.12. Curves representing the first eigenvector for 4 different types of PCA. Solid line: 
[B] matrix, dotted line: [B`] matrix, dashed line: [R] matrix, dash-dotted line [R`] matrix. 
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Figure 5.13. Retrieval error (SSE, Sum of Squared Error) evaluated on the test dataset, as a 
function of the number units contained in the hidden layer, for the first neural algorithm. 
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Figure 5.14. Retrieval error (SSE, Sum of Squared Error) evaluated on the test dataset, as a 
function of the number units contained in the hidden layer, for the second neural algorithm. 

 
 



 
Figure 5.15. Profiles of RMSE of retrieved ozone obtained with three different neural algorithms. 
Dotted line: EP approach for dimensionality reduction (GOME_NN2); dashed line: 
dimensionality reduction based on physical assumptions (GOME_NN1); dash-dotted line: PCA 
approach; solid line: standard deviation of profiles from their means. 
 
 
 
 

 
 

Figure 5.16. Scatter plot between RAL and NN ozone values. Blue marks: algorithm 
GOME_NN1; red diamonds: algorithm GOME_NN2. 

 
 



 
 
Figure 5.17. Upper plot: ozone map (corresponding to one orbit of the satellite) estimated off-
line by RAL. Lower plot: ozone map as estimated by using the real-time GOME_NN2 algorithm. 
The colour scale represents ozone values reported in [molecule/cm3] x e12. 

 



 
 

Figure 5.18. Examples of ozone profiles retrieved by GOME_NN2 compared with the 
corresponding profiles estimated by RAL. 



  

 
Figure 5.19. Estimated retrieval errors characterizing RAL OE algorithm for different scenarios. 

 
 
 
 

 
Figure 5.20. Retrieval errors estimated for both neural algorithms. The solid line represents the 
RMSE for GOME_NN1, while the dotted line for GOME_NN2. The dashed line shows the 
standard deviation of RAL profiles, assumed to represent the true states. 

 
 

 

 

 

 

 



Band Spectral range (nm) Bandwidth (nm)

B1 288.04 - 292.05 4.01
B2 294.97 - 298.96 3.99
B3 303.05 - 307.03 3.98
B4 313.03 - 316.05 3.02
B5 319.98 - 325.96 5.98

 
Table 5.1. Spectral band selected by means of the first phase of the Extended pruning procedure. 

 
 
 
 
 
 
 

Band Spectral range (nm) Wavelengths (nm)

B1 288.04 - 292.05
289.23, 289.99, 
290.21, 290.64, 

290.75

B2 294.97 - 298.96
297.02, 297.24, 

297.35

B3 303.05 - 307.03 305.31, 304.13

B4 313.03 - 316.05
313.49, 314.08, 

315.00

B5 319.98 - 325.96
322.06, 322.52, 
322.75, 323.21, 

 
 

Table 5.2. Wavelengths selected by means of the second phase of the Extended pruning 
procedure. 



 
Table 5.3. First 20 eigenvalues for the 4 different matrices considered for PCA. 

 
 
 
 
 
 

pressure (hPa) σ eNN1 (%) σ eNN2 (%)
1000.00 1.4 0.6
421.30 1.0 1.7
177.80 2.0 4.2
100.00 0.9 1.5
56.20 0.15 1.9
31.60 0.9 5.8
17.80 2.3 5.4
10.00 1.8 3.4
5.60 1.7 3.7
3.20 1.6 4.2
1.80 1.2 3.0
1.00 0.6 1.4
0.50 1.1 2.2
0.30 1.0 2.4
0.20 0.2 0.5
0.10 1.0 1.3
0.05 0.7 1.5
0.03 1.1 3.6
0.02 0.3 0.4
0.01 0.3 1.0  

 
Table 5.4. Inversion errors associated with radiometric errors on input radiances for all the 
pressure levels used for the retrieval. 

 
 



Chapter 6 
 
Validation of ozone profiles retrieved by neural 
networks 
 
In this chapter the validation of ozone profiles retrieved by NN algorithms from GOME 
measurements is presented. The comparison has been conducted either with measurements 
performed by a different satellite instrument (ILAS) or with ozone profiles obtained by ground-
based lidar systems. For both validation exercises an introduction to the observation system to 
compare with will be given, and the methodology used to perform the comparison will be 
described. The obtained result will be shown and critically discussed.  
 
6.1 Comparison with ILAS products 
 
The solar occultation sensor ILAS (Improved Limb Atmospheric Spectrometer) on board the 
ADEOS (Advanced Earth Observing Satellite, launched in August 1996) performs atmospheric 
layer observations to provide vertical profiles of ozone, methane, water vapour, nitrogen dioxide, 
nitric acid and nitrous oxide from absorption measurements in the infrared region, and 
temperature and pressure profiles from measurements of absorption due to oxygen molecules in 
the visible region. Optical properties of stratospheric aerosol and polar stratospheric clouds 
(PSCs) are also derived from visible and infrared extinction measurements [1]. 
The instrument capability to measure trace gases was confirmed from experiments with a gas cell 
and a black body light source during ILAS pre-flight studies. Moreover, a number of field 
campaigns using large balloons at Kiruna (Sweden) and ground-based remote sensors at Kiruna, 
Alaska, Syowa Station, and other locations have been conducted for the validation of ILAS 
measurements [2]. 
Next sections briefly describe the instrument, the assessment of performances, data processing 
algorithms, and validation results. 
 
6.1.1 The instrument 
 
The principle of ILAS measurements is the solar occultation technique, which has been proved 
to work satisfactorily for stratospheric measurements in previous sensors like the SAGE series 
[3] and HALOE [4]. In this technique, the sensor detects and disperses spectrally the light from 
the sun coming through the atmosphere, as shown in Figure 6.1, to give absorption spectra of the 
atmosphere. Since each gas in the atmosphere has its own characteristic absorption spectral 
features in the infrared (IR) region, it is possible to identify and quantify the gas components and 
relative concentrations. 
As the satellite orbits the earth, the sensor can continuously measure the changes of light 
intensity from the sun during the sunrise and sunset events, as seen from the satellite. Vertical 
profiles of atmospheric components can be derived from the signals, which contain information 
on different atmospheric layers. The ILAS instrument has an IR and a visible spectrometer. Main 
targets of the ILAS measurements from IR channel data are vertical profiles of ozone (O3) and 
ozone-related species such as nitric acid (HNO3), nitrogen dioxide (NO2), nitrous oxide (N2O), 
methane (CH4), and water vapour (H2O). Profiles of aerosol extinction in IR wavelengths are 
also derived. With less precision, CFC11 and CFC12 in the troposphere and N2O5 in the 
stratosphere may also possibly be derived. From the visible channel, absorption spectra due to 



oxygen molecules can give temperature and pressure profiles estimations [5], as well as aerosol 
extinction profiles from the signal in the wavelength with no absorption by oxygen molecules 
can be obtained. The altitude range for data analysis is from the cloud-top to about 60 km and the 
instantaneous field of view has a 2 km height resolution. 
In the stratosphere, heterogeneous reactions on the surface of acid aerosols and/or PSCs are 
considered to play an important role in ozone destruction processes. Since these particles have 
characteristic absorption features in the IR region [6], it may be possible to discriminate the 
particle compositions and phases from the ILAS measurements. 
The advantages of the solar occultation technique are the high sensitivity – and then high 
precision – of measurements, because of the use of the bright sun as a light source, and the self-
calibration properties due to the use of the exo-atmospheric measurement as the 100 % reference 
for each measurement event. 
Since the solar occultation technique is employed as the measurement principle and the ADEOS 
satellite has a sun synchronous polar orbit, with an inclination angle of 98° and an altitude of 
about 800 km, the measurement region of ILAS is over high latitudes, 55°-70° in the Northern 
Hemisphere and 63°-87° in the Southern Hemisphere. Figure 6.2 shows the time variation of 
latitude coverage, which changes according to the season. In the Southern Hemisphere, almost 
the whole Antarctic continent is covered while, in the Northern Hemisphere, the covered latitude 
range is narrow. On the contrary, this gives quite unique measurement opportunities, which 
allow generating daily height-longitude cross sectional maps of the atmosphere. 
 
6.1.2 Instrument overview 
 
The ILAS instrument consists of the following seven major components: 
 

• 2-axis gimbals mirror, controlled to track the sun 
• 12 cm diameter Cassegrain telescope  
• beam splitter and transfer optics 
• IR spectrometer 
• visible spectrometer 
• sun-edge sensor 
• signal processing units 

 
The instrument is mounted on the bottom (the earth side) left (sunny side) of the ADEOS 
satellite. The sun light passes through two cutaways; one is for sunrise direction and the other is 
for sunset direction. A plane mirror mounted on the 2-axis gimbals reflects the sun light into the 
telescope mounted on the slanted optical base. The light passes through the rectangular slit at the 
primary focal point, and is then split using the dichroic mirror and transfer optics to the IR and 
visible spectrometers. 
 
