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Introduction 
 
The broad context of this work is that of Synthetic Aperture Radar (SAR) data 
processing for the measurement of geophysical parameters. More specifically, 
theoretical and experimental work has been carried out throughout the thesis in the 
fields of repeat-pass SAR interferometry and SAR image focusing.
Important applications of repeat-pass SAR interferometry in the last decade have been 
the measurement of topographic height and surface displacement (or equivalently 
velocity). Error estimation is required in all quantitative applications, yet to a 
significant extent it may still be considered an open research field, particularly for 
applications in which a minimum data set may or must be exploited. Two of the most 
relevant error sources are space-time fluctuations of the atmospheric refractive index 
and phase unwrapping errors. Their statistical modelling forms a central part in this 
thesis and is of interest for various purposes, given the current state of the art. 
Firstly, for Digital Elevation Models (DEMs) and displacement maps generated using 
a minimum number of interferograms, a standard approach to assess the accuracy of 
the derived geophysical products does not exist to date. A framework meant for this 
purpose has been recently proposed [Mohr2006a], and relies on models for the second 
order statistics of the non-deterministic error sources. 
Secondly, within multi-interferogram frameworks, although it has been proved that a 
high degree of accuracy may be achieved, a procedure to provide a confidence 
measure for each pixel, which accounts for atmospheric as well as phase unwrapping 
errors has not been published to date. As far as DEM generation is concerned, either 
only atmospheric errors are accounted for, but phase unwrapping ones are not 
[Ferretti1999], [Allievi2001], or phase unwrapping is avoided, but atmosphere 
(spatially correlated error sources) may not be accounted for [Eineder2005]. As far as 
displacement (and DEM refinement) is concerned, unwrapping errors are typically 
assumed to be negligible and atmospheric errors are handled in a sub-optimal way in 
order to simplify the processing [Ferretti2000], [Berardino2002], [Mora2003]. Within 
these processing schemes, simple closed forms for the second order statistics of the 
main error sources might be useful in the future to improve data processing as well as 
accuracy assessment.  
Finally, some recent studies have addressed the problem of atmospheric error 
correction, using systems other than SAR, namely GPS [Williams et al., 1998] and 
satellite imaging spectrometers [Moisseev2003], [Li2005], [Li2006a]. These studies 
elicit interest for statistical error modelling, since external measurements are typically 
available on a sparse grid compared to interferometric SAR measurements, so that 
some form of interpolation is required. Preliminary results indicate statistical 
interpolators to be the most effective for this task and these typically exploit models 
of the second order statistics of the error source. 
In Chapters 4 and 5 of this thesis, errors due to atmospheric propagation and phase 
unwrapping respectively are discussed in detail and a model for the second order 
statistics of each is derived. In Chapter 3 a framework is presented, which exploits 
such models to obtain a confidence measure for each pixel for height maps created 
with a minimum number of interferograms. This is the result of the work of   Prof.  
J.J. Mohr, at Denmark’s Technical University (DTU), Electromagnetic department 
(EMI). At the time of writing, an extension of the model to displacement 
measurements is a subject of undergoing work. 
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A preliminary validation of the error estimation framework and of the models is 
described in Chapter 6 for DEM generation from ERS-tandem acquisitions. The 
causes of some apparent artefacts and the performance of the error prediction models 
are discussed in detail, using an external SRTM DEM as a reference.   
Alongside error modelling, this thesis also addresses SAR signal processing issues 
related to the use of a specific class of artificial reflectors. In the context of SAR 
interferometry, these have been used as tie-points for accurate geocoding and 
refinement of orbital data [Gutjahr2005] or as stable reflectors in the framework of 
persistent scatterer methodologies [Allievi2004]. Typically passive reflectors (Corner 
Reflectors) have been exploited for these purposes. Active ones however, i.e. SAR 
transponders, may offer advantages compared to CRs, such as reduced size for a 
specified RCS (particularly in L band), cost-effectiveness and ease of installation.  
Furthermore, active devices offer the possibility of superimposing a modulation on 
the SAR signal, which may be used to increase the signal decoupling with respect to 
natural backscattering [Shimada99], [Weiss2004] and/or for automatic location and 
identification [Hounam2001] of the device. These benefits are basically paid for by 
adding complexity to the design of the transponder’s electronics and antenna(s) as 
well as to the SAR data processing algorithm.  
In Chapter 7 of this thesis a specific SAR transponder architecture is considered, 
namely a pulse-to-pulse encoding SAR transponder patented by a research group at 
DLR [Hounam1998], [Hounam2001]. The existing literature focuses on device 
architecture, working principle demonstration and potential applications, rather than 
on data processing issues. In this thesis, issues related to the SAR focusing algorithm, 
to the code alignment procedure as well as to transponder signal decoupling compared 
to natural backscattering are discussed. Equations are derived which allow for 
tradeoffs between processing efficiency, device Radar Cross Section (RCS) and 
detection probability. Theoretical derivations are validated through point scatterer 
simulations and through the processing of an ERS data set containing transponder 
prototypes developed at DLR. The approach followed in carrying out these 
investigations was intentionally not restricted to SAR interferometry or to any other 
specific application. The results obtained may rather be of interest for more than one 
proposed application, including SAR interferometry.  
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Chapter 1 
 
 
 

Interferometry Background 
 
 
1.1   Interferometric phase 
 
Interferometric SAR techniques have been the subject of several review articles 
[Bamler1998], [Massonnet1998], [Rosen2000] and books [Ghiglia1998], 
[Hannsen2001]. This section serves the purpose of establishing notation and recalling 
results useful for further discussions. The material presented in the following is based 
on the above works as well as on published works with particularly clear 
recapitulations, namely [Zebker1994a], [Joughin1996] and [Hannsen1998a]. Since the 
focus throughout this thesis is error analysis, the flat earth and parallel ray 
approximations shall be made in all equations where needed, a procedure which 
retains sufficient accuracy for the purpose of error analysis. Furthermore, a         
repeat-pass interferometric configuration shall be assumed. 
Considering the two SAR images forming an interferometric pair, the complex pixel 
value in each may be written as: 
 

 
( ) ( ) ( )
( ) ( ) ( )

1

2

1 1 1 1 1

2 2 2 2 2

exp 2 exp 2 exp 2

exp 2 exp 2 exp 2

j
e

j
e

V j kr W j kr k r A e

V j kr W j kr k r A

φ
1

2e
φ

= − = − − ∆

= − = − − ∆
 (1.1) 

 
where k = 2π/λ is the wave number, λ  the radar wave length, ri the slant range 
distance to the pixel in image i, ∆rei represents an excess path-length due to 
atmospheric propagation at acquisition time i and Wi shall be assumed a complex, 
circular Gaussian random variable. The former models various sources of 
decorrelation between the backscattered phase at the two acquisition times 
[Zebker1992]. 
The phase of an interferogram pixel is then: 
  
 ( ) ( ) ( )*

1 2 1 2 1 2 1 2 mod(2 )
arg( ) 2 2 e eVV k r r k r r

π
φ φ= − − − ∆ −∆ + −⎡ ⎤⎣ ⎦  (1.2) 

     
The first term on (1.2) is the one of interest for height and displacement 
measurements, the remaining terms and the fact that phase values may be observed 
only in the [0, 2π) interval are considered disturbances for these applications. 
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Phases φ1 and φ2 are uniformly distributed in [0, 2π), however provided W1 and W2 are 
highly correlated, the difference (φ1-φ2) is sharply peaked around a zero mean value 
[Bamler1998]. A second error term is due to atmospheric delay, a discussion of which 
shall be postponed to chapter 4 of this work. At this point it is merely of interest to 
state that in general this contribution may not be neglected. Finally, all phase values in 
the interferogram are observed in the interval [0, 2π), and an unwrapping algorithm is 
used to derive the correct phase differences between pixels. The unwrapping 
procedure itself is carried out from a certain starting point in the image, thus 
providing the absolute phase only up to an unknown constant. This in turn may be 
determined either from one or more reference points of known elevation (tie-points) 
or from the radar data itself [Rosen2000]. In this work the former approach shall be 
followed (see chapter 3), and for the present discussion it shall be assumed the 
unwrapped phase has been compensated for this ambiguity. 
In the following two paragraphs, equations relating the unwrapped interferometric 
phase to the geophysical parameters of interest for this work shall be derived, 
assuming no error sources are present. An overview of these shall be provided in 
paragraph 1.4, postponing a detailed discussion to further chapters of this thesis.  
 
 
1.2   Height measurement from a single interferogram 
 
From the geometry in Fig. 1, assuming a flat earth, and no displacement between the 
two acquisitions, height above a reference surface may be computed solving the 
following equations for the radar look angle θ and topographic height h 
[Zebker1994a]:  
 

 ( )

1

4 sin

cos

unw B

h H r

πφ θ α
λ

θ

= − −

= −
 (1.3) 

 
In the above, H represents the satellite height above the reference surface, B the 
interferometric baseline, and α its orientation angle. These quantities may be derived 
from the satellite state vectors, and in the present discussion it is assumed these aren't 
affected by any error. Finally r1 represents the slant range measured from satellite 1, 
which is obtained from the SAR image control data fields. 
For convenience in following discussions, it shall be useful to solve (1.3) by 
introducing  the flat earth contribution  to the unwrapped interferometric phase, which 
shall be referred to in the following as "flattening phase"  and is given by (1.4). 
 

( 0
4 sinflat B )πφ θ α
λ

= − −  (1.4) 

 
In the above θ0  represents the look angle for each point in the image, assuming zero 
local height.  
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Fig. 1 Interferometer geometry 

 
Subtracting this contribution yields the unwrapped topographic phase (1.5), which 
may be related to the sought height through known terms. 
 

( ) ( ) ( )0
0 0

1 0

cos4 4cos
sintopo unw flat

B
B h

r
θ απ πφ φ φ θ θ θ α

λ λ
−

= − − − − = −
θ

 (1.5) 

 
In (1.5) the last equality follows by differentiating both sides of (1.3). 
Throughout this thesis reference shall be made to the parallel and perpendicular 
components of the baseline, which are depicted in Fig. 1 and defined as follows 
 
 ( ) 1sin 2B B θ α r r= − −  (1.6) 

 ( )cosB B θ α⊥ = −  (1.7) 
 
These are signed values, and their sign is defined implicitly by the choice of the 
orientation angle α, [Hanssen2001]. In the present work this angle shall be chosen to 
be positive counter-clockwise, starting from the reference satellite 1, as for the look 
angle θ. With this choice B⊥ will be positive whenever satellite 2 is located to the 
right of the slant range of satellite 1 and in this case B|| will increase from near to slant 
range and from foot to top of a mountain.  
Having defined these quantities, the unwrapped topographic phase may conveniently 
be rewritten as: 
 

  0,

1 0

4
sintopo

B
h

r
θπφ

λ θ
⊥= −  (1.8) 

 
In the above 

0,B θ⊥ represents the perpendicular baseline component for each point in 
the image, assuming zero local height. 
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For further discussions, it shall finally be useful to consider also the variations in the 
unwrapped interferogram phase (∆φunw) in the error free case. In the absence of 
surface motion, contributions are due to slant range variations (∆r) at a constant 
height and to height variations (∆h) at a constant slant range. These effects shall be 
considered to be decoupled throughout this thesis, such that: 
 
 unw flat topoφ φ φ∆ = ∆ + ∆  (1.9) 
 
It may be proved that the following equations hold for the terms on the right hand side 
of (1.9): 
 

 0,

1 0

4
tanflat

B r
r

θπφ
λ θ

⊥ ∆
∆ = ⋅

⋅
 (1.10) 

   

 0,

1 0

4
sintopo

B h
r

θπφ
λ θ

⊥ ∆
∆ = ⋅

⋅
 (1.11) 

 
 
1.3   Overview of error sources 
 
Accuracy in height and displacement (or velocity) measurements is known to be 
affected by orbit indetermination (baseline errors), scattering decorrelation (phase 
noise), atmospheric propagation and phase unwrapping errors.  
Baseline values must be derived for each interferogram pixel, based on orbital data. 
Errors are mainly due to radial and across track satellite positioning errors. These in 
turn cause an error in the flat-earth phase (1.4) as well as in the phase-to-height (1.8) 
conversion factor. The first is predominant for ERS interferometry. For a fixed 
azimuth position, the error in the flat-earth phase is well approximated by a parabolic 
(almost linear) function of slant range. For ERS interferometry, this may cause a 
phase gradient ranging between 0 to 1 phase cycles across the whole interferogram 
[Hanssen2001]. In the along track dimension, baseline varies linearly in time during 
image acquisition due to track convergence.  
Phase noise is due to various error sources, including processing artefacts [Just1994], 
thermal noise, geometric and temporal decorrelation [Zebker1992]. Thermal noise 
depends on the radar electronics and for the current systems it becomes significant 
only on areas of low backscatter. Geometrical (or baseline) decorrelation is due to the 
finite resolution cell of the radar, which causes the phase value of each pixel to be 
determined by a coherent sum of contributions from elementary scatterers (of 
wavelength size) in each cell. As interferometric baseline increases this coherent sum 
will be increasingly decorrelated in each acquisition geometry, eventually reaching 
zero for the so called “critical” baseline value. Finally, temporal decorrelation refers 
to changes in scatterer properties between the two acquisition times. All these 
decorrelation error sources are weakly correlated from pixel to pixel, or equivalently 
their power spectrum is broadband.    
Atmospheric errors are due to spatial variations of the atmosphere’s refractive index, 
which alter the phase (and group) velocity of the electromagnetic wave. They have 
received much attention in the last decade, due to their order of magnitude, which 
may amount up to several phase cycles at C band [Hanssen2001]. Such variations 
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occur on a wide range of spatial scales, from hundreds of meters to thousands of 
kilometres, causing the phase bias in (1.2) to be inhomogeneous within the 
interferogram and the artefacts to have a strong spatial correlation. 
Phase unwrapping errors are caused by and the presence of phase gradients between 
adjacent pixels exceeding π in magnitude. In turn these are due to phase noise and 
radar shadow, to phase under-sampling induced by steep topography and phase noise 
as well as by discontinuous surface deformation and by radar layover. Errors arise in 
the integration of phase gradients, which can lead to local as well as large-scale errors 
due to error propagation. 
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Chapter 2 
 
 
 

Current Error Estimation and 
Correction Techniques 
 
 
2.1. Introduction 
 
A common objective of all interferometric processing schemes is to distinguish the 
contributions due to the geophysical signals of interest from those due to the error 
sources mentioned in paragraph 1.4. In the literature of the last decade, several 
researches have addressed the single error sources, mainly in the context of height and 
displacement measurements from one or two interferograms. Multi-interferogram 
processing schemes have been proposed more recently, which exploit the greater 
amount of available data not only to achieve better accuracies in the derived 
geophysical measures, but also to improve error estimation. This section aims at 
summarizing the results of these studies regarding the latter purpose. As far as single-
interferogram techniques are concerned, this section shall report only the results of the 
main studies, whereas a more detailed discussion on error modelling and 
characterization may be found in chapter 3, chapter 4 and chapter 5, which deal 
specifically with baseline calibration, atmospheric and phase unwrapping errors 
respectively. 
 
 
2.2. Single-interferogram techniques 
 
2.2.1   Phase decorrelation 
 
The phase variance of each interferogram pixel due to this error source is generally 
computed from the local magnitude of the coherence, γ . The latter is defined as the 
complex correlation coefficient between pixel values in the images forming the 
interferometric pair [Rodriguez1992], [Zebker1992]. This parameter is in turn 
estimated through a spatial average around each considered pixel, assuming the 
processes which contribute to phase noise to be ergodic and stationary within the 
estimation window [Bamler1998]. It has been observed that this estimate is a biased 
one for low coherence values, and approaches to obtain unbiased estimates have been 
proposed [Touzi1999]. Equations relating the probability density function of the 
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observed interferometric phase around its expected value, in the presence of 
decorrelation, have been published [Just1994], [Eineder2005]. These are a function of 
coherence and of the number of “looks” L, i.e. the number of samples averaged in the 
estimate. Evaluation of these expressions to derive the phase variance involves special 
functions so that the Cramer-Rao bound for the phase variance (2.1) is often used. It 
has been proved to be accurate enough, provided more than four looks are taken 
[Rodriguez1992].  
 

 
( )2

2
2

11
2Lφ

γ
σ

γ

−
=  (2.1) 

  
In order to reduce the phase variance due to phase noise, many processing schemes 
implement a fringe-rate filtering technique proposed in [Goldstein1998], a refinement 
of which is proposed in [Baran2003]. This method performs an adaptive band-pass 
filtering of the fringe-rate, dφ/dr, in the frequency domain, relying on the wide 
bandwidth of the processes contributing to phase noise compared to the fringe rate 
variations due to slant range and terrain slope. As far as error estimation is concerned, 
the impact of this filtering on the properties of the remaining error sources, has not 
been assessed to date.  
 
 
2.2.2   Orbit indetermination 
 
Several authors have proposed a tie-point approach to refine the orbital data and 
“calibrate” the interferometric baseline [Werner1993], [Small1993], [Zebker1994]. 
This procedure relies on the availability of a set of points of known height in the 
image and on a baseline error model. One choice for the former may be a physical 
model, which typically accounts for the along track convergence of the orbits through 
a linear variation of two baseline vector components with the along-track coordinate 
[Small1993], [Joughin1996], [Costantini2001]. Baseline models which account 
directly for the induced phase or path length error in the interferogram have also been 
proposed [Zebker1994], [Hubig2000], [Mohr2003]. Using the tie-points, a system of 
equations may be formed, as detailed in chapter 3 of the present work, and solved in a 
least-square sense for the parameters which describe the baseline model. Estimation 
of the absolute phase constant may be carried simultaneously [Small1993]. 
Improved implementations of the tie-point strategy, in the face of phase unwrapping 
errors have been proposed [Hubig2000], [Costantini2001]. Furthermore, the 
simulations presented in [Zebker1994] and [Joughin1996], have shown that the 
robustness of tie-point methods strongly depend on the spatial configuration and 
number of the control points. 
Other authors have argued that the effects of atmospheric and phase unwrapping 
errors on this procedure are anyhow not easily predictable, and that baseline 
calibration is more safely performed by removing a phase bias and a slope (or second 
order polynomial) from the interferogram [Hanssen2001]. A trend-removal approach 
known as “artificial baseline” correction is also proposed in [Tarayre1996] and 
[Massonnet1998]. The baseline is corrected by observing the phase difference 
crossing the interferogram from near to far range and adjusting the slave satellite 
position accordingly. It is argued in [Hanssen2001] that this procedure is effective 
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only for the parallel component of baseline error (which leads to flattening error), and 
may potentially worsen the error in the perpendicular component. 
It has been pointed out however that the trend-removal approaches may have hardly 
predictable consequences on the statistical properties of atmospheric error sources, 
thereby complicating their estimation and/or correction during further processing 
steps [Williams1998]. 
   
