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Abstract 

 

The work presented in this thesis covers two main areas of forest research with remote 

sensing data: the classification of forested landscapes, conducted in a tropical and an 

Alpine montane region, and the estimation of parameters of forestry interest, namely above 

ground biomass and the Shanon-Wiener arboreal diversity index.  

The thesis first introduces the need of monitoring forested landscapes, their changes and 

their resources, illustrating objectives, motivations and areas of innovation in the present 

research. The material and methods adopted in the research, with specifications on the 

study areas, and a short thesis outline, are also presented in the Introduction chapter. A 

short overview of techniques and sensors used in classification and estimation of the two 

forest parameters of interest is presented in Chapter 2, followed by the identification of 

some of the most recent challenges in remote sensing applied to forest studies, which have 

been object of the present thesis. In Chapter 3 the first case study is introduced, as 

published in Remote Sensing of Environment, addressing the integration of airborne lidar 

and vegetation types derived from aerial photography for mapping aboveground biomass. 

Chapter 4 presents the research paper as published by the International Journal of Remote 

Sensing, dealing with discrimination of vegetation types in alpine sites with ALOS 

PALSAR, RADARSAT-2 and lidar derived information. Chapter 5 illustrates the third 

case study, which is about optical and SAR sensor synergies for forest and land cover 

mapping in a tropical site in West Africa, according to the paper published in the 

International Journal of Applied Earth Observation and Geoinformation. In Chapter 6, the 

case study addresses the aboveground biomass estimation in an Africa tropical forest with 

lidar and hyperspectral data, a paper at its second review in the ISPRS Journal of 

Photogrammetry and Remote Sensing. The last case study is presented in Chapter 7, and 

deals with biodiversity mapping in a tropical West African forest with hyperspectral data, 

and is also a paper at its second review in PlosONE. Finally, the research summary and 

conclusions are presented in Chapter 8. 
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Chapter 1 

Introduction 

 

Forest is defined as land spanning more than 0.5 hectares with trees higher than 5 

meters and a canopy cover of more than 10 percent, or trees able to reach these 

thresholds in situ. It does not include land that is predominantly under agricultural or 

urban land use (FAO 2010). Forest ecosystems are characterized by the dominant 

vegetation type, stand structure, climate, soil type, and topography; local climate 

determine the biome level division in tropical, boreal and temperate forests. 

In the last three decades the international community has debated on climate change and 

global warming, and since the 1994 the United Nation Framework Convention on 

Climate Change entered into force, with the ultimate aim of preventing dangerous 

human interference with the climate system. Carbon dioxide has constantly increased in 

the last decades (Fig. 1) and the CO2 emissions are the first responsible for greenhouse 

effects, modifying the radiative balance of the earth, which results in increased heat 

absorbed and trapped into the atmosphere and thus in global warming (NOAA 2007) . 

 

 

 

Figure 1 – The Keeling curve: atmospheric carbon dioxide concentration in parts per million in 

the last 50 years (NOAA 2007). 
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Oceans are the major sinks of carbon on earth, but soil and vegetation are the first 

responsible – through photosynthesis – of CO2 removal from atmosphere (IPCC/GRID-

Arendal 2001), with about half of forest biomass made by carbon. Deforestation is 

considered the responsible of about 10-20% of global annual greenhouse gases 

emissions.  

Considering the constraints of reducing emissions from industrialized countries and the 

increasing emission from emerging economies (i.e. Brazil, India), to avoid deforestation 

and forest degradation is possibly the best option to quickly and efficiently reduce 

carbon emissions and mitigate on-going climate change. This is one of the main reasons 

behind the increase in forest studies in recent years.  

Monitoring of forest resources is therefore essential and it can be realized by means of 

retrieval and classification of remote sensing data, which allow generalizing to large 

areas the local in situ observations. Estimation of forest biophysical and ecological 

parameters, among which are found woody biomass and forest biodiversity, is important 

for forest inventory, management and for scientific purposes (Parresol, 1999). 

Classification of forests, discrimination of different forest types, and mapping their 

extent is also essential to management and conservation activities and to assess 

degradation. Both retrieval and classification activities, based on remote sensing data, 

are needed for the full understanding of ecosystem functioning in a changing climate 

scenario, and its management and conservation. 

 

1.1 Thesis objectives, motivations, innovation 

 
The main goal of this research is to innovatively use remote sensing data to produce 

information on important forest characteristics, such as forest parameters and 

classification into distinguishable vegetation classes.  

The main motivation behind this research is the desire to contribute to forest 

conservation by means of improving methods and tools for its monitoring, bringing 

ecology and engineering issues closer. Forests are complex ecosystems, having different 

and often site-specific characteristics. The selection of multiple case studies, dealing 

with both classification and retrieval in different biomes, has been a good exercise to 
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face the multitude of issues and monitoring needs that forest resource demand. Most 

forest studies are located in temperate and boreal regions, and another motivation of this 

research is to help to enrich scientific studies over tropical rainforests, especially in 

Africa. In fact, few references are found about conducting forest studies in Africa on the 

basis of remote sensing data. Even less researches are interested to the West African 

area, where the tropical study site of this research is located and which is considered a 

specific ecological region affected by intense degradation of natural resources due to 

anthropogenic causes.  