6.1.2.1 Instantaneous field of view (IFOV) tracking 
ILAS is designed to track the radiometric centre of the sun. The Instantaneous Field Of View 
(IFOV) of the IR band is of a 13 km width and 2 km height at the tangent point as seen from 
ADEOS. The IFOV of the visible spectrometer is a 2 km x 2 km square. The Field Of View 
(FOV) has ± 10° of margin for both the azimuth and the elevation direction. The tracking of the 
sun is carried out by a digital feedback system (Fine Sun Sensor, FSS). The slant optical base 
design enables the rectangular IFOV to be parallel to the horizon at the tangent height of 20 km 
for the two directions, both at sunrise and at sunset, using a common rectangular slit. This 
configuration of optics minimizes the rotation of IFOV during the tracking from just above the 
horizon, to 200 km in altitude [7]. This magnitude of rotation is reasonably negligible for the 
measurements of the stratosphere from the cloud top to 45 km. 
 



6.1.2.2. Sun-edge sensor 
Accurate information on tracking in elevation direction, or the absolute direction of the IFOV, is 
very important in the solar occultation observations. Thus, the ILAS has a sun-edge sensor to 
measure the direction of IFOV from the top edge of the sun, the direction of which is accurately 
known, while the tracking itself does not require high elevation angle resolution and accurate 
spacecraft attitude data. The sun-edge sensor assures that the tangent height for the ILAS 
measurements can be determined in absolute altitude within 150 m accuracy, provided that the 
refraction effect can be correctly taken into consideration [7]. 
 
6.1.2.3 Infrared spectrometer 
The sun light is split by a dichroic mirror and focused on the IR spectrometer entrance slit. The 
IR bands cover the wavelength region from 11.77 - 6.21 µm, using a 44 element PbTiO3 
pyroelectric array detector, which provide a sufficient SNR for solar occultation measurements. 
The crosstalk between adjacent detectors, which is caused by optical, thermal and electrical 
interferences, is estimated as less than approximately 3.5 %. 
 
6.1.2.4 Visible spectrometer 
The visible sun light is reflected in front of the beam splitter and focused on the entrance slit of 
the visible spectrometer using 4 lens transfer optics. The visible band uses a part of the 12 cm 
telescope (3 cm in effective diameter) to reduce the sun light and to obtain better imaging 
quality. The visible spectrometer uses a holographic concave grating with a 1024 pixel MOS 
photo diode array detector, which covers the spectral range from 753 nm to 784 nm, with a 0.1 
nm FWHM resolution. The visible spectrometer has a slit function approximately identical to the 
theoretical limit. With this high spectral resolution capability, the visible spectrometer can be 
well-calibrated for the wavelength in orbit using observation data from the solar Fraunhofer 
lines. 
 
6.1.2.5 Instrument performance 
Data obtained with the IR spectrometer, the visible spectrometer, and the sun-edge sensor, are 
sampled in 11 bit precision. In Table 6.1 we report the preliminary estimates of ILAS retrievals 
precision at different altitudes and for various trace gases. These approximate values were 
derived from the radiometric performance of ILAS, under the assumption that the transmission 
for a certain optical path is mainly affected by the absorber in the tangent layer. Thus, the 
precision of ILAS measurements is calculated using the detector noise and the sensitivities of the 
instrument against changes of the absorber amount at the tangent layers.  
 
6.1.3 Comparison methodology and results 
 
In this study neural network estimated profiles have been compared to the ozone profiles 
retrieved by the ILAS. From November 1996 to June 1997 all coincident measurements between 
the two observing systems have been selected. The time interval is limited by the availability of 
ILAS profiles [1]. In this comparison exercise we defined coincident two measurements if they 
were taken during the same day and if the centre of the GOME ground pixel is included in the 
region spanned by a radius of 500 km around the ILAS tangent point. Such a decision stems 
from the intention of taking into account the air masses displacement that can occur between the 
time of ILAS and GOME measurements. 
A total of 3089 coincident profiles have been found; they are uniformly distributed along all 
longitudes, but only over the northern and southern high latitude regions. This limitation depends 
on the particular characteristics of the ILAS instrument, which is expressively designed for the 
monitoring of atmosphere at those latitudes. 
The location of all coincident measurements is shown in Figure 6.3. In the Northern Hemisphere 
they cover the area between 56° and 72° in latitude, while in the Southern Hemisphere they 



cover the area between -63° and -83°. In the first case the northern regions of Europe, Asia and 
America are monitored, while in the second case measurements only belong to the Antarctic 
zone. With regards to the temporal location of the measurements, the data set contain different 
seasonal characteristics, even though not uniformly distributed throughout the data, as reported 
in Table 6.2. Ozone profiles retrieved from ILAS are reported on a regular grid of 50 equidistant 
altitude levels, ranging from the Earth’s surface to an altitude of 50 km. Nevertheless, limb 
measurements are not able to provide reliable values of ozone concentration at lower altitudes, 
and ILAS ozone profiles actually start (values in the first levels are put equal to zero) from the 
height of cloud top in the lower stratosphere (11-15 km) up to the higher stratosphere (50 km). 
On the other hand, neural network algorithms used to retrieve ozone profiles from GOME 
provide the ozone density at 20 fixed pressure levels, ranging from the Earth’s surface (1013 
hPa) to the mesosphere (0.01hPa), as already described in Chapter 5. 
In order to properly compare GOME and ILAS ozone profiles, ILAS vertical resolution has been 
reduced to the GOME resolution. Taking advantage of the pressure profiles included in the ILAS 
products and corresponding to the 50 equidistant altitude levels, ILAS ozone values have been 
interpolated at the GOME pressure levels. The ILAS ozone concentration at one GOME pressure 
level has been calculated as a mean value of ILAS ozone concentrations that fall into a pressure 
interval around the fixed GOME pressure level. In this way the ozone values of the two 
instruments are believed to investigate the same portion of atmosphere and, then, are 
comparable. 
In Figure 6.4 we report the results of the statistical analysis carried out using the coincident 
profiles belonging to the entire dataset. The relative difference between GOME and ILAS 
measurements has been defined according to the following expression: 
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where i denotes the pressure level at which the difference is computed. For each pressure level 
characterizing the GOME retrieval grid, the mean value and the variance of the relative 
difference have been evaluated for both GOME algorithms. The solid line represents the profile 
of the mean value of the relative difference, while the dashed lines indicate the variance. The 
mean value of the relative difference, averaged over all the pressure levels and for all the 
available profiles, is 12% for the algorithm GOME_NN1 and 10% for the algorithm 
GOME_NN2. For levels with pressure values lower than 50 hPa the dispersion around the mean 
values is around 25%, while it increases at higher pressure values (i.e. down to the troposphere), 
where ozone concentration variability is larger and the differences between ILAS limb-sounding 
technique and GOME nadir-viewing geometry becomes stronger.  
The variation of ILAS-GOME relative difference as a function of the solar zenith angle (SZA) is 
shown in Figure 6.5 and Figure 6.6 for GOME_NN1 and GOME_NN2, respectively. No 
significant trend can be observed until the value of 75°, but for greater angles a decrease of the 
performance can be noted for both algorithms. This may be due to two main reasons. First, the 
scarce presence of measurements with SZA larger than 75° in the training set. Second, the longer 
slant path corresponding to larger zenith angles involves the single-multiple scattering effects to 
play a not negligible role, decreasing the signal-to-noise ratio and making the retrievals less 
accurate. 
In Figure 6.7 we considered the unfavourable case of a subset of profiles characterized by a SZA 
greater than 75° and plot the statistical behaviour of the inter-comparison for the two algorithms. 
We can observe their different robustness, as algorithm GOME_NN1 degrades much more than 
algorithm GOME_NN2. This may be explained by the fact that the second algorithm, even if 
using a smaller number of input measurements properly selected by the Extended Pruning 
procedure, exploits the information from a larger spectral range. On the other hand a smaller 



signal-to-noise ratio may attenuate some good physical properties of the GOME_NN1 algorithm 
such as the sensitivity to temperature. 
In Figure 6.8 two examples of ozone profiles retrieved by neural algorithms, compared with the 
corresponding re-gridded ILAS profiles, are reported. The two profiles refer to different seasonal 
and geographical condition, as pointed out by the change of position of the ozone peak. The 
figure shows how GOME_NN2 is more capable (with respect to GOME_NN1) to follow natural 
variations in the ozone distribution.  
 