 
2.2.3   Atmospheric propagation 
 
Since atmospheric artefacts were first observed in interferograms [Massonnet1995a], 
[Massonnet1995b], [Goldstein1995], [Zebker1997], efforts have been devoted to their 
statistical characterization and reduction. Several recently proposed statistical 
modelling approaches have drawn upon experiences within the radio wave 
propagation community and Kolmogorov turbulence theory [Tatarski1961]. 
Accordingly, the main effects on propagation are due to fluctuations in the water 
vapour concentration, which are believed to occur at many different scales. The 
magnitude of the disturbances exhibits a power law spectral density. A significant 
correlation is likely to be present at distances of several kilometers, which also 
implies that the spatially estimated correlation γ may be high also in the presence of 
strong atmospheric errors. Basically the ergodicity hypothesis falls and a real 
ensemble average would be needed in order to capture the atmospheric error 
contribution through γ. This is not possible in a single-interferogram framework 
Recent studies have related GPS (Global Positioning System) and VLBI (Very Large 
Basline Interferometry) observations and modelling techniques to SAR 
interferometry. 
In [Williams1998] a covariance matrix for tropospheric delays in a SAR 
interferogram is proposed, based on a model originally proposed for VLBI 
applications, [Treauhaft and Lanyi, 1987]. This in turn draws upon Kolmogorov 
turbulence theory [Tatrski1961], for description of the second order statistics of 
refractivity variations. 
In [Hanssen1998a] and [Hanssen2001], an extensive comparison between InSAR 
(Interferometric SAR) observations of atmospheric artefacts and meteorological data 
is carried out. Based on this, a power spectral density model is proposed for the 
neutral atmospheric delay, drawing upon turbulence theory. The model requires a free 
parameter to be initiated in order to provide a correct statistical description of the 
artefacts affecting a specific data set. A statistical approach was adopted to this end in 
[Hanssen2003], whereas available microwave radiometer measurements were used in 
[Moisseev2002]. 
Due to the reduced topography of the data set examined in [Hanssen1998a], the 
effects of topography-correlated artefacts, due to changes in the vertical stratification 
of the refractive index at the two acquisition times, was not examined in this study. 
However an empirical model for the phase standard deviation due to this error source 
is proposed in [Hanssen2001], based on radiosonde profiles of atmospheric 
parameters. 
As far as atmospheric error correction is concerned, current researches address the use 
of GPS Zenith Neutral atmosphere Delay (ZND) measurements as well as imaging 
spectrometer data (NASA-MODIS, ESA-MERIS). 
Calibration using ZND measurements was first proposed in [Williams1998]. Due to 
the sparse grid (GPS network) on which such data is available, an interpolation is 
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required to apply any correction to a SAR interferogram. Statistical interpolators, 
based on the second order statistics of atmospheric excess delay, are expected to be 
the most suitable according to [Williams1998]. A statistical model has been recently 
proposed for this purpose in [Li2006], which accounts also for topography-correlated 
atmospheric artefacts. A similar model was derived in [Emardson2003], based on 
GPS measurements, in order to estimate the accuracy of an interferometric SAR stack 
for surface deformation rate measurements. 
Feasibility studies and first results have been recently carried out, concerning 
correction of tropospheric water vapour fluctuations using Spectrometers 
[Moisseev2003], [Li2005], [Li2006]. The first results highlight the importance of 
these measurements to be synoptic with SAR acquisition as well as that of the 
interpolation method used to extend the measurements from the resolution of current 
imaging spectrometers (300 m for MERIS, 1 km for MODIS) to the finer SAR 
resolutions (40 m to 100 m for ERS interferograms). 
 
 
2.2.4   Phase unwrapping errors 
 
While a wealth of literature exists regarding phase unwrapping algorithms and causes 
of phase unwrapping errors are also reported and discussed in several papers, 
reviewed in chapter 5 of the present work, very few explicitly address characterisation 
and/or correction of phase unwrapping errors. 
A procedure based on a segmentation map, formed from residue density thresholding 
was presented in [Hubig2000] to automatically correct for baseline and PU errors. 
Pixels exceeding a certain residue density threshold and those exhibiting a phase jump 
greater than π with one of their neighbours are masked out. The non-masked out 
pixels are divided into connected regions, allegedly the consistently unwrapped ones. 
A least square fit of available tie points is then performed in each region to estimate 
the baseline. The best estimation strategy was found to be a four-parameter estimate 
in the largest connected region and just a bias estimate in all the others. In this way 
calibration effectively removes also large-scale PU errors, providing the regions of 
consistently unwrapped phase were correctly identified. To this end, the method is 
proved to be very sensitive to the residue density threshold value, although 
conservative thresholds may anyhow be set at the price of a greater percentage of 
masked out regions.   
In [Galli2001], an algorithm based on a Maximum Capacity Path (MCP) index is 
presented, which allows location of PU errors and potentially also correction of large 
scale ones. The algorithm relies on a confidence map, a measure of phase quality, 
which in the author’s tests is a correlation coefficient magnitude map, although in 
principle also amplitude and wrapped phase information could be combined. To each 
arc connecting neighbouring pixels a capacity is associated based on this map, low 
capacity meaning low quality data. A reference pixel is chosen arbitrarily and the path 
crossing the highest quality data, i.e. the one with maximum capacity, is chosen from 
each pixel to the reference one. The capacity of such a path is referred to as the MCP 
index of that pixel, a measure of how well each pixel is connected to the reference 
one. The computation of this index for each pixel creates a connectivity map, in which 
problematic areas should be recognizable. A threshold on the MCP index may then be 
used to mask out unreliably unwrapped regions, and Ground Control Points (GCPs), 
when available, may be used to try and correct for large-scale errors. 
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In [Suchandt 2003] the quality assessment strategies used for the processing of 
SRTM/X-SAR data are briefly described. Three tools were used to guide operating 
personal in identifying scenes with problematic PU: the above mentioned 
segmentation procedure [Hubig2000], a comparison with a synthetic interferogram 
generated from an external DEM, and an automatically generated map of allegedly 
wrong branch cuts. The latter was created based on cut length, and on a comparison 
between the costs associated to the cut by the used MCF implementation and the 
wrapped phase gradients across the cut. 
Also in other papers, including the already mentioned [Hubig2000], [Galli2001] and 
[Suchandt2003], a synthetic interferogram from an external DEM is exploited. The 
difference image of the unwrapped phase and the synthetic one is visually inspected, 
for example in [Chen2001] and [Chen2000], while an analysis of its pdf has also been 
used to assess the level of agreement of the two data sets in [Hubig2000]. Also coarse 
resolution DEMs, on the order of 1 km, proved to be useful for this kind of quality 
check [Suchandt2003], [Hubig2000]. 
Finally, phase unwrapping reliability is discussed in the context of region growing 
algorithms, such as [Chen 2002] and references therein, although in these studies the 
presented methodologies are aimed at performing the unwrapping, avoiding error 
propagation rather than estimating the error of an unwrapped field. 
 
 
2.3    Multi-interferogram techniques 
 
2.3.1   Terrain elevation 
 
As far as the generation of Digital Elevation Models (DEMs) is concerned, a method 
has been proposed [Ferretti1999], which exploits multiple interferograms and wavelet 
transforms to separate the contribution of an error source with a power law spectral 
density, i.e atmosphere, from other error contributions. This has first of all the effect 
of allowing proper weighting coefficients to be derived, in order to carry out a 
weighted average of the DEMs obtained from each interferometric pair. Secondly it 
allows the error variance to be estimated for each pixel. The procedure assumes orbit 
errors have been estimated and requires unwrapped interferograms, which potentially 
may contain errors which are unaccounted for. 
A strategy to exploit a multiple interferogram data set for  phase unwrapping and 
baseline estimation has also been proposed in literature [Ferretti1996], [Ferretti1997]. 
An algorithm which combines this procedure with the above described wavelet based 
weighting scheme was presented in [Allevi2001] and has been proved to give robust 
results using 6 to 8 ERS tandem interferograms. Ultimately it provides a pixel error 
variance estimate, which accounts for all main error sources except for a final phase 
unwrapping step. Potentially however, phase undersampling problems are strongly 
reduced compared to the single-interferogram case, provided the baseline 
configuration is favorable. This is achieved by obtaining a coarse topography by 
locally applying a Maximum Likelihood (ML) approach. This in turn is based on the 
unwrapped phase gradients and on statistical models for their probability density 
functions, for a given height difference, interferogram geometry, amplitude and 
coherence. Subtracting the contribution of this coarse topography to each 
interferogram is expected to strongly reduce the number of phase residues, easing the 
task of conventional phase unwrapping algorithms. Baseline errors are estimated from 
the unwrapped phase, by a local least-mean-squares estimate, either using points of 
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known height (tie-points) or by comparing to the ML height estimate derived from the 
largest baseline interferogram. 
A multi-interferogram DEM generation algorithm, which exploits a similar ML 
approach as in [Ferretti1996], is described in [Eineder2005]. This methodology differs 
though, in that it does not require phase-gradient computation to carry out phase 
unwrapping. Furthermore the information coming from the single interferometric 
pairs is combined in the height domain, allowing for exploitation of satellite passes 
with different viewing geometries, as well as low resolution DEMs. However 
atmospheric artefacts, and in general spatially correlated ones, may not be accounted 
for and the error variances derived therefore do not account for this error source. 
 
 
2.3.2   Terrain displacement 
 
As far as displacement in general is concerned, two classes of multi-interferogram 
processing schemes have been proposed, which, assuming an initial DEM of the area 
of interest is available, are able to provide a displacement measurement as well as an 
atmospheric error estimate and a refinement of the initial DEM. The first class 
comprises the original Permanent Scatter (PS) technique developed within the 
Politecnico di Milano research group [Ferretti2000], [Ferretti2001], [Colesanti2003] 
as well as other "Persistent Scatter" algorithms which share the same basic principles 
(see [Hooper2004] and references therein). The second class comprises the Small 
BAseline Subset algorithm (SBAS) algorithm [Berardino2002] and the Coherent 
Pixels Technique (CPT) [Mora2003]. 
For the present discussion it is just of interest to note that both classes of algorithms 
isolate atmospheric components using a spatio-temporal filtering, relying on the poor 
temporal decorrelation of this error source compared to motion components and on its 
longer spatial correlation length compared to non-linear displacement. Moreover 
baseline errors are treated as long-wavelength atmospheric errors (smoothly varying 
throughout the image) in both classes of algorithms. Finally phase unwrapping is 
carried out using a multi-image approach, in which the major contributions to critical 
phase gradients, namely topography and linear motion components, may be estimated 
and removed prior to this processing step. 
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Chapter 3 
 
 
 

Proposed Error Prediction Framework 
 
 
3.1   Introduction 
 
This section summarizes an error prediction framework recently submitted for 
publication [Mohr2006a]. It is the result of work carried out by Prof. Johan Mohr at 
Denmark’s Technical University, Electromagnetics department (EMI). 
The problem addressed is the estimation of the variance of height measurements 
obtained from a single interferometric pair. It is assumed a set of Ground Control 
Points (GCPs) are available, of known height and position. Separation of the 
contribution of the various error sources from that of terrain topography is formulated 
as a least-square estimation problem in the presence of coloured noise. The goal is to 
estimate a constant path length (or equivalently phase) bias and higher order 
coefficients of a baseline error model, by computing a least-mean-square fit to the 
observed path length error at each GCP. 
The estimation procedure assumes the mean error on the observables is zero and 
requires knowledge of the variance-covariance matrix of the error affecting the GCPs. 
In order then to predict the phase variance of an interferogram pixel after it has been 
calibrated by the estimated baseline, it is also required to know the variance of the 
error affecting each pixel of interest and the covariance between the error affecting 
each pixel of interest and each GCP. 
The required statistics may be derived through error models for each error source, 
which shall be the objective of chapters 4 and 5 as far as tropospheric delay and phase 
unwrapping errors are concerned respectively. 
 
 
3.2   Height errors  
 
3.2.1 Notation and problem statement 
 
The unwrapped interferometric phase is assumed to be composed of the following 
terms: 
 

 ( , ) topo disp base atmo noise unwx yϕ ϕ ϕ ϕ ϕ ϕ ϕ= + + + + +  (3.1) 
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which are all functions of the SAR image coordinates (x,y). The terms are due 
respectively to terrain topography, terrain displacement, baseline error, atmospheric 
delay, phase noise and unwrapping error. In the following φbase shall represent only 
flattening errors caused by a wrong baseline value, and it will be supposed φtopo can 
be calculated if the elevation is known (see paragraph 1.2). 
In the following the observable shall be considered the slant range difference, δ, 
referred to as “interferometric path-length”. For a repeat-pass interferometer it is 
related to φ by:  
 

 
4
λδ ϕ
π

= −  (3.2) 

 
An error in interferometric path length translates to an error in the inferred height 
through the following linear relation (see equation 1.8), sufficiently accurate for error 
analysis: 
 

 ,
sin

h topo
R

B δ
θσ σ

⊥

=  (3.3) 

 
R represents slant range, θ and B⊥ are respectively the radar incidence angle and the 
perpendicular baseline value assuming zero height, σδ and σh represent the standard 
deviation of interferometric path length and elevation respectively. 
Displacement error in the radar line-of-sight direction is simply 
 
 ,dispd δσ σ=  (3.4) 
 
where σd denotes the standard deviation of the line-of-sight displacement.  
For error analysis, the following terms are of interest: 
 
 ( , ) base atmo noise unwx yδ δ δ δ δ= + + +  (3.5) 
 
Any deviations of δ(x,y) from zero translate into geophysical measurement errors 
through (3.4) and (3.5). 
  
 
3.2.2   Baseline calibration 
 
The effects of baseline errors on the flattening phase are well approximated by a path 
length of the form [Mohr2003], 
 

 1 2 3 4( , )base x y b b x b y b xyδ = + + +
= ⋅p b

 (3.6) 

 
where p = [1,x,y,xy]´, b = [b1,b2,b3,b4]´, x is the along-track coordinate, y is the   
across–track coordinate, and bi the coefficients to be estimated through the baseline 
calibration procedure.  
If GCPs of known horizontal position, height and displacement (usually equal to zero) 
are available, their expected path length contributions may be subtracted from the 
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observed values. The resulting interferometric path length, δobs, observed at the GCP 
positions is then given by 
 
 ( , ) ( )base atmo noise unw gcpx yδ δ δ δ δ δ= + + + +  (3.7) 
 
The first term on the right hand side is the deterministic baseline error given in (3.6). 
The remaining error terms are realizations of zero mean stochastic processes and there 
mean is assumed to be zero. The last term on the right accounts for errors in the 
horizontal position, height and displacement of the GCP and its variance shall be 
denoted by σ2

gcp. All path-length biases are contained in the b1 parameter in (3.6). 
This term shall also comprise an absolute phase constant and the average atmospheric 
delay between the two acquisitions.  
Assuming the error terms mutually independent and normally distributed, the least-
square estimation problem for N GCPs may be written as 
 
  (3.8a) y = Xb+ ε
where 
 
 [ ]1,...., ´Nδ δ=y  (3.8b) 
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X ⎟
⎟

 (3.8c) 

 
 ( )0,N∈ εΣε  (3.8d) 
 
  (3.8e) = + + +ε atmo noise unw gcpΣ Σ Σ Σ Σ
 
Variables [δ1,…,δ N], represent the observed GCP path lengths, after subtraction of all 
known terms. Matrix X depends on the horizontal position of the GCPs. It should be 
noted that the coordinate system in which these are provided are not important, 
provided the same choice is made for vector p in (3.6). The matrixes on the right hand 
side of (3.8e) represent the variance-covariance matrixes of each error term. Two of 
them shall be considered known, namely Σgcp and Σnoise . These shall be diagonal 
matrixes with variance σ2

gcp and σ2
γ respectively. The latter shall be approximated by 

the following [Rodriguez1992] (cfr. also equation 2.1), 
 

 
( )22

2
2

11
4 2Lγ

γλσ
π γ

−⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠

 (3.9) 

 
where L represents the number of “looks”, i.e. the number of pixels averaged in the 
estimation of γ.  
The least-square solution of (3.8a) is , given by b̂
 



 22

 ( )ˆ =

=

-1 -1
εΣ Σ

-1
b X' X X' ε y

Wy
 (3.10) 

 
 
3.2.3   Calibrated path-length uncertainty 
 
The baseline estimate is used to calibrate the observed path length, δp, at a pixel with 
coordinates (x,y). The calibrated path length, δp

*, shall be δp
* = δp - . There will 

be residual errors after the calibration, due to errors on the observation itself, namely  
δ

ˆ⋅p b

p,atmo, δp,noise, δp,unw, as well as errors in the calibration term ˆ⋅p b , which in general 
will be correlated with δp,atmo, δp,noise, δp,unw, in particularly in the vicinity of GCPs. 
The variance of the calibrated path length may be written as 
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 (3.11a) 

 
where  
 
 =pw W'p

N

 (3.11b) 
 
 1, ,..., 'pδ δ δ⎡ ⎤= − −⎣ ⎦py  (3.11c) 
 
 (0, )N=py pΣ  (3.11d) 
   

 

,1 ,

,1

,

p p p

p

p N

V C C
C

C

− −⎛ ⎞
⎜ ⎟−⎜= ⎜
⎜ ⎟⎜ ⎟−⎝ ⎠

p
ε

Σ
Σ

N

⎟
⎟  (3.11e) 

 
 { } 2 2 2

p p atmo unw noiseV Var δ σ σ σ= = + +  (3.11f) 
 
 { }, ,, ( )p i p i atmo p i unw p iC Cov C r C rδ δ= = + ,( )  (3.11g) 

 ( ) ( )( )1/ 22

,p i i p i pr x x y y= − + −
2

p

 (3.11h) 

 
 The variance of the single pixel interferometric path-length can then be computed as 
 
  (3.12) 2 '

*pσ = pw wpΣ
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Summarizing, the following information is needed to quantify the uncertainty: 
 

1. The positions (horizontal coordinates) of the GCPs 
2. The second order spatial statistics (variance and covariance) of the error 

sources. 
 
The second point of this list relies on error models. Two of these are described in 
chapters 4 and 5 for atmosphere and phase unwrapping errors respectively. In 
particular modelling efforts should be aimed at computing the following quantities: 
 

• the error variance, ( )
ipVar δ , for each point in the image (strictly speaking, 

only for each pixel of interest and for each GCP). 
• the variance of the error difference, (

i jp pVar )δ δ− , for any pair of points in 
the image (strictly speaking only the pairs formed between pixels of interest 
and GCPs are needed). 

 
In fact, the error covariance matrix can be computed from them through the following 
equation: 
 

{ }1( , ) ( ) ( ) ( )
2i j i j i jp p p p p pCov Var Var Varδ δ δ δ δ δ= + − −  (3.13) 
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Chapter 4 
 
 
 

Atmospheric Error Modelling 
 
 
4.1   Physical causes for atmospheric artefacts in SAR interferograms 
 
Several studies carried out in the last decade have established that SAR 
interferograms are sensitive to: 
 
- Differences in the horizontal variations of vertically integrated refractivity at the 

two acquisition times. 
- Differences in the vertical stratification of refractivity at the two acquisition 

times, between two points at a different height. 
 
Such differences are expected to originate from the radar wave propagation through 
the different atmospheric layers, particularly troposphere and ionosphere. From the 
radio propagation scientific community it is well known with that a wave propagating 
through the atmosphere undergoes bending and propagation delay. For the incidence 
angles of current remote sensing satellites, the effects of the former on radar 
interferometry are negligible compared to those of the latter [Hanssen1998a]. 
Propagation delay is caused by variations of the refractivity, N, along the path 
between the sensor and the ground, and translates to an excess path length ∆Re 
measured by the radar. Assuming the wave has travelled through a vertical distance 
H, this quantity is given by (4.1) [Hanssen1998a, pg. 11]. 
 