6.2 Validation with lidar measurements 
 
The main purpose of this validation work is to assess the capability of the neural network 
algorithms to generalize out of the temporal window used to build up the training dataset (March 
1998-March 1999). Retrieved ozone profiles from GOME measurements from July 1995 to June 
2003 have been compared with independent lidar ozone profiles obtained during the same period 
at 6 stations, and the GOME-lidar profile differences have been evaluated. The lidar was one of 
the first instruments to be selected in the frame of the Network for Detection of Stratospheric 
Change (NDSC) to measure the ozone vertical distribution and other atmospheric parameters like 
temperature, aerosols or water vapour. The NDSC, established in 1991, provides such a 
consistent, standardized set of long-term measurements of atmospheric ozone, via a network of 
sites distributed all around the globe. This network consists of more than 70 high-quality, 
remote-sensing research stations for observing and understanding the physical and chemical state 
of the stratosphere and upper troposphere, and for assessing the impact of stratosphere changes 
on the underlying troposphere and on global climate.  The measurements priorities include ozone 
and related parameters, such as temperature, aerosols and various trace gases involved in 
atmospheric chemical processes. The quality of data is regularly monitored under the NDSC 
protocol. A detailed description of instruments and measurements sites can be found at the 
following website: http://www.ndsc.ws. 
The validation of the 8 years of ozone profiles was made possible by the resources and the 
performances of the European Grid project, EGEE (Enabling Grid for E-sciencE) [8]. The 
retrieval processing was done on EGEE or on a local Grid at ESRIN/ESA. All the 8-years of 
retrieved data obtained with the two versions of the neural network algorithm 
(GOME_GOME_NN1 and GOME_NN2) have been stored on EGEE storage elements with the 
lidar data. This set-up permits to validate in many sites and with different criteria the satellite 
data in an easy way.  
 
6.2.1 Principle of ozone lidar measurements 
 
The lidar is an active remote sensing instrument based on the interaction between the laser light 
and the atmosphere. According to the atmospheric parameter to be measured, lidar systems use 
various light-matter interactions, such as Rayleigh, Mie and Raman scattering, absorption or 
fluorescence [9]. The DIfferential Absorption Lidar (DIAL) technique used for ozone has the 
main advantage of providing range-resolved and self-calibrated measurements in the whole 
stratosphere with a reasonably good vertical resolution [10]. The technique requires the 
simultaneous emission of two laser beams centred at two wavelengths characterized by a 
different ozone absorption cross-section; the spectral range is chosen in the UV range, where the 
ozone absorption is most efficient. The ozone number density is retrieved from the  
lidar signals according to the following equation [11]:  
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where nO3(z) is the ozone number density at altitude z, P(λi,z) is the number of detected photons 
at wavelength λi backscattered from altitude z, Pbi is the background radiation at wavelength λi 
and ∆σO3(z) corresponds to the differential absorption cross-section σO3(λ1,z) - σO3(λ2,z) (ozone 
absorption cross-sections depend on temperature and thus on altitude). δnO3 is a correction term 
depending on absorption by other constituents and Rayleigh and Mie differential extinction and 
scattering. δnO3 is expressed by: 
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where β(λi,z) is the total atmospheric backscatter coefficient at wavelength λi and altitude z, ∆α(z) 
is the differential atmospheric extinction α(λ1,z) - α(λ2,z) linked to Rayleigh and Mie scattering 
and Σe ∆σene(z) is the differential extinction by other atmospheric compounds. 
In the DIAL technique the laser wavelengths are chosen so that the term δnO3 represents less than 
10% of the term derived from the slope of the lidar signals (the argument of the logarithm in Eq. 
6.2) in the altitude range of interest. The derivation of the ozone number density from the laser 
signals shows thus that the DIAL technique is a self-calibrated technique which does not need 
the evaluation of instrumental constants. In the altitude range where both laser beams are 
contained in the telescope field of view, the accuracy of DIAL ozone measurements depends on 
the accuracy of the ozone absorption cross-sections used in the retrieval, on the laser line width, 
on the estimation of δnO3 and on the linearity of the acquisition device. The absolute value of the 
ozone absorption cross-sections in the Huggins band below 320 nm are known with an accuracy 
of ±3% and their relative precision over the same spectral range is reported to be better than 1-
2%; the influence of the laser line width was estimated to introduce a small error of the order of 
0.8% [11]. 
The precision of the measurement, defined by the statistical error due to the random character of 
the detection process, basically follows the Poisson statistics and is the result of a compromise 
between the experimental system characteristics, as expressed by the following relation [12]: 
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where A represents the telescope area, ∆z the vertical resolution, P0 the emitted laser power and 
Ta the duration of the measurement. Due to the rapid decrease of the signal-to-noise ratio with the 
increasing altitude, it is necessary to degrade the vertical resolution of the measurement in order 
to limit the statistical error. The DIAL stratospheric ozone lidar profiles are thus generally 
characterized by a vertical resolution varying from several hundred meters in the lower 
stratosphere to several kilometres around 50 km [11]. 
 
6.2.2 Comparison methodology 
 
As already mentioned in previous chapters, neural network algorithms can retrieve new ozone 
profiles (i.e. not belonging to the training set) by using GOME measurements only. All GOME 
data from July 1995 to June 2003 have been processed with both neural algorithms. The 
validation exercise carried out during this study aims at assessing the effectiveness of the two 
retrieval procedures by the systematic inter-comparison with lidar measurements provided by the 
NDSC. As already done for the comparison between GOME and ILAS ozone profiles, also for 
the validation with lidar measurements we need to face with the two following crucial issues: 
firstly, proper selection criteria, both in space and in time, have to be set in order to compare two 
measurements concerning approximately the same air masses. Secondly, the profiles to be 
compared must have an equivalent vertical resolution, in order to represent the ozone 



concentrations from the same portions of atmosphere. In what follows a description of the 
methodology adopted to select the GOME data and transform lidar profiles is given in details. 
 
6.2.2.1 Selection of the representative GOME co-located profile 
In this work we assumed that a satellite and a ground-based measurement are co-located when 
the centre of the GOME ground pixel is within a region of ±2.5° in latitude and ±5.0° in 
longitude around the lidar station, and when the time interval between the two measurements is 
less than 12 hours. The chosen criteria are stricter than those adopted by the World 
Meteorological Organization (WMO) for the assessment of ozone trends [13], which were ±2.5° 
in latitude and ±12.5° in longitude. 
For a single lidar measurement different GOME ozone profiles satisfy the selection criteria and a 
representative GOME co-located profile must be defined. In this work we considered the mean 
profile of all selected GOME measurements. This method is not optimal for those lidar stations 
characterized by a large variability of atmospheric conditions, like the station of Dumont 
d’Urville (66.7° S, 140.0° E) which is close to the edge of the polar vortex. In this case the 
probability of considering GOME measurements relative to air masses different from those 
sounded by the lidar is high. However, the selection of the GOME profile closest to the lidar 
location is not solving the problem: it should be reminded here that GOME is performing its 
measurements at around 10:30am local time, while lidar measurements are usually taken at night 
(10pm to 4am local time). In any case a minimum time difference of about 6-8 hours implies that 
the air mass probed by GOME is not the same as the one seen by the lidar. The choice of 
averaging a large number of GOME profiles is assumed to smooth this effect. 
 
6.2.2.2 Transformation of the lidar profile into the GOME resolution 
Lidar and GOME ozone profiles do not have the same vertical resolution. On one hand, lidar 
measurements, obtained with the DIAL technique, are characterized by a vertical resolution 
ranging from several hundred meters in the lower stratosphere  (10-20 km) to several kilometres 
in the upper part (above 40 km) [11]. On the other hand, GOME ozone profiles, retrieved by 
means of the neural algorithms, are reported on a grid of 20 fixed pressure levels, from the 
Earth’s surface (1013 hPa) to the mesosphere (0.01 hPa). The vertical resolution, expressed as 
the FWHM of the averaging kernels characterizing the RAL profiles used in the training phase, 
is 10-12 km in the troposphere and 4-5 km in the middle stratosphere (see Chapter 5). 
In order to compare lidar and GOME ozone profiles, the conversion of the lidar vertical 
resolution (km) into the GOME profile sampling (hPa) is performed using the pressure profiles 
included in the lidar products. The lidar pressure profiles result from a combination of nearby 
radiosounding and the COSPAR (COmmittee on SPAce Research) International Reference 
Atmosphere 1986 (CIRA-86) model [14]. The mean value of lidar ozone concentrations that fall 
within a pressure interval centred on each GOME pressure level is taken as the reference lidar 
value to be compared to the GOME ozone value. This method has been successfully used to 
compare GOME_GOME_NN1 and GOME_NN2 ozone profiles with the ILAS instrument. 
 
6.2.3 Results 
 
The extended validation has been carried out over the entire period of time covered by available 
GOME data, from July 1995 to June 2003. We focused on 6 principal lidar stations belonging to 
the NDSC: Andoya, Norway (69.3° N, 16.0° E), Dumont d’Urville, Antarctic (66.7° S, 140.0° 
E), Lauder, New Zealand (45° S, 169.7° E), Mauna Loa, Hawaii (19.7° N, 155.1° W), 
Observatoire de Haute Provence, France (43.9°N, 5.7° E), Table Mountain, USA (34.4° N, 
117.7° W). These stations have been chosen to account for different atmospheric conditions. The 
final dataset consists of 1788 coincident ozone profiles: 738 for the Observatoire de Haute 
Provence, 323 for Mauna Loa, 243 for Table Mountain, 251 for Lauder, 144 for Andoya and 89 
for Dumont d’Urville. We can see that mid-latitude and tropical atmospheric conditions are well-



represented, while high-latitude regions provide a significantly smaller number of coincident 
profiles. The difference in the number of profiles is explained by the lidar observation 
constraints, i.e. night-time and clear sky conditions. In Table 6.3 the characteristics of each lidar 
site are summarized. 
The results of the comparison between lidar and GOME ozone values, carried out over all the 
considered time period, are shown in Figure 6.9 for each lidar station. The scatter plot between 
lidar and GOME_GOME_NN1 ozone concentrations is represented with blue marks, while red 
diamonds show the same plot for GOME_NN2; lidar and GOME ozone values are reported, with 
a logarithmic scale, on the abscissa and on the ordinate respectively. GOME_NN2 shows less 
scatter around the bisector for all the stations, and seems to compare better with the lidar with 
respect to GOME_GOME_NN1. In Table 6.4 the coefficients of the linear fit between lidar and 
GOME measurements are reported, while in Table 6.5 the correlation coefficients, calculated at 
each pressure level for all the available data, are summarized. The calculated values state that the 
fit is good for both neural algorithms and for all the lidar stations; nevertheless they confirm that 
GOME_NN2 performs better than GOME_GOME_NN1, as the linear fit straight line of 
GOME_NN2 is closer to the bisector than the line of GOME_GOME_NN1, and values of the 
correlation coefficient (R) for GOME_NN2 is always closer to unity. 
In Figure 6.10 we report the results of the statistical analysis for the 6 lidar stations considered in 
this work. In each panel, the vertical solid line represents, as a function of pressure levels, the 
mean value of the relative difference between both sets of measurements, calculated as: 
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while the horizontal bars represent the 2σ error (also known as standard error), which correspond 
to a confidence interval of 95%, expressed by the following equation: 
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Results for GOME_NN1 are reported in blue, and in red those for GOME_NN2; for better 
readability of plots, the bias and 2σ error profiles are plotted with a small vertical shift between 
GOME_NN1 and GOME_NN2, in order to avoid overlapping of lines. The statistical analysis 
shows small biases between GOME and lidar measurements between 100 hPa and 3 hPa for the 
mid and tropical latitudes stations, even if sometimes significant at 2σ level. The biases values 
range from 1% to 20% (positive or negative) for both neural algorithms, while the standard error 
is of about 5%-10%. Above the level of 3 hPa the differences increase, and the biases can reach 
values of about 30%-50%. More pronounced differences are found, especially for GOME_NN1, 
at Andoya and Dumont d’Urville stations, where the biases can reach values larger than 20% 
below the level of 3 hPa and larger than 50% above. Nevertheless, these differences are 
characterized by higher values of the 2σ errors (30%-50%), which means we can not diagnose 
the difference between the two measurements. The increasing in biases values can be explained 
by the fact that these two sites are located in the Arctic and Antarctic region respectively, where 
the variability of atmospheric conditions is large. Moreover, the solar zenith angles 
characterizing GOME measurements in these regions are very high (from 75° to 90°). In this 
case the two neural algorithms can not be sufficiently reliable, as they have been trained with a 
dataset including only measurements for which the solar zenith angle was smaller than 75°. Such 
a limitation arises from the RAL algorithm version adopted for our study, which provides ozone 
profiles only for restricted observation conditions. The necessity to develop a new neural 
network algorithm expressively designed for poles is unquestionable, and will be considered for 
future research activities. 



The neural algorithm GOME_NN2 shows, in general, smaller biases with respect to 
GOME_NN1, especially for the polar stations of Andoya and Dumont d’Urville (situated at the 
edge of the polar vortex, where the variability of atmospheric conditions is large), but also for the 
Observatoire de Haute Provence and Lauder, which are respectively located in the northern and 
southern mid-latitude regions. For the tropical sites of Mauna Loa and Table Mountain, where 
the atmosphere is more stable, the biases of the two neural algorithms are very similar. Such 
better retrieval performances and robustness properties of GOME_NN2 are due to the wider used 
spectral range and to the automatic selection procedure characterizing this algorithm, which 
allows capturing the most significant spectral signatures of ozone absorption. The validation 
results obtained for the neural algorithms are comparable with those reported for the OE methods 
in [15], which demonstrated that the ozone profiles retrieved from GOME have a precision of 5-
10% and a bias up to 5% or 20% depending on the success of recalibration of the input spectra. 
In Figure 6.11 a plot of the average lidar ozone profile measured at all the stations and the 
corresponding GOME average profiles from both neural algorithms is reported, in order to show 
how GOME compares in general to the lidar. The black line represents the average lidar profile, 
the blue and red lines the average GOME_NN1 and GOME_NN2 respectively. The horizontal 
bars represent the corresponding standard deviations from the mean values. The figure confirms 
that GOME_NN2 compares better than GOME_NN1 with lidar measurements, especially in the 
lower part of the stratosphere. 
In Figure 6.12 the values of monthly biases between lidar and GOME measurements performed 
at the Observatoire de Haute Provence are reported, as a function of time, for both neural 
algorithms (blue marks for GOME_NN1 and red diamonds for GOME_NN2). Each panel is 
representative of a single pressure level characterizing GOME neural retrievals (only pressure 
levels from 100 hPa to 1.78 hPa, which contain a statistically significant number of coincident 
measurements, are considered). For each NN algorithm we also computed the bias linear trend 
over the entire period of time covered by data, represented by the two solid lines. The amplitude 
of the seasonal component of the relative differences is rather small although not negligible, and 
can be ascribed to the dependence of the retrieval performance from SZAs of GOME spectral 
measurements. Largest values for the biases occur, in general, for the first and/or the last months 
of the year, when the solar zenith angles are larger (typically between 60° and 67°) with respect 
to solar angles characterizing the central part of the year (from 25° to 50°). Moreover, it can be 
noticed that, generally, the seasonal variation of the bias is smaller for GOME_NN2 with respect 
to GOME_NN1, and also the trend line is smaller for GOME_NN2 at almost all the considered 
pressure levels. In Table 6.6 we report the values of seasonal biases between lidar and GOME 
measurements at the Observatoire de Haute Provence for the algorithm GOME_NN2.  
This analysis enables to assess the impact of the instrument degradation on the retrieval. In fact, 
from 2000 on, GOME is suffering from a degradation of the scan diffuser plate and an increase 
of the internal temperature [16]. The algorithm GOME_NN2 seems to be poorly affected by 
instrument degradation, while GOME_NN1 exhibits a general increase of the relative difference 
for almost all pressure levels. Such trends analysis has been carried out for all the stations, and 
the results are resumed in Table 6.7. For each lidar station, and for both neural algorithms, we 
report the value of the slope (m) which characterizes the trend line of the relative difference 
along the considered period (July 1995 – June 2003), expressed in percent per year. The grey-
filled boxes indicate the pressure levels where the ozone peak is situated. The difference trends 
of GOME_NN2 are in general smaller than those of GOME_NN1, in particular for the pressure 
levels characterized by high ozone concentrations. The better robustness properties of 
GOME_NN2 with respect to GOME_NN1 are confirmed, for all considered pressure levels. 
In Figure 6.13 we report some examples of ozone profiles retrieved from GOME by means of 
NN algorithms, compared with the corresponding lidar profiles, for the Observatoire de Haute 
Provence. The re-gridded lidar profile is reported with the black line, GOME_NN1 with the blue 
line and GOME_NN2 with the red line. Ozone profiles in the upper part of the figure correspond 
to measurements taken during June 1997, while in the lower part profiles measured during June 



2002 are reported. Also from this figure we can observe the better robustness of GOME_NN2, 
which compares better with the lidar (for both years) and is not affected by the degradation of 
GOME measurements occured from the year 2000. On the other hand, GOME_NN1 shows a 
not-negligible worsening of retrieval performance, as clearly emphasized by profiles reported in 
the lower part of Figure 6.12. 
 