 -6

0

10  
cos

H

e
NR dh
θ

∆ = ∫  (4.1) 

  
In writing (4.1) the defining relation N = 106·(n-1) has been used, where n is the 
atmospheric refractive index. 
Excess path length may be expressed in m, or rather in phase cycles referred to a 
specific radar wavelength. In the following the ERS wavelength of 5.66 cm will be 
the reference. 
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In turn N is locally related to the total atmospheric pressure (P, in hPa), temperature 
(T, in K), partial pressure of water vapour (e, in hPa), electron density (ne, per m3), 
radar frequency (f, in Hz) and liquid water content (W, in g/m3). Many equations have 
been proposed in literature, for the present work it is chosen to use the following 
[Hanssen2001, pg. 202] (originally reported in [Davis1985], modified from [Smith 
and Weintraub 1953]): 
 

 7
1 2 3 2 24.028 10 1.45enP e eN k k k W

T T T f
⎛ ⎞= + + − × +⎜ ⎟
⎝ ⎠

 (4.2) 

  
In the above k1 = 77.6 K hPa

-1, k2 = 23.36 K hPa
-1 and k3 = 3.75 x 105 K2 hPa

-1. The 
values of these constants are reported for completeness, although they shall not be 
used throughout this thesis. 
What is important for further discussions is instead to consider the different terms on 
the right hand side of (4.2). The first causes the so called “hydrostatic delay”, the 
second term is often referred to as the “wet” component of the refractivity, the third is 
due to ionosphere and the last accounts for liquid water in clouds. Precipitations also 
cause a propagation delay but this may be more conveniently treated as a forward 
scattering problem and modelled as a function of the rainfall rate (see [Moisseev2003] 
for an application to SAR interferometry). 
As stated in the bullet list above, SAR interferograms are sensitive to differences in 
spatial gradients of the excess delay between two acquisitions, rather than to biases 
affecting a whole image. Sensitivity analysis applied to interferometric SAR systems 
has established, [Tarayre1996], [Zebker1997], [Hanssen1998a], [Hanssen1998b], 
[Hanssen2001], that the greatest horizontal refractivity gradients are caused by the 
wet term in (4.2). In turn this term is sensitive to temperature changes, but most of all 
to variations in partial water vapour pressure. For a fixed temperature this is 
equivalent to spatial gradients of water vapour density or relative humidity. 
Significant contributions to the excess path length may also be due hydrometeors, 
particularly the liquid content of cumulonimbus clouds and heavy rainfalls 
[Tarayre1996], [Hanssen1998a], [Moisseev2003]. Finally, noticeable effects have 
been related to cold fronts and gravity waves [Hanssen1998a], [Lyons2003].  
An extensive comparison with meteorological data [Hanssen1998a] suggests that 
these phenomena are strongly related and that water vapour content is often the 
driving and most critical parameter for interferometry. In fact phenomena like 
cumulus and cumulonimbus clouds and thunderstorms have been observed to be 
associated with strong local variations in relative humidity. These features in turn 
often characterize the leading edge of weather fronts. Gravity waves may be due to 
front and large-scale cloud formation, but also to air-flow over mountains and flow 
instability in the jet stream (which is an air current at about 11 km altitude) 
[Lyons2003]. 
Significant moisture variations may be expected at scales between 1 km and 20 km 
and the magnitude of the disturbance in ERS tandem images is likely to be between 
0.5 and 2 phase cycles, although variations as large as 4.5 cycles have been observed 
in ERS-SAR interferograms and imputed to thunderstorms in both acquisitions 
[Hanssen1998a]. Gravity waves produce wave-like disturbances in interferograms, 
with typical wavelengths of 15-20 km and amplitudes of 0.2 cycles [Lyons2003].   
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Hydrostatic and ionospheric contributions to the excess path length are expected to be 
the greatest in absolute magnitude (2-3 m and 30 cm to 1.5 m respectively) for a 
single image acquisition. Hydrostatic delay is well understood and may be modelled 
with millimeter accuracy from surface pressure measurements. Its spatial variations 
are expected to be significant over scales which are large compared to typical image 
sizes (100 km). Ionospheric effects on SAR interferometry and their modelling may 
instead be considered a current research field, particularly concerning the effects at 
mid-latitudes. In fact a satisfying level of agreement has not yet been reached between 
the identified driving mechanisms and the observations [Hanssen2001]. It is often 
assumed, in absence of further knowledge, that ionosphere causes only long-
wavelength fluctuations in the refractivity compared to the size of SAR images.  
As far as vertical stratification is concerned, its contribution to the excess path length 
is correlated with topography. Results presented in [Hanssen2001] indicate that also a 
moderate 500 m height difference may produce noticeable artefacts of about 0.2 
cycles. However in [Emardson2003], heights up to 3 km are considered and it is 
concluded that the excess delay statistics have only a weak dependence on height. 
In the following, the modelling of ionospheric and vertical stratification effects will 
not be addressed and will be left for future studies, and the focus shall be on statistical 
modelling of spatial fluctuations of tropospheric refractivity.  
 
 
4.2   Statistical modelling approaches 
 
4.2.1 Refractivity and delay structure functions 
 
In several studies statistical modelling of water vapour fluctuations has been based 
upon the refractivity structure function defined as: 
 

  (4.3) ( 2
( , ) E ( ) ( )ND r R N r R N r⎡= + −⎢⎣

 
In the above  and r R  represent the 3-dimensional position and displacement vector 
respectively and the expected value is taken over all possible atmospheric states.  
According to the “turbulence theory” developed by Russian scientists [Tatarski1961], 
[Kolmogorov1941], the distribution of water vapour is the result of a turbulent 
velocity field acting on atmospheric constituents. Quoting [Lay1997], “... turbulence 
is injected into the atmosphere on large scales by processes such as convection, the 
passage of air past obstacles and wind shear, and cascades down to smaller scales 
where it is eventually dissipated by viscous friction. Between the outer scale of 
injection and the inner scale of dissipation-known as the inertial range-it is a good 
approximation to say that kinetic energy is conserved.” Based on this consideration 
the following power law dependence was proposed by [Tatarski1961] and is referred 
to in literature as “3-dimensional Kolmogorov turbulence”:  

 
 (4.4) 2 2/3( )          N N iD R C R l R l= o
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In the above R R= , while  and  represent the outer and inner scales of the 
turbulence, and identify the inertial-range. In order to derive (4.4), the hypotheses, 
originally put forward by Kolmogorov, of local homogeneity and isotropy of the 
turbulence were also assumed.  

ol il

Considering the wave propagation between the radar and a point on earth’s surface, 
the quantity of interest is wavefront delay, which results from integration of the 
refractivity field along the line of sight and is therefore a two dimensional quantity. In 
the following the one-way zenith delay (or zenith excess path length) shall be 
indicated with τ and its units shall be m. Its structure function may be related to that of 
the refractivity through the following [Tatarski1961] (cit. in [Coulman1991]): 
 

 ( ) ( ) ( )2 2

0

( ) 2
h

N ND R h z D R z D z dzτ
⎡ ⎤= − + −⎢ ⎥⎣ ⎦∫  (4.5) 

 
In the above variable z represents the vertical dimension and R the horizontal distance. 
It is assumed that refractivity fluctuations (mainly due to water vapour gradients) 
occur below an effective height h, also called “effective tropospheric height” by some 
authors [Treuhaft and Lanyii, 1987]. Furthermore in the derivation of (4.5) second 
order stationarity is assumed for N (i.e. spatial invariance of mean and variance). 
In several independent studies, [Stotskii1973], [Treuhaft and Lanyi, 1987], 
[Hanssen2001], the following two regime power law for  has been observed 
and a third "saturation" regime is conjectured, based on physical constraints:  

( )D Rτ

 

 (4.6) 

2 5/3
0 1

2 2/3
1 2

2 2/3
2 2

         

( )                         

        

l

L

L

C R l R L

D R C R L R L

C L R L
τ

⎧
⎪

= ⎨
⎪
⎩

It is agreed among the above mentioned studies that the first regime corresponds to a 
three-dimensional Kolmogorov turbulence, and L1 should be in the order of a few km. 
For the second regime, it has been observed by [Stotskii1973] that everything goes as 
if the “2/3 law” describing isotropic turbulence, (4.4), could be extended also to scales 
larger than the tropospheric thickness, provided turbulent motion is considered two-
dimensional in character. This interpretation is also currently accepted by some 
authors [Hanssen2005]. Proportionality between the delay and the refractivity 
structure functions then follows from (4.5) for z = 0 and the proportionality constant 
involves the square of the effective tropospheric height. This fact is important and 
shall referred to in comparing the model derived in further sections of this chapter to 
that of [Treuhaft and Lanyi, 1987].   
Finally, for even larger scales, in the order of several hundred kilometers, the structure 
function is bound to “saturate”, otherwise it would represent an infinite variance of 
the long-term atmospheric disturbance [Treuhaft and Lanyi, 1987]. 
What happens physically at the transitions between regimes is not clear though 
[Coulman1991]. Furthermore, as far as modelling is concerned, very different values 
have been proposed for , , .  ol 1L 2L
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In [Treuhaft and Lanyi, 1987], the integral in (4.5) was evaluated numerically, using:   

 
2 2/3

2 /3
( )

1
N

C RD R
R
L

=
⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (4.7) 

 
In the above C = 2.4 x 10-7 m-1/3, L = 3000 km, h = 1 km. Parameter L was introduced 
to obtain a finite value as R tends to infinity, which in turn allows computation of the 
delay covariance function, and in particular of the long-term delay variance. The 
resulting structure function exhibits a continuously varying power law exponent, 
between 5/3 and 2/3 for the scales of SAR interferograms. The constant C was 
obtained from daily delay variances measured from a water vapour radiometer in 
California and radiosonde data from California, Australia and Spain. The value of L 
was chosen for the model output to be in agreement with long-term (annual) rms 
fluctuations. Finally h was tuned based on observed VLBI parameters. In order to 
relate the measured temporal statistics to the spatial ones used in the model, the so-
called “frozen atmosphere” hypothesis was used. According to this, temporal 
fluctuations are caused by wind moving a frozen spatial structure, so that time and 
space are related through the wind speed at a reference height. 
The second order statistics computed through this model have shown good agreement 
both with GPS time-series [Williams1998] and InSAR observations [Hanssen2005], 
[Hanssen2001]. As pointed out by the authors themselves, parameters C, h, s and L 
are actually all site-dependent in principle. A limitation in this model’s formulation is 
that exploitation of acquisition-specific information to tune these parameters would be 
of the same complexity as deriving the model itself, due to the numeric integration 
involved (4.5).      
 
 
4.2.2   Power spectral density (PSD) of phase artifacts 
 
A more recently proposed approach to the modelling of atmospheric artifacts in SAR 
interferometry is through the one-dimensional and one-sided PSD, , of the 
phase variation associated to the excess path length. This quantity is related to the 
samples of the covariance function through a Fourier transform, with respect to spatial 
frequency f and a scale factor inversely proportional to the spatial sampling frequency 
f

( )P fϕ

s: 
 

( )

0                                                                  0
( ) 2 ( / ) exp 2 /       0  

2
s

s s
ms

f
P f fC m f j fm f f

f
ϕ

ϕ π
+∞

=−∞

<⎧
⎪= ⎨ − ≤⎪
⎩

∑ ≤
 (4.8) 

 
In turn the covariance function is in general defined by the following:  
 

( )( )( , ) E ( ) ( )C r R r m r R mϕ ϕϕ ϕ ϕ
⎡ ⎤= − + −⎣ ⎦  
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In the above mϕ represents the mean of the disturbance and will be assumed zero in 
the following. Considering two-way propagation along the zenith direction for the 
moment, and a single acquisition, the radar wave’s phase φ is related to the one-way 
zenith delay τ by the following: 
 

 4πϕ τ
λ

=  

 
Therefore (4.8) holds also for the zenith delay PSD and its covariance respectively.  
For the former to be defined it is necessary to assume stationarity of the process under 
consideration, in order to consider functional dependence only on R R= . This 
implies an implicit acceptance of Kolmogorov’s hypotheses of homogeneity and 
isotropy. This latter property implies that there is no preferred direction along which 
to take the transform in (4.8). Furthermore stationarity implies that the variance of the 
atmospheric delay is assumed constant at every point in its two-dimensional space. In 
the following It shall be indicated with { }Var τ . 
For analytical derivations, the continuous-space version of (4.8) shall be useful, and is 
represented in (4.9) below. 
   

( )

0                                              0
( )

2 ( )exp 2       0

f
P f

C R j fR dR fϕ
ϕ π

+∞

−∞

<⎧
⎪= ⎨ −⎪
⎩
∫ ≥

 (4.9) 

 
The one-way zenith delay structure function may in fact be related to the one-sided 
phase PSD by the following equation [Hanssen2001, pg. 274]: 

 
2

2

0

( ) 4sin ( ) ( )
4

D R fR P f dfτ
λ π
π

∞⎛ ⎞= ⎜ ⎟
⎝ ⎠ ∫ ϕ  (4.10) 

 
The one-way zenith delay covariance function is in turn related to this quantity by the 
following: 
 

 { } ( )( )
2

D RC R Var τ
τ τ= −  (4.11) 

 
Therefore (4.9), (4.10), (4.11) analytically relate PSD and structure function 
modelling, whereas (4.8) is used in practice when dealing with sampled SAR data, 
although the proportionality factor 2/fs is sometimes omitted, as in [Hanssen2001]. 
In the above formulas { }Var τ  is a constant, which in practice may be estimated from 
a long time series, assuming ergodicity of the observed process [Emardson2003]. In 
[Treuhaft and Lanyi, 1987] a notation convention is introduced, by which the symbol 

 is used to represent the delay structure function value at a distance at which 
delay observations are uncorrelated. From the definition of structure function and of 

( )Dτ ∞
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covariance, under the hypothesis of stationarity, it may be verified that 

{ }( ) 2D Varτ τ∞ = ⋅ . The same notation will also be used throughout this work. 
The convenience of PSD modelling lies in the fact the disturbances caused by a 
variety of weather conditions, from thunderstorms to clear sky, were found to comply 
to a similar two-regime model. Based on the results obtained by [Hanssen2003], 
[Hanssen, 2001, pg. 146], [Hanssen1998a, pg. 28], the following equation (4.12) may 
be written: 
 

( )
-5/3

0 0
0 max

-8/3

0
0

1 1     
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1             
2
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fhf P f
f R h

P f
ffP f

f h
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⎧ ⎛ ⎞
⎪ < ≤⎜ ⎟
⎪ ⎝ ⎠= ⎨
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< ≤⎜ ⎟⎪
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 (4.12)
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The observations leading to the above model were made on the interferometric phase, 
rather than just on the two-way phase φ. Nevertheless, assuming the atmospheric 
states to be uncorrelated at the two acquisition times and a simple mapping function 
between zenith and slant range delays, the PSD of the interferometric phase is 
proportional to that of the radar wave’s phase φ, so that a power law dependency as in 
(4.12) still holds. 
The behaviour at scales outside the intervals reported in (4.12) has not been observed 
in interferograms, due to the limited size of SAR images on one hand and to the 
dominance of thermal noise for high frequencies. As spatial frequency decreases (to 
one cycle in several hundred kilometers), the PSD is expected to flatten, i.e. the delays 
must become uncorrelated, and a frequency domain equivalent of (4.7) may be 
conjectured. The behaviour at high frequencies (1 cycle in tens of meters) is not well 
known, but fortunately is less critical due to the small amplitude of atmospheric 
disturbances compared to other noise sources.      
It has been observed, [Hanssen1998a], that depending on the specific atmospheric 
conditions at acquisition time, the scaling factor P0 may change up to an order of 
magnitude. In general the model in (4.12) may be initiated by an available 
measurement of the PSD at a certain spatial frequency f0. In [Moissev2002] for 
example this was estimated from microwave radiometer measurements at 1/50 
cycles/km. If such acquisition-specific information is not available, a value obtained 
from mean global measurements may nevertheless be derived. In fact, using an 
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equation presented in [Treuhaft and Lanyi, 1987] (see (4.23) in the following), P0 may 
be related to the daily variance of atmospheric delay, for which representative global 
measures are available. An average global value for mid-latitudes is reported in 
[Treuhaft and Lanyi, 1987]. Alternatively the likelihood of a given delay daily 
variance, and therefore of a certain P0 value, may be predicted based on an analysis 
carried out by [Hanssen2003]. In the latter a histogram of daily atmospheric 
variability is computed from hourly measurements at 114 GPS receivers at the 
EUREF stations over the year 2002. These stations are mainly distributed throughout 
Europe. A best-fit χ2 distribution with 2 degrees of freedom and non-centrality 
parameter of 10 is found for the daily variance of atmospheric delay. 
 
    
4.3   Proposed model 
 
4.3.1   Modelling objectives 
 
Modelling efforts are aimed at producing a statistical description of atmospheric 
phase delay, which may be exploited in the framework presented in chapter 3. This 
essentially requires computation of the delay covariance matrix. 
In the previous paragraphs equations have been given which relate this quantity to the 
PSD as well as to the delay structure function. In the present work it has been chosen 
to derive an analytical closed form for the latter, starting from a power law PSD 
model. This approach allows in fact for a model parameter P0 to be set based on 
available measurements at acquisition times or on a probability distribution 
representing the likelihood of a certain atmospheric condition. 
In order to relate the delay structure function to the statistics of interest in the 
framework of chapter 3, some considerations specific to SAR interferometry must be 
taken into account besides those already presented in the previous paragraphs of the 
current chapter. In fact an interferogram represents a difference between atmospheric 
states at two acquisition times. Furthermore the radar wave impinges on the earth 
surface from a certain incidence angle rather than from zenith. These issues have been 
discussed in detail in [Williams et al., 1998]. 
As to the correlation between the two atmospheric states, it has been observed that the 
pixel-to-pixel variations in each image are expected to become uncorrelated in a time-
span of 3-4 hours for a 100 km image. This prediction is based on the frozen 
atmosphere hypothesis and on a typical wind speed of 8 m/s. 
As to the mapping of zenith to slant range delays, studies have been cited for which 
the simple cosine mapping function may be used for incidence angles below 75°-80°.  
Based on these considerations, using iδ  to represent the one-way slant range 
atmospheric delay of the i-th interferogram pixel, the following relations may be 
proved [Mohr2006a]:  
 

{ } ( )2, ( ) ( ) (i jCov m D D Rτ τδ δ θ= ∞ − )  
 

{ } 22 ( ) ( )i jVar m D Rτδ δ θ− =  
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1( )
cos

m θ
θ

=   

 
In the above {}Cov ⋅  and {}Var ⋅  represent covariance and variance respectively, θ  is 

the radar incidence angle, i jR r r= −  and  represents the one-way zenith 

atmospheric delay structure function. The 

( )D Rτ

( )Dτ ∞  notation discussed in paragraph 
4.2.2 has been used. 
 
 
4.3.2   Mathematical formulation 
 
For convenience in the mathematical derivation, the maximum distance between two 
image pixels, Rmax, as well as the sampling frequency fs, which appear in (4.12), will 
be set to infinity. The former assumption implies the spectrum will not flatten for low 
spatial frequencies, which in turn implies an infinite variance for the atmospheric 
phase disturbance. This unphysical assumption however will be corrected for in the 
spatial domain, following an approach proposed in [Treuhaft and Lanyi, 1987]. The 
latter assumption instead is expected to have little impact on the derivations, due to 
the low power levels associated with increasing spatial frequencies, also in 
comparison with thermal noise. 
Inserting (4.12) into (4.10) yields the following, after a change of variables and 
reordering: 
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⎡ ⎤⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (4.13)
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The computation of the above integrals may be done numerically, but since the 
objective here is to derive a closed form for the structure function, some approximate 
solutions will be derived and compared in the following. 
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4.3.3   Mathematical derivation  
 
4.3.3.1   Exact expressions for integrals I1 and I2 
 
Both Matlab’s and Mathematica’s symbolic toolboxes are able to provide closed 
forms for the above integrals. They are however very complex and involve special 
functions. The results obtained with Matlab’s symbolic toolbox are reported below. 
 

4/3 2
1 2 3 1 2 1 2 3

/

1 2 1 2 3

3 ( , ; , , ; )
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1; 2 / 3; 2; 3 / 2; 5 / 3;
u R h

RI u F a a b b b u
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a a b b b
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 (4.14)
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 (4.15)

  
Equation (4.15) was derived from the following: 
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where 3I ∞ was computed using the following integral: 
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which is reported in [Gradshteyn and Ryzhik, pg. 447, equation 3.823]. I3 can instead 
be computed using Matlab, obtaining: 
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The generalized Hypergeometric function which appears in (4.14) and (4.15) is 
defined as follows: 
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4.3.3.2    Approximate expressions for integrals I1 and I2 
 
Ideas to derive an approximate close form for the above integrals were proposed by 
[Mohr2006b] and are developed in the following. 

For , i.e.0u → R h , the Taylor expansion 2 2 41sin ( ) ....
3

u u u= − +  can be used, 

yielding: 
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For , i.e. u →∞ R h , the exponential decays slowly, allowing for the average value 
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As it can be seen from Fig. 1 and Fig. 2, these approximations hold well for R h  
and R h  although the two curves do not meet in the region around  
which would instead be the preferable point to join them. 

/ 0.R h = 5

 
Fig. 2 Approximation of integral I2

 
Fig. 1 Approximation of integral I1
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The two simplest solutions are just to add a bias to the first part or to subtract it from 
the last part. This leads to two possible approximations for each integral as follows: 
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For I2 we first of all note that 
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Using then the same approximation strategies as above we obtain two possible 
expressions: 
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Fig. 3 Computation of parameter B1 Fig. 4 Computation of parameter A1 

The significance of the parameters A1, B1, A2, B2 is illustrated in Fig. 3 for the I1 
case. 
To compute A1, the distance of each approximation, start and end curves, from the 
exact solution has been plotted against R/h. The intersection identifies the A1 value as 
shown in Fig. 4. Parameter B1 can then be computed as the difference between the 
two approximating curves. The following values were found: 
 

1 1

2 2

0.472; 0.1216;
0.466; 0.0968;

A B
A B
= =
= =

  

 
 
4.3.4   Convergence at infinity and parameter L 
 
To be able to use the delay structure function model (4.13), reported below for 
convenience, the  parameter must be computed. 0P
 

2 /3 5/3
0 0 1 1 2 2( ) R RD R P C C I R C I R

h hτ
⎡ ⎤⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

 
Furthermore it has been pointed out [Treuhaft and Lanyi, 1987] that a power law 
structure function leads to an unphysical feature at infinity. For two infinitely distant 
points the tropospheric noise should be uncorrelated, which, using the structure 
function definition, leads to (4.11) and thus to the following expression: 

 
{ }lim ( ) 2

R
D R Varτ τ

→∞
= ⋅  (4.20) 

where { }Var τ  indicates the variance of atmospheric delay, which is a constant 
independent on position due to the stationarity hypothesis. Under the frozen 
atmosphere hypothesis and assuming ergodicity, it may be estimated observing the 
variance on a sufficiently the long-term. 
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In [Treuhaft and Lanyi, 1987] to obtain a finite value for the refractivity structure 
function, following a 2/3 power law, this quantity was multiplied by the following 
factor: 

2/3

1

1 R
L

⎡ ⎤⎛ ⎞+⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

 
Parameter L is computed in [Treuhaft and Lanyi, 1987] by using an annual rms 
tropospheric delay at mid-latitudes of 2.4 cm as a measure of { }Var τ , and then 
solving equation (4.20). 
In order to account for these considerations also in the delay structure function model 
(4.13), we first of all observe that the dominant term in (4.13) for large values of R is 
the 2/3 one, as can be seen from Fig. 5. 

 
Fig. 5 Ratio of the first and the second term in the sum contained in (4.13) 

 
Therefore the model can be modified as follows: 
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⎥  (4.21) 

 
  
4.3.5   Computation of P0 and L parameters 
 
Equation (4.20) for the computation of L may be obtained considering the two 
possible approximations derived for I1(R/h), (4.16) and (4.17), and those for I2(R/h), 
namely (4.18) and (4.19). 
It may be noted that the behaviour of (4.17) for large values of R, leads to an infinite 
limit in (4.20), meaning that models constructed using this approximation would be 
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unphysical. Only two approximate solutions for the integrals in (4.21) thus have a 
physical meaning, and will be referred to in the following according to the naming 
conventions listed in Table 1.  

Table 1 Structure function naming conventions 

Structure function label Derived from (4.21) using equations: 
Dexact exact expressions (4.14) and (4.15) 
D1approx approximate expressions (4.16)  and (4.18) 
D3approx approximate expressions (4.17) and (4.18) 
 
Application of (4.20) for the computation of L yields:  
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which solved for L give: 
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 (4.22) 

 
A 2.4 cm value was reported for { }Var τ  in [Treuhaft and Lanyi, 1987], whereas a  
5 cm one was reported in [Emardson2003]. The results of the latter study were 
however obtained using GPS measurements from California only, while the former is 
based on fewer but more widely distributed measurements and shall be preferred here. 
Equation (4.22) also involves the unknown P0. This parameter may be computed 
using measured daily variances for the atmospheric delay, following the same 
approach outlined in [Treuhaft and Lanyi, 1987] to compute their model scale factor. 
This approach uses the following relation between structure function and the variance 
of the delay, observed over a time interval T: 
 

( )2
2

0

1( ) ( )
T

T T t D
Tτ τσ = −∫ t dt  

 
Under the frozen flow assumption time and space variables are related through the 
tropospheric wind speed s, therefore:  
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We obtain a second equation for P0 and L imposing the condition: 

 

( )2
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1( ) ( )
T

R stT hr
T T t D R

Tτσ ==
= −∫ dtτ  (4.23) 

As mentioned earlier, a χ2 distribution with 2 degrees of freedom and non-centrality 
parameter of 10 has been proposed in literature for 2

24
( )

T hr
Tτσ =

, based on a large 

number of European GPS stations [Hanssen2003]. This allows computation of P0 for 
a specified probability level. 
The maximum likelihood estimate for 

24
( )

T hr
Tτσ =

 reported in [Hanssen2003] is          
8 mm, which compares well with the 1 ± 0.3 cm value obtained using water vapour 
radiometer and radiosonde measurements cited in [Treuhaft and Lanyi, 1987].  For the 
present work, a 1 cm value shall be chosen. 
Equations (4.22) and (4.23) provide two equations for the two unknowns P0 and L. 
Such equations can be solved iteratively, initialising L to the 3000 km value reported 
in [Treuhaft and Lanyi, 1987]. The procedure converges after few iterations. 
 
 
4.3.6   Tests for the choice of the best approximation for the structure function 
 
Summarizing, a model has been derived, (4.21), for the one-way zenith atmospheric 
delay structure function. Its exact expression involves the computation of integrals I1 
and I2, for which a closed form assumes quite unfriendly expressions. For each 
integral however, two possible simple approximations have been pointed out. These 
lead to four possible approximate structure functions, the closed form of which is 
much simpler. However of these only two are physically meaningful. 
In the following each approximation shall be compared to the exact structure function, 
by comparing the structure functions themselves but most of all the parameters of 
interest for interferometric error characterization, namely { },i jCov δ δ  and 

{ }i jVar δ δ− . 
The model parameters h and s were set to 3 km [Hanssen et al., 2003] and 8 m/s 
[Treuhaft and Lanyi, 1987] respectively in the equations for all models. The 
procedure outlined in the previous paragraph was used to compute P0 and L, using 1 
cm and 2.4 cm [Treuhaft and Lanyi, 1987] as the measured daily and annual (long-
term) rms of atmospheric delay. The model parameters reported in Table 2 were 
obtained. 
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Table 2 Structure function model parameters 

Parameter Value Units 
f0 10-3 m-3

h 3000 m 
s 8 m/s 
P0exact  8.35 m 
P0_1 8.35 m 
P0_3 9.04 m 
Lexact  2135 km 
L1      2135 km 
L3      2133 km 

 
The values of P0 and L are within physical intervals. According to the observations of 
[Hanssen2001], P0 is expected to range from 2.7 and 90 m (see the conclusions 
paragraph).  According to [Stotskii1973], L should be between 2000 and 3000 km. 
The respective structure functions are plotted in Fig. 6. For comparison the model 
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Fig. 6 Structure function approximations 

compared to the exact form  
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Fig. 7  Error percentages in the structure 

function approximation models. 

  
proposed in [Treuhaft and Lanyi, 1987] is also reported. The percentual error 
committed by each, compared to Dexact is shown in Fig. 7. 
Model 1 commits a percentual error which tends to infinity as R tends to zero, 
although it performs slightly better than model 3 for large values of R. The [Treuhaft 
and Lanyi, 1987] model exhibits a 20% difference at a distance of 100 m with the 
exact structure function derived in this work and the difference is always around this 
value for increasing R, except for a slight peak around 0.4·R/h. 
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Fig. 8 Covariance approximations compared to 

the exact form. 
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Fig. 9  Error percentages in the covariance 
function approximations. 

The covariance functions are shown in Fig. 8 and the percentual error in Fig. 9. 
For this parameter the differences between models 1 and 3 are negligible, since both 
commit an error smaller than 0.1 % for all values of R. The difference with the 
[Treuhaft and Lanyi, 1987] model grows to about 4 % for a 100 km distance. 
Finally the delay difference variances are plotted in Fig. 10 along with their 
percentual errors in Fig. 11. Model 3 commits an error of less than 5% over all values 
of R. 
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Fig. 10 Delay difference variance 

approximations compared to the exact form. 
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Fig. 11 Error percentages in the delay difference variance 

approximations. 

Considering the approximation errors over all values of R, model 3 yields the best 
results. Furthermore its approximation error is negligible compared to the exact 
model, as far as the parameters of interest are concerned. 
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4.4    Conclusions 
 
The following closed form for the one-way zenith tropospheric delay structure 
function has been derived and will be referred to as model D3 in the rest of this work: 
 

2/3
1 1

5/3
0 0 2 22/3

( )
1

RC I R
RhD R P C C I R
hR

L

τ

⎡ ⎤
⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥⎛ ⎞⎝ ⎠= + ⎜ ⎟⎢ ⎥⎡ ⎤ ⎝ ⎠⎛ ⎞⎢ ⎥+⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦⎣ ⎦

 

 
2

2
0                            [m ]

4
C λ

π
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
2 /3 5/3 -5/3

1 0 04( )                  [m ]C hf fπ=  
 

5/3 8/3 -8/3
2 04                          [m ]C fπ=  

 
4 /3 10/3

1

1
2/3

3 1

3 1             
4 10

3                    
4

Ru u
R hI

Rh C u
h

−

⎧ − ≤⎪⎪⎛ ⎞ = ⎨⎜ ⎟
⎝ ⎠ ⎪

A

A− >
⎪⎩

 

 
1/3 7 /3

4 2

2
5/3

2

13           
7

3                           
10

RC u u A
R hI

Rh u A
h

−

⎧ − + ≤⎪⎪⎛ ⎞ = ⎨⎜ ⎟
⎝ ⎠ ⎪ >

⎪⎩

 

 
where /u R hπ=  ,  and 3 1C I B∞= − 1 24 3C I B∞= −  
The values of all independent parameters are reported in Table 3. 
 

Table 3 Independent parameters used in the structure function model. 

Parameter Value Units 
f0 1 km-1

h 3 km 
s 8 m/s 
A1 0.472 - 
C3 1.4731 - 
A2  0.466 - 
C4      3.2177 - 
P0 9.04 m 
L      2133 km 
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The approximations used in the derivation of model D3 have proved to be negligible 
compared to the exact structure function form derived from the two regime power 
spectrum. This is even more true considering other uncertainties contained in the 
modeling approach itself. In fact h, s and P0 (and therefore also L) are actually        
site-specific parameters. In particular the value of P0 can be expected to vary also by a 
factor 10 depending on the atmospheric conditions at the data acquisition times 
[Hanssen2001]. For model D3 it has been chosen to use an expected value for P0, 
although a site-specific value may be used if available. It is interesting to note that this 
“off the shelf” value however compares well to the observational data reported in 
[Hanssen2001, pg. 143]. The following equation may be used to compare these 
values: 

 
2

2 6
03 03 [mm ] 10  [m rad ]

4H sP f Pλ
π

⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠

2  

 
In the above P0H represent the interferogram P0 values in mm2 as computed in 
[Hanssen2001, pg. 143], while P03 represent the single acquisition values in m 
computed in the present study, equation (4.12). The formula is based on (4.8) and 
considers also a factor 2 which relates single acquisition PSDs to interferogram PSDs, 
assuming the same power of the atmospheric disturbance in the two acquisitions. 
Substituting  fs = 1 cycle/160 m [Hanssen1998a, pg. 28], λ=5.6 cm and P03 = 9 m, the 
value P0H = 1.14 mm2 is obtained. This represents a median value for the 
measurements reported in [Hanssen2001], since 50% of the observations are above 
and 50% are below it. 
The agreement with the model from [Treuhaft and Lanyi, 1987] appears to be good. 
Differences for small values of R are imputable to the piecewise PSD used in this 
study as well as to the different tropospheric height h used (3 km in this work as 
opposed to 1 km). Also the D3 model is expected to follow a power law in the spatial 
domain, with exponent varying continuously from 5/3 to 2/3, since (4.21) represents a 
weighted sum of these power laws, with coefficients only slowly varying with R. For 
large values of R, the difference between the two models is expected to be a constant, 
due to proportionality through the square of the effective tropospheric height between 
the refractivity and the delay structure functions, and the choice of the same 
“smoothing function” in the denominator of (4.21). 
An approximate analytical expression for the model’s power spectrum may be derived 
inserting (4.21) into (4.11) and transforming. However this has not been done at the 
time of writing. What is important to be verified however is that P0 still represents the 
PSD at spatial frequency f0. Applying equation (4.23) using a pure power law model 
for the structure function and f0 = 1 cycle/km, yields a P0 value approximately 17% 
smaller than the one computed for the D3 model. Considering the uncertainty in P0 
itself, which can amount to several 100 % without acquisition-specific information, 
this issue should not be critical.  
Finally, the choice of h in particular and in principle also of s, are expected to impact 
on the modeling accuracy, although a systematic quantitative evaluation is yet to be 
carried out. 
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Chapter 5 
 
 
 

Phase unwrapping error modelling 
 
 
5.1 Problem statement 
 
The causes of PU errors have been discussed in several papers in literature. Very clear 
summaries are given for example in [Werner98], [Werner2002], [Hellwich98].  
Quoting [Werner98], “... phase unwrapping consists of determining the correct 
multiple of 2π to be added to each point in the interferogram such that the integration 
of the phase between any two points is path independent.” Phase differences between 
the pixels are summed assuming they lie in the interval (-π, π). However there are 
causes for local phase gradients to exceed this magnitude and this makes PU an 
impossible problem to which although it is possible to find approximate solutions 
[Chen2000].  
For the quality of the approximation to be good, it is first of all desirable for errors to 
remain confined to small regions and not to propagate throughout the data set, giving 
rise to so called “global” or “large-scale” errors. Secondly, it is clearly desirable to 
reduce the number of “local” or “small-scale” errors as much as possible, for a given 
scene topography and imaging geometry. 
Following the classification of [Werner2002], the causes of phase gradients exceeding 
π in magnitude may be grouped into three categories: phase noise, phase under-
sampling and phase discontinuities. Phase noise arises from temporal decorrelation 
and low SNR Also radar shadow may be considered in this category [Hellwich98]. 
Phase under-sampling occurs when the phase gradient is greater than π in magnitude, 
due to the underlying topography. Phase noise though, causes under-sampling to 
occur also at lower gradients [Werner2002], [Hellwich98]. Finally phase 
discontinuities are due to discontinuous surface deformation (e.g. at sliding faults or at 
glacier-rock interfaces) and to radar layover [Werner2002] (see also [Eineder2003] 
for a detailed discussion on layover effects). 
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5.2    Local error indicators  
 
Inconsistencies in the hypothesis that the phase gradient be less than π in magnitude 
are flagged locally by the presence of residues [Goldstein88]. Typical residue 
configurations have been reported in the case of phase noise and layover, for example 
in [Goldstein1988] and in [Chen2000]. 
Furthermore, a number of observable parameters have been proposed in the literature 
in order to identify problematic phase unwrapping areas. Primarily these were 
proposed in the framework of development and testing of phase unwrapping 
algorithms, where local information is needed in order to guide the unwrapper into 
correctly placing cuts, therefore they may be considered local indicators of potentially 
critical unwrapping situations. These parameters are residue density, coherence, 
wrapped phase gradient, average intensity or amplitude of the images used to form the 
interferogram and estimated slope. Some of these were found to be strongly 
correlated, namely residue density and coherence [Suchandt2003], [Chen2000] and 
intensity and topographic slope [Chen2001]. Combinations of these quantities were 
investigated in [Eineder98] and [Suchandt2003] in the framework of improving the 
costs of a Minimum Cost Flow (MCF) algorithm. In areas of steep topography the 
combined use of coherence and wrapped phase gradient was successful in guiding the 
unwrapper, whereas in areas of severe layover the combined use of coherence and 
amplitude gave better results. In [Chen2001] the independent parameters were chosen 
to be coherence, unwrapped phase and image intensity. The use of the unwrapped 
phase values of adjacent pixels was also proposed by [Costantini2000]. 
 
 
5.3    Global error indicators 
 
Each PU algorithm makes use of some or all of the above mentioned information 
available in the data set to prevent error propagation. However, due to the variety of 
imaged scenes and imaging geometries, and also to the level of complexity a PU 
algorithm should have to cope with all the possible different scenarios, the presence of 
global PU errors may not be excluded. Furthermore, as far as baseline calibration is 
concerned, their impact is expected to be greater than local PU errors and also harder 
to predict. In fact a single GCP affected by a local PU error is likely to appear as an 
outlier in the performed least-square fit with which the baseline is estimated, whereas 
in the case of a significant number of GCPs in a region of global PU error, outlier 
interpretation is not expected to be so straightforward. 
Strictly speaking, the presence of large-scale PU errors, depend on the specific PU 
algorithm which has been used. For example, the original branch-cut algorithm 
[Goldstein88] is more likely to prohibit integration in a critical area, providing no 
unwrapped solution, rather than to produce a global error. For the widely used MCF 
class of algorithms instead, it has been pointed out, [Chen2000], that the minimization 
goal itself makes it particularly error prone in case of multiple cycle discontinuities. 
However it has also been proved that different weighting schemes perform in very 
different ways in these situations and that very good solutions may be obtained using 
all the information a data set provides [Chen2000], [Chen2001]. 
Anyhow, regardless of the algorithm which has been used, there are at least two 
common techniques reported in literature, which may help an operator to check for 
global errors, namely the use of a segmentation map and a comparison with a 
synthetic interferogram derived from an external DEM [Suchandt2003]. Finally also a 
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very interesting algorithm has been presented [Galli2001], which aims at assigning 
quality measures to the allowed integration paths leading to each image pixel from a 
reference point. This former method is actually not limited to locating only global 
errors, but also smaller scale ones. These techniques have already been discussed in 
some detail in section 2.2.4 of the present work. 
 
 
5.4    Proposed model 
 
5.4.1   Underlying assumptions 
 
As for the atmospheric modelling, the goal is to derive closed form expressions for 
the second order statistic of the disturbance. Specifically, according to (3.13), it is 
sufficient to compute the variance of PU errors and the variance of the difference of 
this error between any pair of points in the image.  
In the following, only the effects of large-scale PU errors shall be concidered, since 
they are expected to have the greatest impact on the baseline calibration procedure. 
Based on some test cases reported in literature, [Chen2000], [Galli2001] and on 
personal experience with some of the data sets described in chapter 6 of this work, 
large-scale PU errors are assumed to be caused by one ore more phase discontinuities, 
referred to as “cuts” in the following. Across each of these cuts the interferometric 
phase may exhibit a jump greater that +/-π, due to one or more of the causes 
mentioned in paragraph 1.3. In turn this may potentially cause the unwrapping 
procedure to fail in identifying the correct 2π multiple to be added to the points lying 
on one side of the discontinuity. 
No knowledge of cut position and of the unwrapping algorithm behaviour shall be 
assumed. Finally, it is hypothesized that errors of +/-2π will be more likely than 
multiple cycle ones across a cut. 
Under the outlined assumptions the error variance of each pixel, , is the same and 
due to the different possible unwrapping errors. The variance of the difference, 

, is instead expected to depend on the distance R between pixels, since the 
likelihood of crossing a cut increases at greater distances. By definition 

pV

1 2(Var e e− )

[ ]( ) (Var e r R e r+ − )  represents the structure function of the phase unwrapping error. 
Assuming this quantity to be dependant only on R, we will hereafter use the notation 

. ( )unwD R
The proposed modelling approach is to consider a large number of random 
tessellations of the image, formed by randomly oriented segments (cuts). All possible 
single cycle errors are then assigned between adjacent regions. For each tessellation 
and error combination, a large number of pixel pairs are considered and the difference 
in their error is computed along with their distance. The variance of the error 
difference is then computed as a function of R from all pairs falling in the same range 
bin. 
The single cut model is presented first as an example. The multiple cut case will be 
described thereafter.  
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5.4.2   Single cut model 
 
A point on the image border and a line orientation are chosen randomly. The 
intersection with the image border is computed. The two regions, above and below he 
line, are considered. It is assumed for the 3 most likely unwrapper outcomes to cause 
respectively a 0, +2π and -2π rad error across the cut. Therefore it is chosen arbitrarily 
to call region 1 the region above the line and region 2 the one below it, to assign a 
zero phase to region 1 and consider all three likely unwrapper outcomes for region 2. 
The mean error on each pixel will be zero and its variance is expected to be 
 

 ( ) ( ) ( )2 20 2 2
3pV

2π π+ + −
= rad2 (5.1) 

 
For each error combination,  may be computed and the results averaged. ( )unwD R
This procedure is repeated for a number of different random tessellations and the 
average curve derived.  
Following this procedure and averaging 250 different tessellations, the curve shown in 
Fig. 1 was obtained for . The phase values have been converted to path length 
expressed in cm, using ERS SAR’s 5.56 cm wavelength. The corresponding 
covariance, , computed from, is plotted to the right in Fig. 1.  