6.3 Conclusion 
 
In this chapter the results of a global validation of the ozone profiles retrieved from GOME 
radiances using the two independent neural network algorithms are presented. The validation has 
been carried out either with ozone profiles retrieved from different satellite data (ILAS) or with 
ground-based lidar measurements belonging to the NDSC database. 
In the first case more than 3000 coincident measurements have been selected between November 
1996 and June 1997, with different seasonal  and  geographical  characteristics,  and  the  relative 
difference between ozone profiles retrieved from GOME with both neural algorithms and ILAS 
profiles has been evaluated. If  we  consider  the  entire comparison dataset, the relative 
difference is generally lower than 30%, with the exception of the very first levels belonging to 
the lower stratosphere. The results improve with a subset characterized by a more stable 
atmosphere and a more convenient measurement geometry; in this case the accuracy reaches 
values around 10%. 
The  influence  of  the  SZA  on  the  retrieval  performance has  been  also  investigated,  and a 
degrade for SZA values larger than 75° has been observed.  Besides to a decrease of the S/N 
ratio, this is also probably due to a poor presence of profiles with such value in the training set 
so, in this case, the capability of the net to extrapolate from the training dataset is not good.  
However, mainly due to the wider considered spectral range, algorithm GOME_NN2 shows 
better robustness properties, with respect to GOME_NN1.   
In the second case, the validation has been carried out considering the entire set of available 
GOME measurements, i.e. from July 1995 to June 2003, and 6 lidar stations, distributed around 
the world, adhering to NDSC standards. The agreement between GOME and lidar ozone profiles 
is generally very good for both neural algorithms in the atmospheric pressure range from 56 hPa 
and 3 hPa, with biases ranging from 1% to 20%, and standard deviations of about 5%-10%. 
Outside this pressure range, and for GOME measurements performed with a high SZA (> 75°), 
differences are larger (up to 40-60%), and the ozone number densities retrieved from GOME can 
not be considered as sufficiently reliable. In this case the influence of the SZA, with the 
exception of values > 75°, on the performance of neural schemes has been examined, and it 
results in a weak seasonal variation of the relative difference between lidar and GOME profiles.  
This validation exercise emphasizes the better retrieval performance of GOME_NN2 with 
respect to GOME_NN1, either in terms of retrieval accuracy or robustness, as it is less affected 
by variations in the atmospheric conditions and by instrument degradation. Hence, the 
GOME_NN2 algorithm should be selected for a complete GOME mission reprocessing. The 
retrieved profiles might be used for more general atmospheric studies, such as determination of 
height resolved ozone trends, mini-holes detection and characterization, and estimate of 
tropospheric ozone on global scale. 
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Figure 6.1. Principle of solar occultation measurements. 
 
 
 
 
 
 
 
 
 

 
 
Figure 6.2. Latitude vs. time change of ILAS coverage. 

 
 
 
 
 



 
Figure 6.3. Location of coincident measurements of GOME and ILAS ozone profiles between 
October 1996 and June 1997. 

 
 

 
Figure 6.4. Mean (solid line) and variance (dashed lines) values of the relative difference 
between ILAS and GOME ozone profiles corresponding to the entire dataset. 

 
 
 



 
 
 
 
 

 
Figure 6.5. Contour plot of ILAS-GOME relative difference for the algorithm GOME_NN1. On 
the abscissa we report the solar zenith angles, while on the ordinate the pressure levels. Dashed 
lines represent the pressure levels where ILAS ozone profiles have been interpolated. 

 
 
 
 

 
Figure 6.6. Same as Figure 6.6, but for GOME_V2 algorithm. 

 
 
 
 



 
Figure 6.7. Mean (solid line) and variance (dashed lines) values of the relative difference 
between ILAS and GOME ozone profiles corresponding to a dataset including only profiles for 
which the solar zenith angle is larger than 75°. 
 

 
Figure 6.8. Examples of ozone profiles retrieved by NN algorithms (blue line for GOME_NN1 
and red line for GOME_NN2) compared with the corresponding ILAS profile. 



      
 

      
 

      
Figure 6.9. Results of the comparison between lidar and GOME ozone values, carried out over 
the entire dataset. Blue marks represent the scatter plot for GOME_NN1, while red diamonds for 
GOME_NN2. The solid line represents the bisector, i.e. the ideal linear fit straight line. 
 



 
Figure 6.10. Results of the statistical analysis carried out over the entire dataset for the 6 lidar 
stations considered in this work. The solid line represents, as a function of pressure levels, the 
mean relative difference between GOME and lidar ozone values, while the horizontal bars 
indicate the standard deviations (blue lines for GOME_NN1 and red lines for GOME_NN2). 

 
 

 
Figure 6.11. Average ozone profiles (lidar in black, GOME-NN1 in blue, GOME-NN2 in red) 
calculated over all available data. The horizontal bars represent the corresponding standard 
deviations from the mean values. 



 

 
 

Figure 6.12. Seasonal variation of the relative differences, for both neural algorithms (blue marks 
for GOME_NN1 and red diamonds for GOME_NN2) and for the OHP co-located data. Each 
panel is representative of a single pressure level characterizing GOME neural retrievals. The two 
solid lines represent the trend of the relative difference over the entire period of time covered by 
data. 

 
 
 



 

 

 
Figure 6.13. Examples of ozone profiles retrieved by NN algorithms (blue line for GOME_NN1 
and red line for GOME_NN2) compared with the corresponding lidar profile. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Altitude (km) 10 20 30 40 50 

O3 ± 5 % ± 5 % ± 5 % ± 5 % ± 5 % 

HNO3 ± 50 % ± 10 % ± 50 % n.d. n.d. 

NO2 n.d. ± 5 % ± 5 % ± 20 % n.d. 

N2O ± 5 % ± 5 % ± 20 % ± 100 % n.d. 

CH4 ± 5 % ± 5 % ± 5 % ± 10 % ± 100 % 

H2O ± 5 % ± 5 % ± 5 % ± 10 % n.d. 

CFC11 ± 10 % n.d. n.d. 

 
Table 6.1. Preliminary estimation on the precision of ILAS measurements at different altitudes. 

 
 

Table 6.2. Characteristics of the entire data set (3089 profiles) grouped into subsets with the 
same climatologic characteristics of atmosphere. 

 
 
 

Station Latitude Longitude Number of profiles
Andoya 69.3° N  16.0° E 144
Dumont d'Urville 66.7° S 140.0° E 89
Lauder 45.0° S 169.7° E 251
Mauna Loa 19.7° N 155.1° W 323
Observatoire de Haute Provence 43.9° N   5.7° E 738
Table Mountain 34.4° N 117.7° W 243  

 
Table 6.3. Characteristics of the 6 lidar stations considered for the validation of GOME ozone 
profiles. 

 
 

 
Station m (NN1) m (NN2) q (NN1) q (NN2)

Andoya 0.730 0.862 0.455 0.357
Dumont d'Urville 0.756 0.946 0.177 0.033
Lauder 0.826 0.901 0.202 0.159
Mauna Loa 0.850 0.873 0.237 0.187
Observatoire de Haute Provence 0.893 0.957 0.193 0.075
Table Mountain 0.823 0.887 0.232 0.187  

 
Table 6.4. Values of the slope (m) and the y-intercept (q) of the linear fit between lidar and 
GOME ozone concentrations, for both neural algorithms. 



 

100.00 0.64 0.71
56.23 0.71 0.83
31.62 0.54 0.56
17.78 0.57 0.69
10.00 0.81 0.82
5.62 0.49 0.67
3.16 0.23 0.24
1.78 0.23 0.24
1.00 0.22 0.23

R (NN1) R (NN2)Pressure (hPa)

 
 

Table 6.5. Values of the correlation coefficient (R) for both neural algorithms, calculated at each 
pressure level for all the available data. 

 
 
 
 

Bias (%) Standard Error (%) Bias (%) Standard Error (%) Bias (%) Standard Error (%) Bias (%) Standard Error (%)
100.00 0.9 2.0 14.9 4.3 7.3 5.5 8.0 4.3
56.23 0.6 1.2 5.3 1.2 0.3 1.1 5.6 1.4
31.62 6.8 0.9 8.7 1.0 5.1 1.7 1.0 1.5
17.78 5.5 0.9 2.0 1.0 0.4 3.0 4.0 3.1
10.00 1.9 0.9 0.8 1.8 2.6 1.6 1.6 1.9
5.62 3.3 0.7 2.9 1.4 6.0 1.9 2.8 1.2
3.16 2.3 1.7 6.4 1.9 5.2 1.9 4.7 2.4
1.78 15.5 4.0 15.0 3.0 5.3 3.7 1.5 2.7

WinterPressure (hPa) Spring Summer Autumn

 
 

Table 6.6. Seasonal biases and standard errors between lidar and GOME measurements at the 
Observatoire de Haute Provence for the algorithm GOME_NN2. 