( )unwD R

( )unwC R
The parameter Rmax represents the maximum distance between two points in the image 
 
 2

max x
2
yR D D= +   (5.2) 

  
where Dx and Dy represent the image size in its two dimensions. Trials with Dx  = 100 
km and Dy = 100, 200 and 300 km were carried out, although the results which will be 
presented are not to be considered dependent on these specific values, but rather on 
Rmax. 
A second order polynomial provided a good fit to the data points also for the multiple 
cut case, as detailed in the last paragraph of this section. 
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Fig. 1 PU error structure function (left) and covariance (right): 1 cut model  
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5.4.3    Generalization to the multiple cut case 
 
An iterative procedure may be followed in order to generalize the approach followed 
for the single cut case to the multiple cut one. Suppose a tessellation formed from N 
cuts is to be generated, then N+1 regions may be created with N iterations as follows. 
Initially we consider the whole image as a region. At iteration n a random point is 
extracted on the image border, the region which contains it is identified and the 
intersection point with this region’s border is found. This will form two new regions. 
The one above and the one below the drawn line will be arbitrarily named region n  
and region n+1 respectively. 
An example of the tessellation procedure is shown in Fig. 2-4 for the N = 2 cut case. 
A first random point on the image border is extracted, as shown in Fig. 2, its 
coordinates being (x,y) = (1,4). This point is in region 1, i.e. the whole image, the 
only existing region initially. A random orientation is extracted and its intersection 
with the region 1’s border is found to be (12.55,20). The drawn line creates two 
regions from the starting one. The one above the line is arbitrarily named region 1 and 
the one below, region 2. A second random point is now extracted on the image border, 
(6,1), which is in region 2. A second random orientation is also extracted and the 
intersection with the border of region 2 is found to be (7.1,12.45). Again the existing 
region is partitioned into two new ones, as shown in Fig. 3.  Finally the tessellation 
shown in Fig. 4 is created. 
Once the tessellation has been created, unwrapping errors must be assigned to each 
region. A lookup table of size N x 3N may be created as follows. The k-th line of the 
table shall contain 3k-1 repetitions of the basic tile: 
 

( )( ) ( )( ) ( )( )1 3 1 3 1 3
2 0 2n k n k n kx x x
π − −

⎡ − +⎢⎣
π −

⎤
⎥⎦

)

      (5.3) 

 
where  ( )  symbolizes a  1 x 3(1 3n kx

a −
n-k matrix of  values. a

Each column of this table represents a possible unwrapping error configuration. An 
error of 0 rad is assigned to region 1, while the error affecting region k+1 is obtained 
adding the first k lines of a same column. In the example of Fig. 4, Table 1 is 
generated. 
In the case in which the lines drawn to form the tessellation do not intersect, the above 
error assignment procedure will consider all possible 2π errors between bordering 
regions. In general though, multiple jumps will be allowed between adjacent regions, 
and they will be increasingly likely as N grows.     
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Fig. 2 Tessellation example: first random cut 
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Fig. 3 Tessellation example: second random cut 

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

region 1

region 2

region 3

 
Fig. 4 Tessellation example: regions formed by random cuts 

 
Table 1 Tessellation example: error assignment lookup table 

PU error assignment (cycles) – each column represents a 
possible error combination 

Region1  0 0 0 0 0 0 0 0 0 
Region2 -1 -1 -1 0 0 0 1 1 1 
Region3 -2 -1 0 -1 0 1 0 1 2 
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Following the procedure described above, once again averaging all “likely” error 
combinations and 250 different tessellations, the curves shown in Fig. 5 and Fig. 6 
were obtained for , for the 2 cut and the 3 cut cases respectively. Assuming 
no knowledge on the unwrapper’s behaviour, its outcomes are assumed equally likely 
and the expected variance for the N cut case is given by:  

( )unwD R

 
( ) ( ) ( )

2 2
2

0

2 2 1 (2 1)8 4 1
2 1 2 1 6 3

N

p
n

n N N N
V N

N N
π π N π
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⋅ + +
= = =

+ +∑ +  (5.4) 

 
The values for the first 3 cuts are reported in Table 2 below. 
 

Table 2 Single pixel variance of PU error (cm2) 

Ncuts Vp
1 5.33  
2 16  
3 32  

 
 
This allows computation of the covariance, . It is given to the right in Fig. 5 
and Fig. 6 for the 2 cut and the 3 cut case respectively.  

( )unwC R
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Fig. 5 PU error structure function (left) and covariance (right): 2 cut model 
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5.4.4     Closed forms for the structure function of phase unwrapping errors 
 
All structure functions derived so far can be represented by a quadratic polynomial of 
R. Chebyshev polynomials provide a convenient representation, given in (5.5).  
 

0 1 1 2 2

2
1 2

max

max
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= = −
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 (5.5) 

 
Their convenience lies in the fact that their coefficients readily provide information on 
the values of the represented function, since the following equations hold: 
 

max 0 1 2( , ) ( ) ( ) (unwD R n k n k n k n= + + )
n

2) )

 

0 2 1(0, ) ( ) ( ) ( )unwD n k n k n k= + −  
 
Furthermore, for the case at hand, the coefficients of a Taylor expansion would have 
very large absolute values, causing them to be very sensitive to the number of digits 
used for their numerical representation. 
The structure function and thus the polynomial coefficients may be written as a 
function of Rmax, for each cut number, by computing the equation of the parabola 
branch passing through the three points (0,0), (Rmax/2,A), (Rmax,B). Values A and B 
represent respectively ) and , and depend on the number of 
cuts. They are reported in Table 3. 

max( /unwD R max(unwD R

 
Table 3 Polynomial fitting: structure function values (see text) 

Ncuts A  B  
 [rad2] [cm2] [rad2] [cm2] 
1 8.8153 1.7858 17.3912 3.5231 
2 18.4542 3.7385 31.8715 6.4566 
3 27.2203 5.5143 43.5356 8.8195 
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Fig. 6 PU error structure function (left) and covariance (right): 3 cut model 
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The Chebyshev coefficients are given in (5.6). 
 

0

1

2

/ 2
/ 2

k A
k B
k B

=
=
= − A

  (5.6) 

 
Equations (5.4), (5.5) and (5.6), together with Table 3, provide a closed form for the 
sought statistics. The model parameters are Ncuts  and Rmax , respectively the number 
of cuts in the image and the maximum distance between two image pixels. The term 
“cut” here denotes a line of phase discontinuity, which potentially could cause a phase 
unwrapping error, as discussed in paragraph 5.4.1. At the time of writing, further 
investigations are required to determine criteria for an "off the shelf" choice of 
parameter Ncuts . Its impact  on error prediction is further discussed in chapter 6.  
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Chapter 6 
 
 
 

Application to DEM generation: 
the Castelli Romani data set 
 
 
 
6.1    Data set overview 
 
The error prediction framework described in chapter 3 was applied to an ERS data set 
covering the city of Rome (Italy) and surroundings, known as the Castelli Romani 
area. Each interferogram was formed from a Tandem pair, with baseline values listed 
in Table 1 and coverage shown in Fig. 1. A DEM was generated from each 
interferogram using the GIM module of the InSAR Post-Processing Software 
developed at DTU. 
 

Table 1 Castelli data set 

Interferogram B⊥ Type Frame Orbit 
i4 -107 Descending 2763 e1_24616 e2_04943 
i5 -211 Descending 2763 e1_39646 e2_19973 
i6 -83 Descending 2763 e1_25117 e2_05444 
i7 -50 Ascending 837 e1_20701 e2_01028 
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Fig. 1 Castelli data set coverage 

 
A set of GCPs were available from an IGM-DEM (Istituto Geografico Militare), with 
an expected 10 m vertical accuracy (error standard deviation). These were used in the 
baseline calibration procedure described in chapter 3. 
In order to assess the accuracy of the generated DEMs, and in particular to help 
detection of PU errors, an external SRTM-DEM (Shuttle Radar Topography Mission), 
was used. Its reported accuracy is better than 16 m at the 90 % confidence level. 
The vertical datum used by both DEMs was the EGM96 geoid, and in the following 
all heights shall be referred to this datum. An agreement of about 6 m was observed 
between the two DEMs in the area of overlap. 
In the following, height errors, ∆h, will be converted to phase errors, ∆φ, using the 
following equation: 
 

2 /
sin( ) /(2 )

a

a c c

h h
h R B
ϕ π

λ θ ⊥

∆ = ⋅∆

=
 

 
In the above ha is the ambiguity height, Rc = 850 km and θc = 23° represent 
respectively the nominal ERS centre swath value and incidence angle, and                  
λ = 5.656 cm is the radar wavelength. The nominal perpendicular baselines, B⊥, are 
reported in Table 1. The values of the conversion coefficients are listed in Table 2. 
 

Table 2 Height to phase conversion coefficients 

Interferogram Ambiguity height (m) Height to phase conversion factor (rad/m) 
i4 88 0.0716 
i5 45 0.1412 
i6 114 0.0555 
i7 188 0.0334 
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Although a precise height-to-phase conversion would have to account for spatial 
variations in the baseline value and in the geometrical parameters, the above approach 
serves the purpose of providing a coarse estimate of the phase magnitude of the 
observed errors and to ease the comparison between data sets. 
In the following the i7 data set shall be discussed in more detail, since very large 
errors are apparent in the generated DEM, due to its small perpendicular baseline and 
most likely to a combination of error sources. Analysis of the i4, i5 and i6 data sets 
provides further examples of atmospheric and PU errors and their impact on baseline 
calibration as well as more test cases for the error prediction framework and the error 
models described in chapters 4 and 5.   
 
 
6.2    Castelli i7 interferogram 
 
The portion of the SRTM-DEM covering a region of interest in this data set is plotted 
in Fig. 2 together with the available GCP positions. It is a part of a 1 x 1 degree 
latitude x longitude tile, roughly covering the lower left quarter of the ERS frame. 
 

 
Fig. 2 SRTM-DEM and GCPs used for baseline calibration 

 
It may be noted that the coastline is not clearly defined as a consequence of the 16 m 
accuracy of the reference DEM.       
The i7 interferogram magnitude and correlation map are shown in Fig. 3 and Fig. 4 
respectively, for the tile of interest. The west part covers a strip of coastline between 
the cities of Ladispoli and Pomezia, roughly. In the northwest part, the hills 
surrounding lake Bracciano reach out close to the coast and some low correlation 
areas due to radar shadow are visible. Rome’s urban area appears as an area of good 
correlation and high intensity in the image centre. In the southeast part of the image 
the Castelli Romani area can be seen, surrounding the lakes of Albano and Nemi. 
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Here several areas fall into radar shadow and have been masked out in the 
interferometric processing. Also in the east part of the image typical radar layover and 
shadow signatures are noticeable, due to the Monti Prenestini mountain range. 
 

 
Fig. 3 Castelli i7 interferogram magnitude 

  

 
Fig. 4 Castelli i7 correlation coefficient magnitude 
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6.2.1    Observed DEM errors and predicted accuracy, based on coherence, GCP 
height accuracy and atmosphere 
 
The DEM derived from the i7 interferogram is shown in Fig. 5. 

 
Fig. 5 DEM derived from the Castelli i7 interferogram 

Severe errors may be noticed straight away in the upper left part of Fig. 5, since a 
height of –400 m is reported on the coast. Comparison with the SRTM-DEM provides 
more detailed information, as shown in Fig. 6. It will also be convenient to observe 
the corresponding phase errors, shown in Fig. 7. 

 
Fig. 6 Comparison between Castelli i7 DEM and SRTM-DEM, relative height (m) 
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Fig. 7 Comparison between Castelli i7 DEM and SRTM-DEM, relative phase (rad). 

  
In the area covered by GCPs over Rome’s urban area, the average observed error is 
close to 0 m, with fluctuations of about +/-60 m (+/-2 rad in phase). Errors as high as 
+/-100 m (+/-5 rad in phase) may also be observed south and east of Rome’s city 
centre, shaded in yellow and light blue in Fig. 6 and Fig. 7. All these are likely to be 
atmospheric artefacts, due to their irregular shape and order of magnitude. A moderate 
tilt-error characterizes the right side of the images, where the error quite rapidly 
changes from about -20 m to –80 m. To the west instead the observed error goes from 
about  -10 m at 12.4 E to –200 m at 12.2 E, and finally increases to –400 m in the 
upper-left corner.     
The algorithm of chapter 3 may be used to compute the expected height error standard 
deviation. Contours of this quantity are shown in Fig. 8, where a GCP height 
uncertainty of 10 m and a mean correlation coefficient of 0.7 are used to predict 
height error standard deviation. In all areas of the image, these predicted values 
underestimate the observed ones. When the atmospheric model D3 derived in section 
chapter 4 is included, the corresponding error contour changes significantly as shown 
in Fig. 9. 
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Fig. 8 Castelli i7 error prediction: Coherence=0.7 
and GCP height stdev=10 m 

Fig. 9 Castelli i7 error prediction: inclusion of 
atmospheric model D3 

The mean value of the predicted error, and also its spatial variability increase 
noticeably with the inclusion of atmospheric error modelling. The error gradient 
orientations however do not appear substantially modified, proving to be mainly 
determined by the GCP positions. Over Rome’s urban area and south and east of it, 
the atmospheric model produces a more realistic error prediction, although the tilt 
error observed in the west side of the image does not seem to be justified based on 
this error source only. In fact the predicted 97.5 percentile in this area is 160 m, still 
an underestimation compared to the observed error in Fig. 6. 
 
 
6.2.2    Evidence of phase unwrapping errors  
 
An investigation was carried out in order to assess whether PU problems could be 
responsible for the observed discrepancies between observations and predictions. 
According to the reasoning of chapter 5, this class of errors may affect geophysical 
products either directly, producing local errors, or indirectly, through the baseline 
calibration procedure, thus affecting the whole image and generating tilt errors as the 
ones pointed out in the previous paragraph. This kind of large-scale error is believed 
to be caused by phase discontinuities, referred to as cuts, typically associated with 
steep topography or radar layover and shadow. 
In Fig. 6 a tilt-error might indeed occur along the image diagonal, moving from the 
lakes to the top-left corner. 
From the correlation image, Fig. 4, the problematic area as far as PU is concerned is 
expected to be the east side of the image, due to its steep topography and layover and 
shadow effects. Here one or more of these phase discontinuities could occur. Indeed a 
closer inspection of Fig. 7 shows abrupt jumps in the unwrapped phase in this part of 
the image, which are coloured in blue in Fig. 10. It may also be noted that several 
control points appear to fall in this problematic area. 
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Fig. 10 Phase unwrapping errors due layover and shadow 

 
In order to attempt a decoupling of local errors and tilt-errors, a second interferogram 
was generated, this time excluding the GCPs in the hilly east area. The relative height 
compared to the SRTM reference DEM is shown in Fig. 11 along with the used GCP 
configuration. The corresponding phase errors are represented in Fig. 12. 
 

 
Fig. 11 Comparison between Castelli i7 DEM and SRTM-DEM, relative height: baseline calibrated 

with a subset of GCPs less likely to be affected by PU errors 
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Fig. 12 Comparison between Castelli i7 DEM and SRTM-DEM, relative phase: baseline calibrated 

with a subset of GCPs less likely to be affected by PU errors 

    
It can be noticed that the tilt-error along the image diagonal has been strongly reduced 
using this subset of GCPs. In particular in the top-left corner the difference with the 
reference DEM is reduced to 180 m. Furthermore, this value is in agreement with the 
corresponding predicted accuracy, plotted in Fig. 13 and derived accounting only for 
GCP position, decorrelation, GCP height uncertainty and atmosphere. 
 

 
Fig. 13 Castelli i7 error prediction: baseline calibrated with a subset of GCPs unlikely to be affected by 

PU errors 
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In the right corner of Fig. 11, the error trend seems also to be correctly captured by 
the model predictions of Fig. 13, except for local multiple-cycle PU errors.  
An interpretation key to the significant DEM differences observed, using these two 
different GCP configurations, is that several GCPs not used in the second processing 
run (Fig. 11), are actually affected by atmospheric artefacts and/or PU errors. 
 
 
6.2.3    Inclusion of phase unwrapping error modelling in the error prediction 
  
In order to account for PU errors in the error prediction, the modelling presented in 
chapter 5 was applied to the case at hand. Predicted error contours are shown in     
Fig. 15, Fig. 16 and Fig. 17, respectively using the 1, 2 and 3 cut model, for the case 
where all available GCPs are used.  
  
  

 

Fig. 14 Castelli i7 error prediction: atmospheric 
model D3, but no PU error model 

Fig. 15 Castelli i7 error predicion: inclusion of PU 
error model, Ncuts=1 

 

 
Fig. 16 Castelli i7 error prediction: inclusion of PU 
error model, Ncuts=2 

Fig. 17 Castelli i7 error prediction: inclusion of PU 
error model, Ncuts=3 
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The effect of including the PU error model resembles that of including atmospheric 
artefact modelling, since an increase in the mean predicted error and in its spatial 
variability is observed.  
It can be seen that the tilt-error prediction in the northwest part of the image improves, 
at the price of an increasing overestimate in less problematic areas as the number of 
cuts used in the modelling grows. Finally it should be noted that due to the fact that no 
scene specific information was used for the atmospheric and the PU error model, local 
errors, however severe, are not predicted. 
 
 
6.3   Castelli i4 interferogram 
 
A comparison between the DEM derived from the i4 interferogram and the SRTM-
DEM is given in Fig. 18 and Fig. 19 in terms of height and phase errors respectively.  
 

 
Fig. 18 Comparison between Castelli i4 DEM and SRTM-DEM, relative height (m) 
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Fig. 19 Comparison between Castelli i4 DEM and SRTM-DEM, relative phase (rad) 

In this case no large-scale errors may be observed, although local ones, due to 
incorrect PU, are once again present in the mountainous northeast side and around the 
lakes. Artefacts likely to be due to the atmosphere seem to be the dominant error 
source. Their magnitude varies between +3 and –3 rad with peaks of about 5 rad in 
the lower east image corner. The impact in terms of height error though is reduced 
compared to the i7 case, because of a more than double perpendicular baseline. 
The predicted accuracy contour (error standard deviation) is shown in Fig. 20. 
 

 
Fig. 20 Castelli i4 error prediction: Coherence=0.7, GCP height stdev=10 m, atmospheric model D3 

 
The absolute value of the observed errors is in most cases less than 2 predicted 
standard deviations in the area covered by GCPs. Some more severe local artefacts 
around 41.55 N and 12.85 E, likely to be of atmospheric origin, are slightly 
underestimated (i.e. unlikely to occur according to the predictions). The same applies 
to the local PU error in the lake area and in the northeast corner of the image. 
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6.4   Castelli i5 interferogram  
 
The difference with the SRTM-DEM highlights some interesting error features as 
shown in Fig. 21 and Fig. 22.  
 

 
Fig. 21 Comparison between Castelli i5 DEM and SRTM-DEM, relative height (m) 

 

 
Fig. 22 Comparison between Castelli i5 DEM and SRTM-DEM, relative phase (rad) 

 
Medium-scale PU errors in the already encountered problematic northeast area show 
up as the dominant error source. Several pixels have been masked out in the 
interferometric processing, due to their poor correlation. It is of interest to note that 
phase jumps of about one cycle occur in the span of a few image pixels, 
corresponding to less than 1 km on ground, as detailed in Fig. 23. 
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Fig. 23 Detail of PU errors in the Castelli i5 interferogram 

 
In this case however, as opposed to the i7 case, all GCPs falling in the orange-shaded 
area of Fig. 22 appear as outliers in the least-square fit with which baseline 
coefficients are estimated, exhibiting a phase residue of more than 1 cycle. Also no 
significant tilt-errors are observed. This is probably because atmospheric artefacts are 
significantly smaller in magnitude compared to the i7 case, so that the non affected 
GCPs actually provide a substantially correct baseline calibration.   
The predicted error contours are shown in Fig. 25 and Fig. 24, as a result of including 
only the atmospheric modelling and also the PU error model with Ncuts = 3 
respectively. 
  

 

Fig. 24 Castelli i5 error prediction: Coherence=0.7, 
GCP height stdev=10 m, atmospheric model D3, PU 
model with Ncuts=3 

Fig. 25 Castelli i5 error prediction: Coherence=0.7, 
GCP height stdev=10 m, atmospheric model D3 

The estimate provided in the regions not affected by PU errors are reasonable in     
Fig. 25. A 5 m contour level was used, meaning that the prediction in the area covered 
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by GCPs is between 15 and 10 m. Inclusion of the PU error model adds some 
pessimism to the predictions, distributing it throughout the image. The model 
however has no means to know that errors in this data set are actually quite localized. 
 
 
6.5    Castelli i6 interferogram 
 
The i6 data set presents many similarities with the i5 case, as can be noted by 
comparison with the SRTM-DEM in Fig. 26 and Fig. 27. 

 
Fig. 26 Comparison between Castelli i5 DEM and SRTM-DEM, relative height (m) 

 
 

 
Fig. 27 Comparison between Castelli i6 DEM and SRTM-DEM, relative phase (rad) 
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Once again medium-scale PU unwrapping errors appear in areas of steep topography. 
and the spatial scale over which a phase jump of about 1 cycle takes place 
corresponds to less than 1 km on ground, as shown in Fig. 28.   
 
 

 
Fig. 28 Detail of PU errors in the Castelli i6 interferogram 

 
It is also of interest to note the magnitude of the non-PU errors, which may be 
attributed to atmosphere. These are on average in the +/- 3.5 rad range. 
The predicted contours are shown in Fig. 30 and Fig. 29 as a result of including only 
the atmospheric model and also the PU error model with Ncuts = 3 respectively. 
 

 

 
Fig. 29 Castelli i6 error prediction: Coherence=0.7, 
GCP height stdev=10 m, atmospheric model D3, PU 
model with Ncuts=3. 

 
Fig. 30 Castelli i6 error prediction: Coherence=0.7, 
GCP height stdev=10 m, atmospheric model D3. 

As in the previously discussed cases, most of the observations fall within the 
predicted 2 standard deviation interval, although localized errors are not predicted. 
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6.6    Conclusions 
 
In the data sets examined, artefacts with an average magnitude between +3 and –3 rad 
and peaks of about 5 rad, were observed and attributed to the atmosphere. 
In data sets i5 and i6 also medium to large-scale PU errors were observed. A common 
feature of this error source appeared to be the spatial scale over which a phase jump of 
one phase cycle or more was observed, which always corresponded to less than 1 km 
on ground. The impact of this error source on baseline calibration is expected to 
depend on the number of affected GCPs, on the accuracy of the non-affected ones and 
on the overall GCP configuration. Potentially however, it may be responsible for a 
significant phase trend, which adds up to other local errors throughout the 
interferogram. This might be a possible interpretation key for the i7 interferogram, in 
which several multiple-cycle PU errors may be noted along with widespread artefacts 
likely of atmospheric origin   
The error prediction framework was run with error models which did not account for 
any scene-specific information, namely GCP horizontal position, a mean GCP height 
accuracy, a mean correlation coefficient, an atmospheric model using globally 
averaged parameters and a PU error model with no knowledge of the location of 
features likely to cause this kind of error. Therefore predictions could only be 
expected to identify large-scale error gradient orientations and magnitude. 
In the i7 case it was seen that, accounting only for GCP configuration, decorrelation 
and GCP accuracy, the observed errors were largely underestimate. The same applied 
for all other data sets, although the results were not reported. 
For all data sets considered, the atmospheric model appeared to bring a realistic 
contribution to the error estimation, with observations falling within 2 predicted 
standard deviations, although some local underestimates were observed.  
Inclusion of the PU error model caused in all cases an increase in the mean error and 
error gradient predictions, which was distributed throughout the image, following the 
error gradient orientations dictated mainly by the GCP configuration and to a smaller 
extent by the atmospheric model. In the only test case, i.e. the i7 one, where PU errors 
actually seem to contribute to a large-scale tilt-error, the PU error model seemed to 
provide a better prediction in critical areas, at the price of overestimating the error in 
less problematic ones. 
Two main issues concerning the PU model require further investigations. First of all 
the choice of the number of cuts to be used in the modelling does not appear to be 
simple for all data sets, especially considering that an external DEM has been used 
here to flag problematic unwrapping areas. Secondly, the statistics computed by the 
PU error model depend on distance between points rather than on point-to-point 
information, i.e. stationarity of the underlying error source is assumed. This implies 
first of all that also severe localized errors may not be accounted for. As far as global-
errors caused by PU are concerned, this implies that large-scale error gradient 
orientations are not modified, compared to those determined by the GCP 
configuration. Further work shall address the validity and consequences of the 
stationarity hypothesis in more detail.  
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Chapter 7 
 
 
 

Signal Processing Issues for the 
Exploitation of Pulse-to-Pulse Encoding 
SAR Transponders 
 
 
7.1   Introduction 
 
In the previous chapters of this thesis, two methodologies have been mentioned in the 
context of SAR interferometry, which rely on the availability of stable point targets. 
In chapter 3 a tie-point baseline calibration method was discussed, and references to 
other algorithms of this kind were provided in section 2.2.2. Furthermore, in     
chapter 2, section 2.3, the Persistent Scatterer methodologies, based on the Permanent 
Scatter technique patented by the Politecnico di Milano [Ferretti2001], were 
mentioned. The use of passive artificial reflectors for both applications has been 
proposed in literature, [Gutjahr2005], [Allievi2004]. For the former application, 
automatic detection of points of known height are appealing, whereas for the latter, a 
minimum density of persistent scatterers is required and/or it may be desirable to 
ensure that a specific point on ground (say a building) behaves as a persistent 
scatterer.  
The use of transponders for SAR interferometry was explicitly proposed by 
[Haynes2004]. In the last 15 years they have however mostly received interest for 
sensor external calibration [Jackson1992], [Shimada1999], [Weiss2004], [Lenz2005]. 
Potentially they offer some advantages compared to classical Corner Reflectors, such 
as limited size and weight to achieve the same Radar Cross Section and cost 
effectiveness. For example, at C band, a 40 dBm2 RCS may be achieved with a patch 
antenna device the size of a shoe box, whereas a trihedral reflector with a side of 
about 1 m would otherwise be required. Furthermore, different modulation techniques 
have been proved to be useful to decouple the transponder signal from the 
backscattering of its surroundings [Shimada1999], [Weiss2004] and to automatically 
locate and identify the device in an image [Hounam2001]. 
The present chapter concerns the pulse-to-pulse modulating transponder patented by a 
research group at DLR (Deutsches Zentrum für Luft- und Raumfahrt) [Hounam1998] 
and addresses SAR signal processing issues necessary to exploit the device for 
interferometry, as well as for other applications proposed in literature, such as tagging 
[Bidigare2002], [Hounam2001], [Hounam2006] and calibration [Hounam2001]. To 
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this end the objectives of the investigations which shall be presented may be 
considered twofold: 
 

• to derive a suitable algorithm to retrieve amplitude and phase of the electric 
field "backscattered" by the device  

• to analyse the interaction of the transponder signal with that of the "natural" 
(non encoding) scatterers surrounding it. 

 
The chapter is structured as follows. The following section reviews the device's 
working principle and the related literature. In section 7.3 notation is established, and 
the relevant signal processing issues are presented. A focusing algorithm based on 
azimuth Time Domain Correlation (TDC) is proposed in section 7.4. Simulated data 
are used in section 7.5 to validate the proposed algorithm and compute the parameters 
which describe code induced decorrelation. Interaction of the transponder signal with 
terrain backscattering is discussed in section 7.5. In section 7.6 results on a real data 
set are provided. Conclusions are drawn in section 7.7. 
  
 
7.2   Working principle and previous studies 
 
A block diagram of the encoding SAR transponder presented in [Hounam1998] and 
[Hounam2001] is provided in Fig. 1. 
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Fig. 1 Block diagram of a pulse-to-pulse encoding SAR transponder. 
 
While within the azimuth beamwidth of the sensor, the device is capable of receiving 
a sequence of SAR pulses and superimposing a code sequence prior to retransmission 
towards the radar. Encoding is accomplished by a Binary Phase Shift Keying (BPSK) 
modulation on each received pulse. When the same code sequence is used during data 
processing to focus the device, the SAR processor filter is no longer matched to the 
electric field backscattered from non-encoding point scatterers, thus providing a 
means for localizing and identifying the encoding transponder in the SAR image.  
The above described working principle was successfully demonstrated by correctly 
locating and identifying two device prototypes in ERS-1 and ERS-2 images 
[Wägel1999], [Hounam2001]. The main focus of these studies concerned device 
architecture and potential applications, whereas the details of the processing algorithm 
implementation were omitted. The experiments were carried out using two different 
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code-words of a same pseudorandom code family and fixed length, namely two 1024 
chip Gold code words [Dinan1998]. As far as signal decoupling is concerned, the 
results reported in [Wägel1999] compare the encoding transponder to a non-encoding 
point scatterer with a same RCS. The peak amplitude of the former is expected to be 
24 dB above that of the latter, when the device's code sequence is used in the SAR 
processor's matched filter.  
Experiments with different code lengths and coding schemes, including BPSK 
modulation, are reported in [Dumper1999]. The details of the processing algorithm 
are not reported. An interesting result for the further discussions in this chapter  
concerns a 1.5 dB value for the coding gain against clutter, for the longest pseudo-
noise sequence considered, composed of 255 chips. 
The results obtained during this thesis have been partly already published. Focusing 
algorithm issues were explicitly addressed in [Merryman2004]. In this paper a 
modified azimuth TDC algorithm was shown theoretically to be a suitable solution to 
recover the device's amplitude and phase. An experimental validation was carried out 
in [Merryman2005], on a data set provide by the DLR research group, and the main 
results of this study are described in section 7.7. An important result stated in these is 
that conventional azimuth frequency domain algorithms may not be modified for the 
purpose, as discussed in paragraph 7.3.2, and this has important processing efficiency 
consequences. In parallel and independently, the same conclusion concerning the 
necessity of time domain azimuth focusing was reached by the research group at 
DLR's Microwave Institute [Moreira2004]. Finally a paper containing an improved 
focusing algorithm and an analysis of transponder signal interaction with natural 
backscattering was submitted for publication in January 2005 and is undergoing 
review at the time of writing. Its contents are however contained in the following 
discussion in this chapter. 
 
 
7.3   Problem statement 
 
7.3.1    Device Impulse Response 
The convolutional model shown in Fig. 2 is often used to represent a coherent SAR 
system.  
 

( , )w τ η

( , )n τ η

( , )h τ η( , )f τ η ( , )g τ η

 
 

Fig. 2 Block diagram of a single look SAR system. 
 
Following the notation used in [Cumming2005], the two dimensional SAR impulse 
response can be written as a function of range (pulse propagation) time τ and azimuth 
(satellite motion) time η elapsed from the zero Doppler point as 
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where pr(·) and pa(·) represent the transmitted pulse's envelope and the azimuth 
antenna pattern respectively, whereas R, Kr and ηc denote slant range, transmitted 
chirp rate and beam centre time. The model is such that when a point scatterer is 
imaged f(τ,η) is proportional to a Dirac function so that its backscattered electric field 
w(τ,η) will be observed over a certain time span in both dimensions and be 
characterized in the range time dimension by the phase modulation given to the 
transmitted radar pulse and in the azimuth time dimension by the Doppler effect phase 
modulation. 
Supposing the receiver's thermal noise n(τ,η) can be modelled as a Gaussian white 
noise process, the processor which maximizes the signal-to-noise ratio is known to be 
the matched filter  

 
 *( , ) ( , )h wτ η τ η= − −  (7.2) 
 
Considering now the problem of imaging a pulse-to-pulse encoding transponder, its 
previously outlined working principle produces a sequence of alterations in the 
hyperbolic Doppler phase modulation. From this point of view everything goes as if 
the device were a non-encoding point scatterer imaged by a radar with the modified 
impulse response  
 
 { }( , ) ( , ) exp ( )codew w jτ η τ η θ η= ⋅  (7.3) 
 
where function θ(η) represents the sequence of phase alterations due to the 
transponder's internal encoder and ideally takes on only values 0 and π. To achieve 
azimuth focusing, i.e. for all samples to add coherently in voltage in this dimension, 
compensation of both Doppler and code induced phase modulation is required. The 
suitable processor can again be considered the matched filter : 
 

 *( , ) ( , )code codeh wτ η τ η= − −  (7.4) 

 

 
7.3.2   Azimuth Frequency Domain 

In conventional processing, compensation for Doppler modulation can be carried out 
in the Doppler frequency domain, since time and frequency are locked together due to 
the fact that for each frequency a single point of stationary phase exists. For the 
imaging of an encoding transponder this principle cannot be exploited though. In fact 
the modulating sequence superimposed by the device’s encoder in (7.3) can be 
considered as an amplitude term, a sequence of pseudorandom sign changes, 
multiplying the linear frequency modulated waveform in (7.1). In taking now the 
Fourier transform of (7.3) in the azimuth dimension, contributions to the Fourier 
integral of positive and negative loops of the oscillating function { }exp 4 ( ) /j Rπ η λ−  
do not cancel due to the code induced amplitude term, which varies rapidly with 
respect to angle changes. This implies that code induced phase modulations must be 
compensated for in the azimuth time domain. 
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7.3.3   Code Synchronization 
Removal of the phase alterations produced by the device also requires knowledge of 
which is the first SAR pulse to trigger the transponder's internal encoder and be 
backscattered with enough power to be detected by the SAR receiver. This in turn 
determines the azimuth position in the SAR raw data at which the sequence of phase 
alterations starts. 
For the present study it will be supposed this information isn't available although it 
will also be assumed in the next section that pseudorandom codes with good 
autocorrelation properties are used so that these can be exploited for code acquisition 
procedures, as in mobile communication and GPS systems.  
It must be pointed out that a code synchronization procedure could be avoided or 
anyway simplified by providing a time stamp for the first received pulse, as done for 
example by the device presented in [Lenz2005]. This may not be practical for all 
applications though and anyhow a method to recover this information from the data 
can be useful in case of time-stamping failures.  
In the following it will finally be supposed that the device's sensitivity is such that the 
encoding starts before the integration time, i.e. a pulse transmitted outside the -6 dB 
(two-way) azimuth antenna pattern triggers the transponder's encoder. This is an 
easily met specification for current SAR systems and is also required for full 
exploitation of the device. Therefore it could be considered as a technical 
specification rather than an assumption.  
 
 
7.4   Proposed processing algorithm based on time domain 
correlation 
 
A conceptually straightforward solution recently proposed for the focusing of a pulse-
to-pulse encoding transponder [Merryman2004] consists in modifying the 
conventional TDC azimuth focusing algorithm [Barber1985]. To avoid confusion we 
wish to point out that TDC terminology has also been used in literature to denote an 
exact two-dimensional processing algorithm, although in the present study it will be 
used to refer to an azimuth compression technique only. 
A block diagram of the proposed processing algorithm, with an improved code 
synchronization strategy compared to [Merryman2004], is shown in Fig. 3. 
Range compression can be carried out in the frequency domain, since the encoding 
method doesn't affect the signal characteristics in this dimension. 
Azimuth focusing is based on the time domain compensation of Doppler and code 
induced phase modulations. The correct code alignment is obtained searching for the 
index to the peak amplitude of the code's autocorrelation function.  A computationally 
efficient way of doing so is described below. 
Following range compression, naming N the length of the code word used by the 
device, an N point DFT of the known code word c(k) is taken and each resulting 
element is complex conjugate and stored. 
For each future image pixel, data is then retrieved from the range migration locus in 
the azimuth time domain, by interpolating adjacent samples in the slant range 
dimension, obtaining a sequence d(k). 
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Fig. 3.  Block diagram of the proposed processing algorithm (single look image). 
 
Compensation of the Doppler phase modulation is then carried by multiplication with 
the conventional azimuth time domain reference function obtaining a sequence dbb(k). 
The appropriate code alignment is searched for by computing the cross correlation 
Rcd(k) between c(k) and the first N elements of dbb(k). This can be done computing the 
circular convolution between dbb(k) and c*(-k), using DFTs as in Fig.3. If d(k) 
contained only the range compressed data of an encoding transponder the result of the 
circular convolution would be the code's autocorrelation function Rc(k) centred on the 
code shift between the data dbb(k). and the reference c(k). If Rc(k)  has a sharp peak in 
the origin, the index to its maximum amplitude can be found and this will correspond 
to the sought code shift.  
The code induced phase modulation is then compensated for using the appropriate 
alignment.  
Finally the compensated data is summed yielding the complex pixel value. 
 
 
7.5 Tranponder signal properties 
 
A point scatterer simulator was first of all used to verify the focusing algorithm 
presented in the previous section and analyse the properties of the focused and the 
defocused transponder signals. Gold code words of different lengths were used. These 
sequences have pseudorandom properties and low crosscorrelation values, for which 
they are widely used in CDMA mobile communication systems. They are generated 
using two linear feedback shift registers, with feedback connections specified by so 
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called 'preferred pairs' of characteristic polynomials. Those tabulated in [Dixon1994] 
were used for the present work. A shift register with n taps will generate a code word 
of length N=2n-1. 
Trials were also carried out with Pseudo Noise (PN) sequences [Dinan1998]. The 
results obtained however differ only very slightly from those obtained with Gold 
codes and will be mentioned only in the conclusions. 
 
 
7.5.1    Characteristics of the focused signal 

The raw data of an encoding transponder was simulated using expressions (7.1) and 
(7.2). The processing algorithm described in Fig. 3 was then used to focus the data. In 
order to allow a comparison with a real data set (section 7.6), the SAR parameters of 
the European Space Agency’s (ESA) ERS-2 mission were used in the simulations, as 
detailed in Table 1. The results are presented for a zero squint angle, although it has 
been verified that, as expected theoretically, this parameter has no impact on the 
processing algorithm. No thermal noise or scattering from the surrounding was 
simulated at this stage. 
 

 stinU  retemaraP
 � 32 elgna ecnedicnI
 mk 748 egnar tnalS
 zH 8731 htdiwdnab relppoD
 zH 9.9761 FRP
 zH 0 diortnec relppoD
 s/zH 0012- etar MF htumizA

Number of integrated pulses 1101 - 
Gold code length 31, 127, 255, 511, 1023 -  

 
Table 1   Simulation parameters. 

 
Examples of images of simulated encoding transponders are shown in Fig. 4, as a 
result of conventional and modified TDC respectively. 
An increase in the expected Integrated Sidelobe Ratio (ISLR) of the focused point 
scatterer is apparent. Its signal is non-null over the entire length of the azimuth 
convolution (2Laz-1 samples, where Laz is the azimuth reference function length). This 
is due to the fact that the synchronization procedure of section 7.3 fails for the lower 
level sidelobes, which aren't properly compensated for the code induced modulation, 
appearing defocused in the final image. It was verified though, that this fact doesn't 
compromise the retrieval of the peak amplitude and phase. In these noise-free 
simulations performed, no error is in fact introduced by the algorithm of section 7.3 as 
far as the retrieval of peak amplitude and phase are concerned, since the azimuth 
phase modulation due to the code is perfectly compensated for. Other relevant 
azimuth Impulse Response Function (IRF) parameters are reported in Table 2. No 
significant loss of resolution was observed compared to conventional processing. The 
Peak Sidelobe Ratio (PSLR) improves as the code length increases since the same 
energy is distributed among a greater number of peaks, as can be seen from Fig. 4a 
and shall be explained below. 
It must be noted that once the correct code alignment is known, the image can be 
reprocessed, appropriately compensating each pixel of the point target response for 
the code induced modulation, in order to recover the conventional sin(x)/x IRF also in 
the azimuth dimension. This is relevant for calibration purposes. 
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Fig. 4a−1: Focused encoding transponder (simulated), N=31
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Fig. 4a−2: Focused encoding transponder (simulated), N=255
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Fig. 4a−3: Focused encoding transponder (simulated), N=1023
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Fig. 4b−1: Defocused encoding transponder (simulated), N=31
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Fig. 4b−2: Defocused encoding transponder (simulated), N=255 
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Fig. 4b−3: Defocused encoding transponder (simulated), N=1023
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Fig. 4 Focused (4a) and defocused (4b) simulated encoding transponders, using Gold code words of 

different length. 
 

-3 dB width 
(lines)

PSLR
(dB) 

ISLR
(dB) 

non encoded 1.28 -20.84 -18.30 
encoded

n = 5 
n = 7 
n = 8 
n = 9 

 n = 10 

1.28 
1.28 
1.28 
1.28 
1.28 

  -8.57 
-15.55 
-16.63 
-17.12 
-17.26 

2.04 
3.54 
4.28 
5.25 
7.16  

 
Table 2   Simulated point target azimuth IRF parameters. 
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7.5.2    Characteristics of the defocused signal 
From Fig. 4b it can be seen that the defocused signal of a non-encoding point target 
processed according to the algorithm of section 7.4, appears to be composed of a 
number of equally spaced peaks with a code length dependant spacing. This was also 
observed by other researchers [Dumper1999], although no explanation was given. 
This effect is caused by the phase structure of the signal which appears in the azimuth 
convolution. Placing the azimuth time origin at the beam centre point, the kth point of 
the convolution from the origin, considering only the k>0 case, is given for a zero 
squint angle by : 
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 (7.5) 

 
In (7.5) fR and PRF represent the azimuth FM rate and the radar Pulse Repetition 
Frequency respectively, while θ(m) represents the sequence of phase alterations used 
in the phase compensation step of Fig. 3. Considering the product of a linear FM 
signal and a delayed version of its complex conjugate in (7.5), for different values of 
the delay k, the phase across the vector obtained as m varies through its allowed 
values will take a different number of samples to exhibit a 360° rotation. For example, 
using ERS SAR parameters, for  = 44 the chirp product in (7.5) takes 31 samples to 
complete a 360° variation. For k = 6, 255 samples are required. This implies that if 
this chirp product is multiplied by an encoding sequence with period 31 or 255 
respectively, as done in the algorithm of section 7.4, a certain number of samples will 
add up coherently in (7.5) giving rise to a peak in the output. Moreover this is true 
regardless of the initial code shift of the shift register and of the specific code word 
used. Therefore in general, about 

k

( ) kLaz 12 −  peaks are expected for the dispersed 
signal of a non-encoding point scatterer. Their amplitude will decrease moving away 
from the position of the scatterer, since less in-phase elements are summed in (7.5) for 
increasing values of k. 
 