 
 
 
 

Station m (% per year) 100.00 hPa 56.23 hPa 31.62 hPa 17.78 hPa 10.00 hPa 5.62 hPa 3.16 hPa 1.78 hPa

NN1 0.02 -0.49 -0.36 0.50 1.24 1.50 1.59 1.44
NN2 0.54 0.44 0.06 0.28 0.46 1.04 1.55 1.59
NN1 3.26 2.01 0.60 0.65 2.77 0.16 -1.32 2.15
NN2 -0.23 2.30 1.33 2.07 3.22 0.19 -4.24 0.90
NN1 0.24 0.08 0.08 0.11 0.10 0.03 0.08 0.04
NN2 0.15 0.16 -0.07 -0.03 -0.15 -0.18 -0.32 -0.31
NN1 0.10 -0.14 0.30 0.08 -0.01 -0.03 0.05 0.13
NN2 0.22 0.33 0.27 0.06 -0.31 -0.16 -0.14 -0.08
NN1 0.52 0.03 0.01 0.08 0.24 0.15 0.24 0.30
NN2 -0.37 -0.01 -0.00 0.13 -0.04 -0.10 -0.10 -0.05
NN1 0.36 0.00 0.17 0.33 0.46 0.21 0.21 0.42
NN2 0.14 0.42 0.03 0.20 0.04 -0.11 -0.21 -0.11

Observatoire de Haute Provence

Table Mountain

Andoya

Dumont d'Urville

Lauder

Mauna Loa

 
 

Table 6.7. Values of the slope (m), expressed in percent per year, of the trend line characterizing 
GOME-lidar relative differences, computed for both algorithms over the entire period of time 
considered for the validation. 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 7 
 
NNs for the retrieval of other atmospheric 
parameters 
 
In this chapter the application of the neural network technique to other inversion problems is 
described. Two cases will be analysed: the first one concerns a retrieval algorithm for the 
estimation of temperature profiles from the same nadir-viewing radiance spectra already used for 
the ozone retrieval, while the second one refers to a preliminary study conducted to assess the 
feasibility of MW/Sub-mm radiometric soundings of the atmosphere from a geostationary orbit, 
for the estimation of temperature and humidity profiles. Both cases show the large potentialities 
of neural network in solving non-linear inversion problems, and the possibility to design fast and 
accurate retrieval algorithms to process satellite data, in order to obtain geo-physical parameters 
useful for atmospheric monitoring activities. 
 
7.1 Estimation of temperature profiles from GOME 
 
7.1.1 Introduction 
 
The thermal structure of the atmosphere has a relevant influence on the circulation mechanisms 
of air masses and on the distribution of trace gases. Monitoring continuously over the whole 
globe the thermal state of the atmosphere is very important in order to understand the processes 
that control the distribution of trace species therein and to assess the impact of human activities 
on it. We have already observed that satellites can provide a very powerful platform for 
quantitative remote-sensing observations on a regular and long-term basis. The GOME 
instrument (see Chapter 4 for details) is designed to determine the vertical distribution of 
manifold atmospheric constituents, with a special emphasis on the ozone [1]. In this case, the 
temperature profile play a key role in determining the distribution of O3 molecules, as it strongly 
influences the absorption cross-section of such a trace gas. 
Preliminary retrieval of temperature profiles, followed by sequential retrieval of gas components 
(ozone or others) can be an useful approach to improve estimation results [2]. A drawback of this 
approach is that the processing time necessary to characterize the atmospheric composition is 
affected by the time needed to preliminary estimate temperature profiles. As extensively 
described in previous chapters, neural networks have been proved to have a great potential in 
approximating any real-valued continuous function [3], and offer the possibility to design very 
fast retrieval algorithms, allowing reducing the overall processing time.  
In this work neural network potentialities have been exploited to design a real-time algorithm for 
the estimation of temperature profiles from GOME radiance spectra. On the base of good 
performances obtained for ozone profiles retrieval, the feedforward multi-layer perceptron 
(MLP) architecture (Chapter 3) has been adopted to estimate temperature profiles also. Before a 
neural network can be used for the actual retrieval phase, a training phase is necessary, during 
which the net learns to approximate the input-output significant relation. Such a learning phase 
consists in finding weights and biases which minimise the error function characterizing the 
learning process. 
The basic idea of this study is to train a neural network using as reference outputs the already 
existing temperature profiles provided by the UK Met Office, and as inputs to the net the GOME 
radiance spectra which overpass the sites of temperature measurements. The matching between 



GOME data and temperature profiles of the UK Met Office provides the input-output patterns 
needful to train the neural network. Once the training process is completed, the network will be 
able to estimate in near real-time new temperature profiles, which can be successively used for 
the retrieval of trace gases vertical distribution. 
In the next section, the methodology followed to design the neural algorithm will be described. 
This includes the generation of input-output pairs for the training phase and the optimization of 
the network topology. Once trained, the retrieval performance of the net has been tested on a 
validation dataset, which contains examples not included in the training dataset. 
 
7.1.2 Methodology 
 
Input-output pairs needed to train the neural net have been generated considering GOME 
radiance spectra matched with temperature profiles provided by the UK Met Office. The 
matching between GOME data and temperature profiles was already carried out in the 
framework of the activities of the GOME Ozone Profiles Retrieval Working Group, coordinated 
by ESA, where an extensive validation of ozone profiles was accomplished. In the effort of 
maximizing the retrieval performance of the neural algorithm in terms of robustness and 
generalization properties, we included in the training set all the available input-output pairs from 
January 1998 to December 1998.  The collected 739 training patterns contain examples 
representing different seasonal and geographical characteristics. 
GOME radiance measurements belonging to the spectral range of 321-325 nm have been used in 
this study. Such a wavelength interval is attractive because of the strong dependence from the 
temperature profile of the ozone cross-section, which significantly affect the shape of radiance 
spectra. Moreover, this range shows an high signal-to-noise ratio, and was already selected 
during the sensitivity analysis carried out during ozone retrieval preliminary studies (Chapter 5). 
Taking advantage from previous works, a single input vector contains the 26 radiance values that 
fall within the selected spectral range, plus the calculated total ozone slant path and the solar 
zenith angle of GOME measurement. The corresponding output vector represents the 
temperature profile matched with the GOME measured spectrum, discretized into 14 pressure 
levels from 1000 mbar to 0.30 mbar. 
Also in this case, the minimization of the error function during the learning phase has been 
pursued by the scaled conjugate gradient (SCG) algorithm [4], coupled with the early stopping 
procedure. In our case, the validation dataset contains the measurements and the corresponding 
temperature profiles from January 1997 to December 1997, for a total number of patterns of 606. 
As already described, this procedure is used in order to avoid overfitting situations and to allow 
the network to generalize outside of the training dataset. In Figure 7.1 the location of all 
coincident measurements is reported. The black triangles represent the patterns belonging to the 
training set, while the blue ones the patterns of the validation set.   
During the training phase, the network topology has been then optimized from the point of view 
of the number of neurons in the hidden layer. Different neural networks have been set up, 
increasing the number of units in the hidden layer from 1 to 40. The retrieval error committed on 
the test set by the different networks has been evaluated, as a function of the number of hidden 
units, and the results are reported in Figure 7.2. It can be noted that an optimum number or at 
least an optimum range exists. In fact, if the number of hidden neurons is too small, the input-
output associative capabilities of the net are too weak. On the other hand, this number should not 
be too large; otherwise, these capabilities might show a lack of generality (they would be too 
tailored on the trainin set). It turns out that a fair compromise between these two contrasting 
requirements has to be found. 
In our study, the net having 26 hidden units shows the better performance in terms of the 
retrieval accuracy assessed over the validation dataset, and has been chosen for the actual 
retrieval phase. 
 



7.1.3 Results 
 
For the final retrieval algorithm, the neural network with 28 input units, 26 hidden units and 14 
output units has been considered. Once trained, the retrieval performance of the net has been 
tested on the validation dataset. In Figure 7.3 we report some examples of the neural estimation 
of temperature profiles belonging to this dataset. It can be observed that the designed neural 
network algorithm is able to catch up the different shapes characterizing different temperature 
profiles, and in particular is capable to single out the height and the extent of the tropopause, i.e. 
where the temperature gradient above the troposphere vanishes. 
The results of the neural retrieval performed on data not included in the learning set are in good 
agreement with the corresponding temperature profiles provided by the UK Met Office. The 
retrieval performance evaluated over the whole validation dataset is reported in Figure 7.4. The 
root mean square error (dashed line), calculated over the 606 profiles, is significantly smaller 
(more than 50%) with respect to the standard deviation of the profiles from their means (solid 
line). In Figure 7.5 we report the profile of the bias between the true profiles and the 
corresponding neural estimations. The absolute value of the bias is about 1 K in the stratosphere, 
and 2 K in the troposphere, where the nadir measurements are affected by the presence of the 
atmospheric layers above. But what is most remarkable is that the neural estimation is real time; 
once GOME data are made available, few seconds are enough to characterize the atmosphere in 
terms of temperature values. 
The dipendence of retrieval results from pressure levels and solar zenith angles (SZA) which 
characterize spectral measurements has been also assessed, as reported in Figure 7.6. No 
significant dependence of the retrieval performance from heights and SZAs can be observed, 
excepted for lower atmospheric layer (due to the nadir-viewing geometry) and for solar angles 
larger than 70°, where the relative difference between reference and calculated temperatures can 
reach values around 10%. Strange larger errors (even if smaller than 5%) can be observed at 
SZAs between 30° and 35°; a reason for this has not been found at the moment, anf further 
analysis will be carried out. 
 