 
7.6 Transponder performance in a random scene 
 
For the applications it is also of interest to quantify the interactions between non-
encoded and phase encoded signals. In particular for external calibration and 
interferometry it would be of interest to know whether the co/decoding method 
provides a processing gain in terms of signal-to-clutter (S/C) ratio and thus an 
increased decoupling between the point scatterer of interest and the surrounding 
environment. For tagging applications it might be of more interest to know the 
processing gain compared to a non-encoding point scatterer or to an encoding one 
using a different code word. Furthermore, assuming no a priori information on code 
alignment is available, the device’s RCS and the code length must be chosen 
according to the environment characteristics, in order to guarantee success of the 
synchronization strategy discussed previously. Finally it is desirable for the Peak-to-
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Background Ratio (PBR) of the device in the resulting image to be as high as possible 
to automatically, or at least easily, locate the device.    
The aim of this section is to provide tools to design the transponder RCS and choose 
the most appropriate code length depending on the environment properties and the 
application at hand. This is done defining parameters of interest and computing them 
through analytical models and simulations. The results are again based on Gold codes 
although in our opinion they can be extended to other pseudorandom code families 
with small differences mentioned in the conclusions.  
 
 
7.6.1   Signal decoupling - analytical modelling 
  
Supposing an encoding transponder is deployed, the input signal to the convolutional 
model of Fig.2 will be 
 

( , ) ( , ) ( , )f cτ η σ δ τ η τ= ⋅ + η   (7.6) 
 
The deterministic part, representing the transponder, is a Dirac function with 
amplitude σ , where σ  is the Radar Cross Section (RCS) of the device, while c(τ,η) 
is in general a non-stationary circular Gaussian white noise process modelling terrain 
scattering. 
To focus the encoding transponder the algorithm described in section 7.4 can be used. 
It will be assumed in the following that the code alignment is already known, since 
the outlined synchronization procedure can be used to recover it under conditions 
derived in the next section. In this way all pixels are compensated for the same code 
induced phase modulation, the one suitable to focus the encoding device. 
To derive the processing gains, the output of the processor can be written, based on 
Fig. 2, as  

( )
( )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

code code

code

g w

c w n h

hτ η σ δ τ η τ η τ η

τ η τ η τ η τ

= ⋅ ⊗ ⊗

+ ⊗ + ⊗ η
  (7.7) 

 
where it has been considered, as detailed in section 7.3, that everything goes as if the 
encoding point scatterer experienced an altered Doppler history with respect to natural 
ones. Following a procedure similar to the one used in [Ulander1991], the expected 
increase in peak transponder signal intensity to mean terrain backscattering power due 
to the co/decoding method can be proved to be (see Appendix A): 
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    (7.8) 

 
In order to quantify the effect of the encoding method on a non-encoded point 
scatterer signal, a gain Gp can be defined as the ratio of the peak encoding transponder 
intensity  to the power of a non-encoding point scatter with the same RCS, 
processed with the use of a code sequence. The following parameters of interest can 
be derived (see Appendix A): 

cpeakP _
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Similarly, the gain Gc compared to an encoding point target using a different code can 
be quantified by 
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  (7.10) 

 
The processing gains (7.8), (7.9) and (7.10) can be computed numerically using the 
two dimensional impulse responses for the SAR system and the processor, given by 
(7.3) and (7.4) respectively. In the defining expressions for the processing gains, 
convolution with h(τ,η) represents conventional TDC processing whereas convolution 
with hcode(τ,η) implies applying the modified algorithm described in section 7.4, where 
the synchronization procedure is skipped though and the right code alignment is 
directly used for phase compensation. Simulations over 1000 different Gold code 
words yielded the mean values and the standard deviations reported in Table 3.  
 
 

 E[Gd]  <Gp>  min Gp  <Gc>  min Gc

n mean std mean std mean std mean std mean std 
5 1.17 0.23 33.40 0.23 11.59 1.47 33.42 0.01 15.51 0.02
7 1.15 0.11 33.38 0.11 16.24 1.16 33.39 0.01 21.10 0.11
8 1.15 0.08 33.38 0.08 18.44 0.96 33.38 0.01 23.89 0.13
9 1.15 0.07 33.38 0.07 20.79 0.79 33.38 0.02 26.35 0.17
10 1.15 0.08 33.38 0.08 22.21 0.81 33.38 0.06 26.08 0.24  

 
Table 3   Processing gains (dB) computed for 1000 different Gold code words. 

 
Similar values for Gd and Gp were reported in  [Dumper1999] and [Wägel1999] 
respectively. A qualitative explanation to the different order of magnitude of these 
two gains can be given, considering each resolution cell containing backscattering 
terrain as a point scatterer and considering the defocusing of a point scatterer due to 
the encoding method. The average point scatterer signal suppression in azimuth is 
about 33.4 dB and it is not null over a 2Laz-1 azimuth samples. The dispersed signals 
of adjacent resolution azimuth cells add up incoherently with an intensity gain of 
about 2Laz-1. The overall gain is thus almost null. This is relevant for applications to 
external calibration and interferometry since it implies that the co/decoding method 
doesn't allow any significant reduction in the RCS of the device if the S/C ratio is to 
be kept constant. 
From Table 3 it can also be seen that the S/C ratio obtained, and thus the decoupling 
between the transponder signal and the backscattered field from the surroundings, is 
code length independent. On the contrary the gains compared to a non-encoding point 
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target or to an encoding one using a different code, improve with increasing code 
length. This can be relevant for tagging applications and must be considered in the 
tradeoffs with other code length dependant parameters. 
 
 
7.6.2   Code synchronization and PBR loss - analytical modelling and simulations          

in a homogeneous scene 
  
The success of the synchronization procedure described in section 7.4 relies on the 
device’s RCS and on the shape of the code autocorrelation function, which improves 
as the code length increases. On the other hand in order to improve processing 
efficiency it would be desirable to choose short code lengths. Furthermore the code 
acquisition strategy will be shown to affect the PBR of the device in the resulting 
image. The aim of this subsection is to quantify the existing tradeoffs between code 
length and device RCS for design purposes. Stationarity of the scene statistics will be 
assumed in this subsection, whereas the performance in a non-homogeneous scene 
will be discussed in the following one.           
A distributed raw data simulator was implemented and an encoding transponder signal 
with a known RCS was placed in a homogeneous scene, i.e. pure speckle, with a 
known σ0. Thermal noise was modelled by an additive Gaussian white noise process 
with a  –21 dB noise equivalent σ0. Gold codes of different lengths were used to 
provide an azimuth phase encoding in the raw data and subsequently during the 
processing. For each code, the processing algorithm described in section 7.4 was used 
to assess the performance of the synchronization procedure by computing a parameter 
which will hereafter be referred to as Synchronization Margin (SM). It represents the 
ratio between the two greatest peaks of the synchronization signal Rcd(k). 
The mean observed values for the SM are reported in Table 4 together with their 
standard deviations. These values depend on the code length N=2n-1 and on the 0/σ σ  
ratio. For certain combinations of these parameters, no values are reported in Table IV 
because the peak position of Rcd(k)  was incorrectly determined in more than 1% of 
the trials. The procedure was instead always successful for the combinations 
corresponding to the reported values. 
 

 
σ/σ0

(dB) n = 5 n = 7 n = 8 n = 9 n = 10 

 mean std mean std mean std  mean std mean std 
40 - - - - - - 6.67 1.25 9.41 0.92
45 - - - - 6.98 1.38 10.93 0.85 13.71 0.83
50 - - 7.65 1.28 10.75 0.95 14.39 0.70 17.1 0.57
55 5.42 1.38 10.69 1.00 13.74 0.84 17.22 0.67 19.31 0.53
60 7.49 1.08 13.11 0.73 15.23 0.64 18.92 0.48 20.41 0.44  

 
Table 4   Synchronization Margin (dB) for different Gold code lengths. 

 
A lower bound for the SM can be obtained theoretically for a code family with known 
autocorrelation properties and arbitrary 0/σ σ . It can be proved that the following 
relation holds: 
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In (7.11) Lr stands for the range reference function length, Wr is the loss in peak signal 
strength due to the range weighting function (e.g. Kaiser weighting), t(n) the 
maximum value of the code autocorrelation function in a point different from the 
origin, ∆x and ∆Rg are the unprocessed azimuth and ground range resolutions 
respectively. The parameter CG(n), which stands for "correlation gain" and is a 
function of n, represents the intensity gain of the signal backscattered from the terrain 
after correlation with the code sequence. The minimum and maximum values have 
been computed numerically. A vector of N independent random variables having 
uniform phase and Rayleigh amplitude distributions was correlated with a binary code 
sequence converted to a bipolar signal. The intensity gain compared to the random 
vector's intensity expected value was computed. This was repeated for 1000 random 
vectors and different code words. The following relations were found to fit the 
simulated data with sufficient accuracy: 
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 (7.12) 

 
The remaining terms in (7.11) are radar system parameters and code properties. The 
antenna footprint size in the along and across track dimensions are represented by 

ax R Lλ∆ = and ( )2singR cτ θ∆ =  respectively, where La is the SAR antenna length in 
azimuth and τ is the transmitted pulse duration. For Gold codes t(n) is given by 
[Dinan1998] 
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A last and unexpected result concerns the PBR of the transponder in the processed 
image. The code acquisition procedure appeared to hinder transponder localization, by 
worsening the PBR compared to when code alignment was already known. The 
observed PBR loss proved to be code length dependent as reported in Table 5. In 
particular it was verified to be independent of the 0/σ σ  ratio. 
 

n PBR loss (dB) 
5 0.41 
7 1.62 
8 3.06 
9 5.79 
10 8.60  

 
Table 5    Average PBR loss due to code acquisition procedure. 
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An explanation to PBR loss can be given observing that the procedure of section 7.4 
correctly identifies the right phase compensation for a pixel containing an encoding 
transponder, but also maximizes the non-encoded signals in the resulting image over 
all possible code shifts. This undesired optimisation leads to significant results due to 
the high variability of CG(n) for a fixed n. Code length dependence instead implies 
the excursion of the azimuth convolution (7.5) over all possible code shifts decreases 
together with the code length. We believe this to be due to a property of 
pseudorandom codes [Dinan1998], for which shorter code words contain shorter runs 
of ones and therefore of sign changes. This in turn causes the sum in (7.5) to become 
less sensitive to code shifts as code length decreases.  
PBR loss is an important issue for tagging applications, while it is not as relevant for 
calibration or interferometry purposes. In fact the resolution cell containing the device 
is compensated for code induced modulation with the appropriate code shift in both 
cases, i.e. when code alignment is known or unknown. The peak intensities and 
phases of the focused signal are therefore actually the same. Only resolution cells not 
containing an encoding device are focused differently because of the code acquisition 
procedure. 
 
 
7.6.3   Effects of a non-homogeneous scene - generalization of the results and 
simulations in an urban environment 
 
Performance of the encoding transponder in a complex environment such as an urban 
or a maritime one may also be assessed in terms of signal decoupling compared to the 
environment backscattering, of synchronization margin and of PBR loss. 
As far as decoupling is concerned it is first of all pointed out that no assumption on 
the stationarity of the scene statistics, i.e. scene homogeneity, is needed to derive 
expression (7.8), which represents the expected gain in terms of S/C.  In a non-
homogeneous scene, fluctuations around this expected value will be greater than in a 
homogeneous one. In fact, from the description of the defocused signal characteristics 
in section 7.5.2, it is expected that in a non-homogeneous environment the value of 
the S/C decoupling will be specific to the imaged scene and depend on the average 
intensity of scatterers located at the same slant range cell, as well as those spanned by 
the range cell migration locus, and within a synthetic aperture of the transponder 
position in azimuth. 
A case of interest, as far as signal decoupling is concerned, is that of an encoding 
transponder placed on a non-encoding point scatterer, say a ship at sea or a building 
top. Based on the superposition principle, the co-decoding process is expected to 
provide a significant decoupling of the device’s signal compared to that of the       
non-encoding object. 
As far as synchronization margin is concerned, the results obtained in the previous 
section and also expression (7.11), are expected to hold also in the non-homogeneous 
case, substituting 0σ  with its spatial average. The values of this parameter are instead 
expected to differ greatly when the device is placed on a non-encoding point scatterer. 
Based on the superposition principle equation (7.11) can be modified to include the 
scattering from the “natural” point scatterer on which the device is placed, described 
by its RCS PSσ . Equation  (7.13) can be proved, considering scattering from the rest 
of the scene to have an average backscattering coefficient of 0σ  and renaming the 
transponder RCS  as TPσ . 
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A simulation experiment was carried out in an urban environment, in order to assess 
the theoretical expectations outlined above. The device’s raw data was simulated and 
inserted into an ERS-2 raw data set (orbit 04943, frame1763) covering the city of 
Rome and surroundings. A densely edified urban area located near the university 
campus of Tor Vergata was considered a challenging simulation scenario, due to a 
high mean backscattering level (σ0  = -0.8 dB, 99% confidence level within +/- 0.5 dB 
bounds) and the presence of some very bright “natural” point scatterers                
(RCS = 35 dBm2). 
The simulated transponder was placed in a low backscattering area (σ0 = -10 dBm2) 
surrounded by buildings and also on top of a highly reflective building                 
(RCS = 35 dBm2). The correct voltage scale factor for the simulated transponder 
signal was derived exploiting a radiometrically calibrated image of the scene obtained 
with the Gamma MSP software [Werner2001], using a procedure with an estimated 
accuracy (standard deviation) of 0.85 dB. The transponder signal was summed in 
amplitude and phase to the scene raw data, therefore not accounting for multipath.   
The simulated RCSs for the transponders were varied from 35 to 55 dBm2 in 5 dB 
steps. For each RCS value, a non-encoding and an encoding transponder were 
simulated. Phase encoding was applied using gold codes of length 127, 255, 511 and 
1023 chips. Performance in both simulations, low backscattering and building top, 
was assessed in terms of synchronization margin, PBR loss and signal decoupling 
compared to the scattering from the environment. 
Synchronization margin values didn’t exhibit substantial differences from the 
homogeneous case when the device was placed in the low backscattering area, 
surrounded by buildings. When placed on the building top though values differed 
greatly, as reported in Table 6. 
 

σTP

(dB) n=7 n=8 n=9 n=10 

35 - 1.4 5.72 10.05 

40 2.77 5.56 9.17 13.84 

45 7.14 9.63 12.5 16.9 

50 10.74 12.75 15.46 19.3 

55 13.63 14.51 17.83 20.4 

 
Table 6  Simulated transponder on building top (building RCS=35dBm2); 

         Synchronization Margin (dB) for different Gold code lengths. 
 
The observed PBR losses agreed in both simulations within +/-0.5 dB with the values 
obtained for the homogeneous case (Table 5), again suggesting this parameter is due 
only to a pseudorandom property of the code sequence family. The results described 
in the next section seem to provide a further confirmation of this. 
Decoupling compared to the environment was quantified in two different ways in the 
two simulations. For the low backscattering area, an increase of about 5 dB was 
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observed in the S/C ratio, due to processing with the code sequence. This value is 
greater than in the homogeneous case simulated in section. Its value in a more 
complex environment, such as the urban one, is specific to the imaged scene and 
depends on the average intensity of scatterers located at the same slant range cell, as 
well as those spanned by the range cell migration locus, and within a synthetic 
aperture of the transponder position in azimuth. For the building top simulation the 
observed relative amplitude standard deviation and the phase standard deviation 
compared to the known transponder signal were computed. The statistics were 
computed from the observations related to the different code lengths used. The results, 
listed in Table 7, show that the encoding transponder achieves the same level of 
amplitude and phase decoupling of a non-encoding device with a 15 dB greater RCS.  
  
 

 

Table 7  Comparison between amplitude and
phase of the simulated transponder signal
alone and that of the transponder signal
summed to the scene backscattering.
Intensity standard deviation has been
normalized to the intensity of the
transponder signal alone. The values in the
code columns represent an average over the
different code lengths tested. 

 
Relative intensity 
standard deviation 

Phase standard 
deviation  (°) 

 σTP
(dB) no code Code no code code 

35 1.93 0.22 20.55 9.08 

40 0.85 0.08 15.77 5.70 

45 0.41 0.04 11.95 4.71 

50 0.21 0.02 8.36 3.75 

55 0.11 0.02 6.45 3.29 

 
It must be stressed that the validity of the analysis reported in this section is subject to 
that of the superposition principle as an interaction model. This in turn is expected to 
be influenced by scene and device specific factors, which need to be further assessed. 
 
 
7.7   Real data processing - DLR prototypes  
 
Two data sets from encoding transponder experiments performed by the Microwave 
and Radar Institute (HR) of the German Aerospace Centre (DLR) in 1997/98 
[Wägel1999] were investigated. In both scenes prototypes of the encoding 
transponder described in [Hounam2001] are deployed, as well as reference non-
encoding corner reflectors of known position and RCS as shown in Fig. 5 and Fig. 6. 
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Corner reflectors in Sep 1997 scene
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Fig. 5   Corner reflectors in the scene from September 1997 (conventional processing). 

Corner reflectors in Oct 1998 scene

azimuth [lines]

sl
an

t 
ra

n
g

e 
[s

am
p

le
s]

555 655 755 855 955 1055 1155 1255 1355 1455
520

620

720

820

Labor  
Transp.

Code4  
Transp.

Uncoded 
Transp. 

Corner    
refl. CR8 

 
 

Fig. 6   Corner reflectors in the scene from October 1998 (conventional processing). 
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In Fig. 5 the encoding transponder isn't visible, its defocused signal being below the 
backscattering intensity level from the surroundings. The two encoding devices 
appear instead as horizontal streaks in Fig. 6 after conventional processing, due to 
their large RCSs.  
The Uncoded and Code4 transponders were deployed in grassland, about 100m away 
from buildings in the DLR  Oberpfaffenhofen premises. The Labor transponder was 
instead placed on a building top in both acquisitions and equipped with patch antennas 
and horn antennas in the scenes from 1997 and 1998 respectively. The codes used by 
the Labor and the Code4 transponders were respectively a PN sequence and a Gold 
code word of length 1023 chips.  
The data were first azimuth compressed using a conventional TDC algorithm to verify 
the correct focusing of the reference non-encoding corner reflectors. Azimuth 
compression was then repeated using the appropriate code sequence provided by DLR 
and applying the algorithm described in section 7.4 to focus the encoding 
transponders. 
Patches of interest of the resulting images are shown in Fig.7.  
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Fig. 7.1: Uncoded Transponder (Oct 1998) − conventional processing
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Fig. 7.2: Code4 Transponder (Oct 1998) − processed with code
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Fig. 7.3: Labor Transponder (Sep 97) − conventional processing
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Fig. 7.4: Labor Transponder (Sep 97) − processed with code
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Fig. 7 Matched filtering of encoding and non-encoding point scatterers 
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All point scatterers, and in particular all encoding transponders, were correctly 
localized. The azimuth positions of the encoding devices in both images agreed with 
the reference ones with an accuracy of less than half a pixel. Horizontal streaks are 
due to mismatch with the azimuth reference function used, as detailed in Fig. 8. 
The quality of the focusing was verified performing vertical and horizontal cuts 
through the IRF of each focused encoding transponder. The results are listed in    
Table 8. It can be seen that when the S/C ratio is high enough to allow measurement 
of the relevant parameters, the focusing quality of the modified TDC algorithm is the 
same as that of the conventional TDC algorithm, which in turn meets the expectations 
for the ERS-2 SAR. An increased ISLR can be noticed, as expected from the 
simulations presented in section 7.6. 
 

-3 dB width PSLR (dB) ISLR (dB) 
slant
range 
(cells) 

azimuth 
(lines) 

slant 
range 

 

azimuth slant 
range 

 

azimuth 
 
 

Uncoded Tp. 1.15 1.34 -12.05 -17.4 -9.17 -15.26 
Lab.Tp. (’98) 1.19 1.31 -12.09 - - - 
Code4 Tp. 1.19 1.34 -13.11 -15.69 -9.57 -7.47 
Lab.Tp. (’97) 1.03 1.44 - - - - 
CR8 (’97) 1.16 1.31 -12.03 -18.96 -9.44 -16.11  

 
Table 8   Point target IRF parameters after matched filtering. 