7.2. Temperature and humidity profiles from geostationary 
radiometric soundings 
 
7.2.1 Introduction 
 
The three-dimensional fields of temperature and humidity are most important for weather 
predictions, as they directly enter the motion equations to be numerically integrated to perform 
weather forecasting. It is therefore not surprising that, as soon as the space technology enabled it, 
atmospheric temperature profiling from satellites was energically addressed. Already in 1969 
experimental atmospheric sounding missions using IR were introduced (on Nimbus-3, with IRIS 
and SIRS instruments). MW sounding started some years later (NEMS on Nimbus-5, 1972). The 
first complete IR/MW sounding system is operating since 1978 (TOVS on TIROS-N), and has 
been recently upgraded (ATOVS on NOAA-15, 1998). The first experiment of atmospheric 
sounding from a geostationary orbit, limited to the IR, started in 1980 with the instrument VAS 
on GOES-4, and has been replaced by SOUNDER on GOES-8. The interest for temperature and 
humidity profiling from geostationary satellites stems from the requirement for 1-hour observing 
cycle, which can not be provided by low-orbiting satellites. Moreover, MW observations can 
provide a significant improvement (with respect to IR) for atmospheric sounding in cloudy areas. 
In spite of the greatest interest for all-weather temperature/humidity profiling from geostationary 
orbit, plans to extend MW sounding instruments to geostationary satellites do not exist, since this 
is considered not feasible with current technology. 



This study was conducted in the framework of the Geostationary Observatory for Microwave 
Atmospheric Sounding (GOMAS) project, partially funded by the Agenzia Spaziale Italiana 
(ASI). The purpose of GOMAS is to establish the feasibility of MW/Sub-mm sounding from 
geostationary orbit, to prove the applicability of such observation to frequent and nearly-all-
weather atmospheric temperature and humidity sounding, and to estimate very frequently 
precipitation rate, associated to cloud liquid/ice water discrimination. Such kind of 
measurements are expected to be very useful for meteorological services and climate research 
centres, allowing improvements in numerical weather predictions, in the characterization of 
hydrological regimes and in the description of the water cycle in general circulation models. In 
the framework of the GOMAS project, this work reports on the development of neural network 
inversion algorithms for temperature and humidity profiling.  
 
7.2.2 The GOMAS approach 
 
The main problem with MW sounding from geostationary orbit is the diffraction limit which 
implies, at MW frequencies, very large antenna diameters. Table 7.1 summarizes (for different 
atmospheric parameters) the relation between the required frequency for sounding, the required 
spatial resolution and the antenna diameter. In order to alleviate the problem of the antenna 
dimensionality, the GOMAS project moves to higher frequencies, i.e. in the sub-mm range. The 
most interesting options are: 
 

• the frequency of 380 GHz for water vapour, implying an antenna of 1.7 m for 20 km 
resolution 

• the frequency of 425 GHz for temperature, implying an antenna of 1.0 m for 30 km 
resolution 

 
As a matter of fact, temperature/humidity profiling at these frequencies is not attractive, since the 
strong water vapour continuum in the sub-mm range implies that the lower troposphere is not 
well-sensed, which is a regrettable problem for geostationary sounding missions addressed to 
weather forecasting. Therefore, it becomes evident that lower bands at 119 GHz and 183 GHz 
must be kept. The band centred at 55 GHz must also be included, since it is the less sensitive to 
clouds; moreover, this band is needed (together with the band at 183 GHz) for intercalibration 
with MW sounding from polar orbiters. 
The GOMAS project envisages a 3-m antenna, which would provide the following capabilities: 
 

• full sounding of the troposphere, from bands at 119 GHz and 183 GHz, with support of 
the band at 55 GHz, with a spatial resolution of 30 km 

• high troposphere sounding, from bands at 380 and 425 GHz, with a resolution of 10 km 
• sounding of precipitations, from bands at 380 and 425 GHz, with a resolution of 10 km 

 
It has to be noted that, due to the wide range of frequencies and to the severe radiometric 
accuracy required for atmospheric sounding, synthetic antenna concepts are ruled out. Receivers 
at frequencies reported above are not off-the-shelf, but probably do not represent a critical 
development. For each of the 5 bands, centred at 55, 119, 183, 380 and 425 GHz, 6 to 10 narrow 
banwidth channels are planned to be implemented by heterodyne spectrometers with quasi-
optical bands separation. The total number of channels will be around 40, as reported in Table 
7.2. 
In Figure 7.7 we report the Incremental Weighting Functions (IWFs) for the 4 bands (with 
exception of 55 GHz band) selected within the GOMAS project for temperature and humidity 
profiling [5]. The IWFs represent the relationship between infinitesimal variations in the 
atmospheric parameter of interest, and the upwelling brightness temperatures measured by the 
sensor, and provide the theoretical base for the choice of radiometric channels. Numbers reported 



beside each function show the frequency offset, expressed in MHz, from the centre of the 
absorption line. The figure shows that the selected radiometric channels can provide a complete 
sounding from the Earth surface to 40 km (for temperature profiles) and 20 km (for humidity 
profiles), as required by the project purpose. 
 
7.2.3 Methodology 
 
In this study the expected performance of a neural network algorithm aiming at the retrieval of 
temperature and humidity profiles from GOMAS radiometric channels has been assessed. The 
algorithm has been configured with the choice of the feed-forward multi-layer perceptron 
architecture (with one hidden layer), and with the choice of network topology, which means the 
number neurons in each layer. Input data are the brightness temperatures in the proposed 
channels, while the output ones are temperature and humidity values at different heights in the 
atmosphere. The study has been carried out by numerical simulations performed with the 
Millimeter-wave Propagation Model LIEBE-1993 [6] [7].  
The analysis includes different steps: 
 

1. generation of a representative dataset 
2. training of NNs 
3. retrieval exercise 
4. analysis of the information content of radiometric channels 

 
In order to generate a representative dataset, radio-soundings collected from 1980 to 1989 at the 
meteorological station of Brindisi (Italy) have been considered. Temperature and humidity 
profiles have been given as input to the forward model (LIEBE-1993), which generates the 
corresponding simulated brightness temperatures as seen from a satellite in the proposed 
radiometric channels. Clear sky conditions and two different values for the surface emissivity 
(0.5, 0.9), which accounts for see and land cover respectively, have been assumed. An 
uncorrelated gaussian noise (with a standard deviation of 0.5K and 1K) has been also considered 
during model runs. 
The global dataset, containing 2578 profiles and the corresponding simulated brightness 
temperatures, has been then divided in a training set and a validation set, each one composed 
with 1289 patterns randomly selected. The first one will be used for NNs training (i.e. to update 
networks internal parameters), while the second one for assessing the retrieval performances 
achieved by trained networks and stopping the training phase (early stopping procedure, see 
Chapter 3 for details). 
The input vector contains the brightness temperatures generated by the model in the proposed 
radiometric channels. It is formed by 33 input units: 11 units for the 118 GHz band, 7 for the 183 
GHz band, 7 for the 380 GHz band and 14 for the 425 GHz band. On the other hand, the output 
vector represents the corresponding temperature or humidity profile, from the ground to an 
altitude of 30 km, with a vertical resolution of 1 km (which leads to a number of 30 output units). 
On the base of several experiments, 33 neurons have been selected for the hidden layer, either for 
the network aiming at temperature retrieval or for the net designed for humidity. The error 
minimization has been performed by means of the scaled conjugate gradient (SCG) algorithm, 
coupled with the early stopping procedure. 
 
7.2.4 Results 
 
In Figure 7.8 and Figure 7.9 we report the root mean square error (RMSE) obtained for 
temperature and humidity profiles respectively, for a surface emissivity of 0.5 (plots on the left) 
and 0.9 (plots on the right). The RMSE (dashed line) is always smaller than the standard 
deviation of profiles from their mean (solid line) in all cases, and shows the good retrieval 