 
 

azimuth
b)     

635 645 655 665 675 685 695 705 715

744

749

754

759

764

769

774

779

Labor−Transponder (Oct 1998) − processed with code

ra
ng

e 

Uncoded
Tp.    

Code4
Tp.  

Labor
Tp.  

azimuth
c)

ra
ng

e

635 645 655 665 675 685 695 705 715

744

749

754

759

764

769

774

779

Uncoded Transponder (Oct 1998) − conventional processing

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 Code4 Transponder (Oct 1998) − processed with code

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 D
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In order to evaluate the processing gains of section 7.5, data processing was repeated 
directly using the right code alignment for each encoding device, skipping the code 
acquisition procedure. The peak transponder signal-to-background ratios have been 
computed considering a 1 km2 area in the upper left corner of Fig. 5 and Fig. 6 
respectively as the background, to avoid including the defocused point scatterer 
signals in the computation of the mean terrain backscattering level. The results are 
given in Table 9. 
 

observed 
(unknown code shift) 

observed 
(known code shift) 

RCS
(dBm2)

Uncoded transponder - 33.18 48.70 
Labor transponder (’98) 20.90 29.49 44.04 
Code4 transponder 26.95 35.47 50.59 

 03.05 80.33 - )79’( 8RC
Labor transponder (’97) 10.08 19.48 33.15  

 
Table 9   Peak to Background Ratios. 

 
Keeping the RCS differences into account, a gain of 0.97 dB and a 0.4 dB was 
observed for the Labor and the Code4 transponder respectively compared to the 
Uncoded one. The expected gains according to (7.8), were respectively 1.15 and    
0.88 dB. In the 1997 scene, the Labor transponder seems to gain 3.55 dB compared to 
corner reflector CR8, although it can be seen from Fig. 6, that the two devices are not 
placed in the same context.  
The PBR loss, which can be obtained from Table 9, amounted to 8.5 dB, 8.6 dB and 
9.4 dB for the Code4, the Labor'98 and the Labor'97 transponders respectively. The 
first two values are in excellent agreement with those predicted from the simulations 
reported in Table 5, while the third is higher by almost 1 dB. This result is however 
also in good agreement with the expectations and might be influenced by the low S/C. 
Finally it is possible to infer the peak to mean suppression of a non-encoding point 
scatterer processed with the use of a code sequence. Comparing once again the PBRs 
of the Labor and the Code4 transponder to that of the Uncoded one in the 1998 scene 
in Table 9, it can be seen to be about 24 dB if no code alignment information is 
known and 33 dB if it is known in advance, in good agreement with the values in 
Table 3 and Table 5.  

 
 

7.8   Conclusions 
 

A processing algorithm suitable to accurately recover amplitude and phase 
backscattered from a pulse-to-pulse SAR encoding transponder has been presented 
theoretically and validated on simulated and real data.  A synchronization procedure 
needing no a priori information was also described and tested.  
As far as interaction with the backscattered field from non-encoding reflectors 
concerns, the co/decoding method provides an intensity gain, and thus a decoupling, 
compared to a non-encoding point scatterer or an encoding one using a different code, 
according to Table 3. When placed in a random scene instead, regardless of its 
statistical properties, decoupling is expected to improve only by 1 dB compared to 
conventional imaging, although more significant scene dependant gains might be 
observed for non-homogeneous scenes. Therefore minimization of the interaction 
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with the backscattered field from the device’s surroundings relies on the RCS value as 
well as on other techniques proposed in literature to achieve clutter decoupling, such 
as generating a Doppler shift [Shimada1999], [Weiss2004] and/or a range delay 
[Shimada1999]. 
The length of the encoding sequence was found to influence the success of the 
synchronization procedure and the PBR of the device in the processed image. Using a 
short code sequence reduces the synchronization margin for a fixed RCS but on the 
other hand improves the PBR in the resulting image as well as the processor’s 
computational efficiency. 
Provided the spatial average of the backscattering coefficient is known, equation 
(7.11) and Table 4 can be used to assess the trade off between code length and device 
RCS.  For an ERS like sensor for example, supposing the device is to be deployed in 
an urban environment with a 0 dB average σ0 value, from equation (7.11) a 45 dBm2 
RCS and a code length as short as 255 could then be chosen, improving the 
processing efficiency and the PBR, as can be seen from Table 4 compared to a 1023 
code length, without worsening the S/C ratio. 
A final remark concerns the extension of the results obtained in this chapter to 
different Gold codes or to other pseudorandom codes, such as PN and Kasami 
sequences [Dinan1998]. Significant variations between different Gold code words 
were not observed in the simulations carried out so far. Also an effort has been made 
to link significant parameters involved in the choice of the encoding sequence to code 
family properties, rather than to those of a specific sequence. The S/C ratio is 
influenced by the chirp properties and the pseudo-randomness of the sequence of 
phase alterations, the PBR loss by the distribution of runs of zeros and ones and the 
SM by the code’s autocorrelation function. Finally Gc will be influenced by the cross 
correlation function between two code words. This is useful to predict the results 
which are to be expected using different code families. PN sequences have better 
autocorrelation properties than Gold codes and are expected to yield a greater SM for 
a given RCS. Equation (7.11) with t(n) = 1 can be used for the computation, yielding 
approximately a 2 dB improvement. On the other hand cross correlation properties are 
worse and lower values for Gc are expected. Also, for a given n, fewer codes are 
available. To this end the large set of Kasami sequences could be used to generate a 
greater number of different codes for a fixed value of n, without worsening the 
autocorrelation and crosscorrelation properties compared to Gold codes.  
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Chapter 8 
 
 
 

Conclusions 
 
 
8.1   Overview 
 
The central research themes addressed throughout this thesis have been the following: 
 

• statistical characterisation (structure function) of atmospheric path length and 
phase unwrapping errors in repeat-pass SAR interferometry 

• derivation of a suitable focusing algorithm and performance in a random scene 
of a pulse-to-pulse encoding SAR transponder 

 
Application fields for the former are error prediction for the generation of height and 
displacement maps. Models for the structure function of atmospheric path length and 
phase unwrapping errors were derived in chapters 4 and 5 respectively. A framework 
which exploits these models was presented in chapter 3 for DEM generation from a 
single interferogram, and an application to ERS-tandem data was discussed in  
chapter 6. It was also suggested in the introduction of this thesis that the atmospheric 
model presented in this work might be useful for multi-interferogram frameworks in 
the future as well as for error correction techniques based on GPS or Spectrometers. 
The latter investigations reported in this thesis address a specific type of artificial 
reflector. In the context of SAR interferometry, artificial reflectors may be exploited 
in tie-point baseline calibration methods, as the one presented in chapter 3, as well as 
in Persistent Scatterer techniques. In the current literature results concerning Corner 
Reflectors have been reported. However SAR transponders may offer advantages 
compared to passive reflectors, in terms of size, weight, cost and ease of deployment. 
Furthermore they may superpose a modulation to the SAR signal, which can be 
exploited to decouple the point target's signal from that backscattered from its 
surroundings as well as to automatically locate and identify the device in an image. In 
chapter 7 a specific transponder architecture was considered, namely a pulse-to-pulse 
BPSK encoding one. A focusing algorithm was proposed and validated and the 
interaction of the encoded signal with that due to backscattering from non-encoding 
objects was analysed. Equations enabling assessment of design trade-offs were also 
derived. The issues dealt with may be regarded as being of interest for interferometry 
in the context of this thesis, although they are not restricted to this application.  
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8.2   Atmospheric error modelling  
 
A model for the second order statistics of the propagation delay associated with 
spatio-temporal refractivity fluctuations in the troposphere has been derived in      
chapter 4. A closed form expression for the zenith delay structure function was 
obtained from a two regime power spectral density function reported in literature. The 
underlying assumptions were discussed in detail and are basically homeogeneity, 
isotropy and stationarity of the considered process. The model contains a free 
parameter, which represents the power spectral density at a given spatial frequency. 
This may be initialised by available measurements at the acquisition time of the 
images forming the interferometric pair, or alternatively a standard model may be 
created by choosing an "off the shelf" value. The latter is derived in chapter 4, based 
on an "expected" atmospheric condition.  
The standard model obtained was compared with the a well known model, [Treuhaft 
and Lanyi 1987], and exhibited an agreement better than 20 %, considering all spatial 
scales. Furthermore its power spectral density at a fixed spatial frequency, was 
compared to the observations reported in [Hanssen2001], representative of a variety 
of weather conditions. The globally expected parameter derived in chapter 4 proved to 
be a median value for Hanssen's data set.    
In chapter 6 the model was applied to an ERS tandem data set, in which artefacts with 
an average magnitude between +3 and –3 rad and peaks of about 5 rad, were observed 
and attributed to the atmosphere. For all data sets considered, the atmospheric model 
appeared to bring a realistic contribution to the error estimation, with observations 
falling within 2 predicted standard deviations, although some local underestimates 
were observed.  
Future investigations should concern a validation on a larger data set and an extension 
of the model to account for topography-correlated artefacts.   
 
 
8.3   Phase unwrapping error modelling 
 
In chapter 5 a model for the second order statistics of large-scale phase unwrapping 
errors was derived. It was assumed that these are caused by phase discontinuities, in 
turn due to phase noise and radar shadow, to phase under-sampling induced by steep 
topography and phase noise as well as by discontinuous surface deformation and by 
radar layover. It was further assumed that errors of 1 phase cycle are more likely to 
occur across these discontinuities than multiple cycle ones, although the behaviour of 
the unwrapping algorithm was considered unknown. Finally, stationarity was 
assumed, implying the sought second order statistics depend only on the distance 
between pixel pairs, rather than on the specific pixel positions.  
A model was derived by specifying a number of phase discontinuities, referred to as 
"cuts" and modelled by straight lines, and considering a large set of random polygonal 
tessellations of the interferogram. These were obtained using the given number of 
cuts. For each tessellation a simple way of simulating the unwrapper's behaviour, 
according to the above hypothesis, was then used to assign a phase unwrapping error 
to each region created by the tessellation. The statistics of interest were then 
computed, considering a large number of random tessellations and the corresponding 
error assignments. 
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The derived error structure function was found to be well approximated by a second 
order polynomial of the distance between points, with coefficients depending on 
image size and number of cuts.    
The model was tested on the data sets i5 and i6 in chapter 6, which are very likely to 
present some medium to large-scale PU errors. A common feature of this error source 
appeared to be the spatial scale over which a phase jump of one phase cycle or more 
was observed, which always corresponded to less than 1 km on ground. Inclusion of 
the phase unwrapping model with a varying number of cuts was tested. Localised 
errors could not be accounted for, no matter how severe they were. This was 
expected, due to the stationarity hypothesis of the model. In the only test case, i.e. the 
i7 one, where PU errors actually might contribute to a large-scale tilt-error in the 
baseline calibration, the PU error model seemed however to provide a better 
prediction in critical areas, at the price of overestimating the error in less problematic 
ones. 
Further work is required to assess the effectiveness of the model and a criterion 
should be provided to automatically determine the number of cuts to be input to the 
model. 
 
 
8.4   Encoding transponder signal processing 
 
A modified azimuth Time Domain Correlation algorithm was proposed in chapter 7 to 
accurately recover amplitude and phase backscattered from a pulse-to-pulse SAR 
encoding transponder. Pseudorandom code sequences were considered. Theoretical 
arguments were brought forward to explain the problems which arise in the 
modification of conventional frequency domain algorithms. Validation of the 
proposed algorithm was carried out successfully on simulated and real data.  
A code alignment (synchronization) procedure needing no a priori information was 
also described and tested.  
The interaction with the backscattered field from non-encoding reflectors was 
analysed for Gold codes. The co/decoding method provides a code length dependant 
intensity gain between 10 and about 24 dB for code lengths of interest. When placed 
in a random scene instead, regardless of its statistical properties and of the device's 
code length, decoupling is expected to improve only by 1 dB compared to 
conventional imaging, although more significant scene dependant gains might be 
observed for non-homogeneous scenes. Therefore minimization of the interaction 
with the backscattered field from the device’s surroundings should not rely on the 
BPSK coding mechanism, but on the RCS value as well as on other techniques 
proposed in literature to achieve clutter decoupling, such as generating a Doppler shift 
[Shimada1999], [Weiss2004] and/or a range delay [Shimada1999]. 
The length of the encoding sequence was found to influence the success of the 
synchronization procedure and the Peak to Background Ratio of the device in the 
processed image. Using a short code sequence reduces the synchronization margin for 
a fixed RCS, but on the other hand improves the PBR in the resulting image as well as 
the processor’s computational efficiency. Provided the spatial average of the 
backscattering coefficient is known, equations are provided to assess the trade off 
between code length and device RCS.   
Finally the extension of the results obtained for Gold codes to other pseudorandom 
code families, such as PN and Kasami sequences, has been discussed. The S/C and 
PBR loss are not expected to differ significantly from the values reported here. The 
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SM is expected to improve for a fixed RCS, using PN sequences, which have a better 
autocorrelation function than Gold codes. On the other hand cross correlation 
properties are poorer and the decoupling between devices using different code words 
is expected be worse. The large set of Kasami sequences could instead be used to 
generate a greater number of different codes for a fixed code length, without 
worsening the autocorrelation and crosscorrelation properties compared to Gold 
codes. 
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Appendix A 
 
 
 

Encoding SAR Transponder Signal 
Decoupling: Analytical Modelling 
Derivations 
 
In this section, the steps leading to equations (7.8), (7.9) and (7.10) are reported. 
The objective is to quantify a pulse-to-pulse encoding transponder’s signal decoupling 
properties compared to a distributed scatterer, to a non-encoding point scatterer and to 
an encoding point scatterer using a different code. To this end the parameters 
introduced in chapter 7 were: 
 

• The expected increase in peak transponder signal intensity to mean terrain 
backscattering power due to the co/decoding method (equation (7.8)). 

• The ratio of the peak encoding transponder intensity to the power of a non 
encoding point scatter with the same RCS, processed with the use of a code 
sequence (equation (7.9)). 

• The ratio of the peak encoding transponder intensity to that of a second 
encoding point target having same RCS, but using a different code (equation 
(7.10)). 

 
 
Derivation. The convolutional model of a SAR system used in chapter 7 is the 
starting point and is reported again below for simplicity. An approach similar to that 
reported in [Ulander1991] shall be followed. 
 

( , )w τ η

( , )n τ η

( , )h τ η( , )f τ η ( , )g τ η

 
 

Fig. 1 Block diagram of a single look SAR system. 
 
Supposing an encoding transponder is deployed, the input signal to the above model 
is:  
 

( , ) ( , ) ( , )f cτ η σ δ τ η τ= ⋅ + η   (A.1) 
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The deterministic part, representing the transponder, is a Dirac function with 
amplitude σ , where σ  is the Radar Cross Section (RCS) of the device, while c(τ,η) 
is in general a non-stationary circular Gaussian white noise process modelling terrain 
scattering. 
In Fig. 1, w(τ,η) and h(τ,η) denote the conventional SAR impulse response and 
matched filter respectively. In the following, functions wcode(τ,η) and hcode(τ,η) shall 
instead represent the encoding transponder’s impulse response and its matched filter 
respectively. 
To focus the encoding transponder, it is assumed matched filtering is performed and 
that the code alignment is already known. In fact the procedure described in section 
7.4 can always be used to recover this information. This assumption implies all pixels 
are compensated for the same code induced phase modulation, the one suitable to 
focus the encoding device. 
The output of the encoding transponder’s processor can be written, based on Fig. 1, 
as:  

( )
( )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

code code

code

g w

c w n h

hτ η σ δ τ η τ η τ η

τ η τ η τ η τ

= ⋅ ⊗ ⊗

+ ⊗ + ⊗ η
  (A.2)  

where it has been considered, as explained in section 7.3.1, that everything goes as if 
the encoding point scatterer experienced an altered Doppler history with respect to 
natural ones. It will be convenient to define  

( , ) ( , ) ( , )mat code codeq w hτ η τ η τ= ⊗ η  

and  

( , ) ( , ) ( , )mis codeq w hτ η τ η τ= ⊗ η   

as the result of matched and mismatched filtering respectively, when a code sequence 
is used in the processing. The result of conventional focusing will instead be denoted 
by 

( , ) ( , ) ( , )q w hτ η τ η τ= ⊗ η  

Also, for the sake of clarity, it is useful to represent image coordinates with spatial 
variables (x,y), azimuth and slant range respectively, rather than with time variables. 
Squaring (A.2) and using the above definitions, the processor's output intensity can be 
written as:  
 

{
}

2 22 2

*

*

( , ) ( , ) ( , ) ( , )

2 ( , ) ( , ) ( , ) ( , )

( , ) ( , )

mis code

qmis

q codemis

mat q h

mat mat h

h

g x y q x y c x y n x y

q x y c x y q x y n x y

c x y n x y

σ

σ

= + +

⎡+ ℜ ⊗ + ⊗⎣

+ ⊗

*
code

⎤
⎦  (A.3) 

 
In analogy with [Ulander1991] subscripts are used so that  stands for 

. 
( , )

misqc x y

( , ) ( , )misc x y q x y⊗
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The mean clutter power  can be obtained from (A.3), considering a region where 

only clutter and a noise power  are present. Introducing the spatial average 
operator  <·>, the following is obtained: 

0 _ c
P

σ

cnP _

   
0

2
__

22

( , )

( , ) ( , )
code

n cc

h

P E g x y P

E g x y E n x y

σ
⎡ ⎤= − =⎣ ⎦

⎡ ⎤⎡ ⎤= − ⎢ ⎥⎣ ⎦ ⎣ ⎦

  (A.4) 

 
This can be related [Ulander1991] to the differential scattering coefficient                 

0σ  (m2/m2) and the incidence angle θ  through the clutter's autocorrelation function :  
 

[ ]
0

( , ; ', ') ( ', ') *( ', ')

( ', ') ( , )
sin

ccR x y x y E c x x y y c x y

x y x yσ δ
θ

= + +

=
  (A.5) 

 
Using (A.3), (A.4) and (A.5) it can be proved that: 
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    (A.6) 

 
where dA = dxdy and the new parameter introduced is defined as 
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∫
  (A.7) 

 
The expected point scatterer power is obtained from (A.3) as 
  

( )0
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2

( , ) ( , )

( , )

c nc

mat

P x y E g x y P P

q x y

σ

σ
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= ⋅

c =   (A.8) 

 
This quantity can be integrated over a spatial region where its value is not null to 
relate it to the mean clutter power: 
 

_ _
_

2

( , )( , )

( , )

c
c peak c peak c rc

peak c

mat

P x yP x y dA P dA P A
P
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∫ ∫

∫

⋅ ∆ =
  (A.9) 

where ∆Arc is the radar system's equivalent rectangle resolution and the subscript 'c' 
denotes the use of a code word in the processing. 
Comparing (A.6) and (A.9) the following expression holds: 
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0
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  (A.10) 

 
On the other hand, for a non encoding scatterer conventionally processed it has been 
shown [Ulander1991] that the peak signal to mean clutter ratio for a non encoding 
scatterer is given by: 
 

0
0

sinpeak

r

P
P Aσ

σ θ
σ

=
∆

  (A.11) 

 
where  is the equivalent rectangle resolution for conventional processing. This 
differs in general from and their ratio is given by the following: 

rA∆

rcA∆
 

2

2

( , )

( , )
matrc

r

q x y dAA
A q x y dA

β ∆
= =

∆
∫
∫

  (A.12) 

 
Equation (A.12) was derived assuming _peak c peakP P= , i.e. the correlation peaks of the 
two matched filters have the same intensity. 
Comparing (A.10) with (A.11), the expected increase in peak transponder signal 
intensity to mean terrain backscattering power due to the co/decoding method is found 
to be: 
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This concludes the derivation of equation (7.8). 
In order to quantify the effect of the encoding method on a non encoded point 
scatterer signal, gain Gp was defined in chapter 7 as the ratio of the peak encoding 
transponder intensity  to the power of a non encoding point scatter with the 
same RCS, processed with the use of a code sequence. Using (A.8), the following 
expressions, which appear in (7.9), are obtained: 
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Similarly, the gain Gc compared to an encoding point target using a different code, 
equation (7.10), is found to be: 
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