performances achieved by trained NNs. The RMSE for temperature (~ 2 K) is significantly 
smaller than the standard deviation (~ 8-10 K) at all altitudes. For humidity profiles the good 
retrieval performances mainly concern the lower part of the atmosphere (below 15 km); 
nevertheless, it has to be noted that the humidity variability is mostly concentrated in this region, 
while at upper altitude the atmospheric water content is more stable. In Figure 7.10 we report the 
RMSE for the unfavorable case of assuming an incorrect value for the surface emissivity, for 
temperature (plot on the left) and humidity (plot on right) retrievals. In this case the NNs have 
been trained with brightness temperature corresponding to an emissivity of 0.5, while the 
retrieval has been performed using brightness temperature generated by the model assuming a 
surface of emissivity of 0.9. The retrieval performance degrades in both cases, but only in the 
lower part of the atmosphere (which is consistent with the incorrect assumption on 
electromagnetic properties of the surface). This analysis points out the importance of having 
accurate estimations of the surface emissivity in order to obtain good retrieval results. In Figure 
7.11 and Figure 7.12 some examples of retrieved profiles are shown, for temperature and 
humidity respectively, and confirm the capability of NNs to invert radiometric measurements. 
A more detailed analysis of the information content of GOMAS radiometric channels has been 
also carried out. The study has been conducted by means the application of the extended pruning 
procedure (see Chapter 5) to trained neural networks. We remind here that a pruning procedure 
aims at removing the weakest, and therefore less significant, connections in a trained neural 
network, with the purpose of improving its generalization properties. If the procedure is 
prolonged, it will be a moment where an input unit will have no more connections; at this point, 
the corresponding input value will not contribute to the output vector estimation, and the input 
unit can be considered deleted. Such a technique permits to assess the relative importance of 
input measurements in estimating an output vector. In Table 7.3 we report the results obtained by 
applying the Extended Pruning to the NN trained for temperature profiles retrieval. The 
procedure has been stopped when the retrieval error evaluated on the test dataset increases 
significantly (more than 25%). It is very interesting to observe that input measurements crucial 
for temperature estimation (i.e. radiometric channels centered at 118 GHz and 425 GHz) have 
been preserved, while almost all inputs corresponding to humidity estimation (183 GHz and 380 
GHz bands) have been deleted. An analogous result has been obtained by applying the same 
procedure to the NN trained for humidity profiles estimation, as reported in Table 7.4. In this 
case, the EP technique preserves the radiometric information needed for humidity retrieval (i.e. 
input units corresponding to 183 GHz and 380 GHz channels), while it eliminates unnecessary 
input measurements (coming from 118 GHz and 425 GHz bands). 
Such a study conducted on the information content of radiometric channels states that NNs can 
not be merely considered as black boxes, since they clearly show the capability to “understand” 
the functional relation between the measured electromagnetic quantities and the geo-physical 
parameters to be retrieved. 
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Figure 7.1. Location of temperature profiles provided by the UK Met Office matched with 
GOME radiance measurements. Black triangles: training dataset. Blue triangles: validation 
dataset. 

 
 
 
 

 
Figure 7.2. Retrieval error committed on the test set by the trained neural network, as a function 
of the number of units in the hidden layer. 

 
 
 



 

 
Figure 7.3. Examples of retrieved temperature profiles. The solid line represents the temperature 
profile estimated by the neural algorithm, while the dotted line indicates the corresponding true 
profile provided by the UK Met Office. 

 
 
 
 

 
Figure 7.4. Root mean square error (RMSE) of retrieved temperature profiles (dashed line) 
compared with the standard deviation of the profiles from their means (solid line). 
 



 
Figure 7.5. Profile of biases between the retrieved temperature profiles and the true profiles 
belonging to the validation dataset. The solid line represents the mean value of biases, while the 
dashed lines indicate the standard deviation. 

 
 
 
 

 
Figure 7.6. Contour plot of differences between retrieved and reference temperature profiles. On 
the abscissa we report the solar zenith angles, while on the ordinate the pressure levels. 

 



 
Figure 7.7. Incremental Weighting Functions (IWFs) for the 4 bands (with exception of 55 GHz 
band) selected within the GOMAS project for temperature and humidity profiling. 

 
 
 
 

 
Figure 7.8. Root mean square error (RMSE) obtained for temperature profiles, for a surface 
emissivity of 0.5 (plot on the left) and 0.9 (plot on the right). The dashed line represents the 
RMSE, while the solid line the standard deviation of profiles from their mean. 

 
 
 
 



 

 
Figure 7.9. Same as Figure 7.8, but for humidity profiles.  

 
 
 
 

 
Figure 7.10. RMSE for the unfavorable case of assuming an incorrect value for the surface 
emissivity, for temperature (plot on the left) and humidity (plot on right) retrievals. NNs have 
been trained with an emissivity of 0.5, while the retrieval has been performed for an emissivity 
of 0.9. 

 
 
 
 



 
Figure 7.11. Examples of retrieved temperature profiles (green line), compared with 
corresponding reference profiles. 

 
 
 
 

 
Figure 7.12. Examples of retrieved humidity profiles (green line), compared with corresponding 
reference profiles. 
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able 7.1. Relation between the required frequency for sounding, the required spatial resolution 

Table 7.2. Radiometric channels selected within the GOMAS project. 
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Table 7.3. Results of the Extended Pruning procedure for temperature. 
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   7.4. Results of the Extended Pruning procedure for humidity. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

Chapter 8 
 
Conclusions and outlook 
 
The study described in this thesis mainly concerns the application of a neural network inversion 
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technique for the retrieval of ozone profiles from a satellite-based nadir-viewing instrument. The
effort is justified by the need of very fast retrieval algorithms for the processing of huge amount 
of data coming from satellite observations. Traditional approaches for solving non-linear 
inversion problems (as it is the retrieval of the vertical distribution of an atmospheric com
from electromagnetic measurements) are based on numerical solutions obtained by means of 
iterative methods, as explicit expressions can not be derived. This implies large computationa
burdens and long times for processing. Even if computing technology will provide faster and 
faster processors, the amount of available satellite data to be processed is also increasing, and 
with an increasing rate. Moreover, large re-processing activities of archived datasets are often 
envisaged, in order to improve the information extracted from measurements. It therefore come
out that faster inversion algorithms are always welcome, and neural networks can represent a 
powerful tool for achieving the goal. 
In this work, a neural network algorith
measurements of the GOME instrument has been designed. Besides the description of general 
concepts concerning inversion problems, and the application of neural networks to obtain fast 
and accurate solutions, the study mainly focuses on the selection of input measurements, i.e. 
which are the measurements most suitable for addressing the solution. A sensitivity analysis h
been carried out, in order to emphasize the relation between atmospheric states and radiances 
measured by the sensor. Different techniques aiming at the selection of inputs have been 
explored and discussed. Among them, a new technique, called Extended Pruning (EP), wh
exploits neural networks to this purpose (and not only for the inversion phase), has been 
proposed. Obtained results are very promising, and can be straightforward extended to ot
applications. 
Stemming fro
selection methods) have been designed, and their retrieval performances, as well as their 
characterization, have been discussed. 
Ozone profiles retrieved by means of th
means of inter-comparisons with ozone measurements performed by other instruments. In a f
case, NN retrieved profiles have been compared with the corresponding profiles obtained by 
another satellite instrument, ILAS. In a second case, a more extended validation has been 
performed by using ground-based lidar measurements, available from a series of stations 
belonging to the Network for Detection of Stratospheric Changes (NDSC). Both validatio
exercises demonstrate the capability of NNs of providing reliable estimations of the ozone 
vertical distribution, comparable with other techniques in terms of accuracy and sensitivity 
observations errors, but with the advantage of doing much faster inversions. 
In particular, the algorithm based on the Extended Pruning, has been proven t
with respect the other one, either being less sensitive to instrumental errors, or providing more 
reliable estimations in correspondance of critical conditions for observations. 
Finally, the application of the neural network retrieval technique for the estimation of other 
atmospheric parameters has been carried out. Two different cases have been considered: the 
one concerns the retrieval of temperature profiles from the same data (i.e. radiances measured by 
GOME) already used for the estimation of the ozone vertical distribution, in order to better 
characterize the temperture dependence of the ozone cross-section and therefore improve the



ozone retrieval algorithm; the second one refers to a preliminary study conducted in the 
framework of an innovative project (GOMAS), aiming at assessing the feasibility of radi
atmospheric soundings (temperature and humidity profiles) from a geostationary orbit. 
Results obtained in both cases demonstrate the big versatility of NNs in addressing inve

ometric 

rsion 
 

ly extended to other instruments (and in 

e 
 

e 

ed 

problems, and confirm their capability to catch the functional relation linking electromagnetic
measurements to measured physical parameters. NNs can be therefore considered a very 
competitive approach for solving this kind of problems. 
The research activity presented in this work can be direct
particular to sensors similar to GOME, expressively designed for the ozone monitoring), and the 
use of NNs can be applied for the inversion of their measurements. In March 2002, the European 
environmental satellite Envisat was launched with on board the SCIAMACHY instrument, 
followed in July 2004 by the NASA platform EOS-AURA housing the Dutch-Finnish Ozon
Monitoring Instrument (OMI). In addition, for the near future series of GOME-2 (an improved
version of GOME) and new SBUV-2 instruments are planned to be launched in orbit. All these 
instruments are designed to measure the UV solar back-scattered radiation in a nadir-viewing 
geometry. NNs aiming at the retrieval of ozone profiles and other trace gases can represent an 
effective approach for processing the huge amount of data that will become available from thes
instruments. In particular it should be noted that OMI will provide radiance measurements with 
an improved spatial resolution with respect to previous instruments (13 x 24 km2 and 13 x 48 
km2 for the global mode, and 13 x 12 km2 for the zoom-in mode), offering the possibility to 
monitor tropospheric ozone variability, in particular over urban areas. Strong efforts are need
to design an algorithm for a direct retrieval of tropospheric ozone from nadir-viewing radiance 
measurements, and NNs can be a powerful tool to address the solution. 
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