 

The innovation in the research is conducted adopting the following approaches in data 

analysis: 

1. Investigating data fusion and integration, thus the combination of different 

active and passive sensors and ancillary datasets to improve the accuracy of retrieved 

parameters and of classifications, accordingly to forest characteristics, data availability 

and specific aims.  

 

In the different case studies multispectral, hyperspectral, SAR, LiDAR and ancillary 

data were used and integrated, showing that the simultaneous use of different remote 

sensing data types or derivates is significantly beneficial. For instance, the integration of 

optical and SAR data has recently gained interest as it can help solving complex 

classification problems and monitoring needs. Optical and microwave remote sensing 

data are complementary to each other: optical data basically measure the physical 

properties of observed objects, whereas the SAR data provide more information about 

geometric properties of the objects (Lillesand and Kiefer 1994). SAR data are now 

widely available, and have an all-weather capability which is a very important feature 

for tropical cloudy regions. SAR data are also available at different frequencies, which 

have different abilities to penetrate vegetation and potentially can bring in 

complementary information on vegetation characteristics.  

In the last decade, airborne LiDAR demonstrated to be a valuable tool for forest 

monitoring, and nowadays costs associated to data acquisitions have been greatly 

reduced, allowing for surveying entire forested areas or to use LiDAR as a sampling 
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tool to replace ground truth. In the same way, hyperspectral data use is expected to 

increase due to the forthcoming launch of new satellite missions. Studies based on these 

innovative data types can help to better understand their potential and usefulness in the 

context of forest monitoring. 

The use of two different SAR types for vegetation discrimination, having different 

frequencies and polarizations, with the comparison of the SAR-based results against 

those obtained by an optical sensor, is illustrated in Chapter 3, in which the integration 

of satellite data with ancillary data derived from LiDAR is also presented. An example 

of integration of optical and SAR data is then presented in Chapter 4 for the 

classification of a complex tropical forested area. LiDAR use to retrieve above ground 

biomass is presented in Chapter 5, in which integrated data on forest types (derived 

from aerial imagery) proved to be useful to improve the AGB estimates. The fusion of 

LiDAR and hyperspectral data is attempted in Chapter 6, as a way to improve AGB 

estimation in a tropical forest, while an innovative use of hyperspectral data is carried 

out for the estimation of the arboreal diversity index, the Shannon-Wiener index, which 

is presented in Chapter 7. 

 
2. Adopting different statistical modeling tools and classification algorithms, 

selected to better respond to specific datasets and issues, as a way to improve results.  

In this thesis work, Mixed Effects, Partial Least Squares Regression, and Random 

Forests were the adopted techniques for estimating AGB and forest biodiversity, while 

Neural Networks were tested in forest classification and vegetation type discrimination 

and compared to Maximum Likelihood more traditional approach. These innovative 

techniques were chosen to face specific problems found in the analysis of the different 

datasets, which are better detailed in the case studies in following paragraphs. 

Mixed Effects was firstly introduced in 1918 by Ronald Fisher (Fisher 1918) to study 

the correlations of trait values between relatives. Since then, mixed modeling has 

become a major area of statistical research, with applications in many disciplines where 

multiple correlated measurements are made on each unit of interest. They are 

prominently used in research involving human and animal subjects in fields ranging 

from genetics to marketing, and have also been used in industrial statistics. In the 

remote sensing area, Mixed-effects models have been recently used to estimate canopy 
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height from satellite LiDAR (GLAS) data (Chen 2010) and tree diameter from airborne 

discrete-return LiDAR data (Salas et al., 2010). 

Partial Least Squares Regression was introduced by the Swedish statistician Herman 

Wold, who then developed it with his son, Svante Wold (Wold et al. 2001). Although 

the original applications were in the social sciences, PLS regression is today most 

widely used in chemometrics and related areas. It is also used in bioinformatics, 

sensometrics, neuroscience and anthropology. PLS regression has been previously 

employed in spectral and chemical analysis of tropical forests (Asner and Martin 2008), 

for AGB estimation (Lei et al. 2012; Goodenough et al. 2005), and as a method for 

dealing with large hyperspectral dataset (Peerbay et al. 2013). 

Random forests are an ensemble learning method for classification (and regression) . 

The algorithm for inducing a random forest was developed by Leo Breiman and Adele 

Cutler in 2001 (Breiman 2001). More recently, major advances in this area have come 

from Microsoft Research (Criminisi et al. 2001) which incorporate and extend the 

earlier work from Breiman. Random Forests is an algorithm which became popular in 

remote sensing studies in recent years (Cutler et al. 2007; Pal 2005). 

Artificial neural networks are computational models inspired by animal central nervous 

systems (in particular the brain) that are capable of machine learning and pattern 

recognition. Like other machine learning methods, neural networks have been used to 

solve a wide variety of tasks that are hard to solve using ordinary rule-based 

programming, including computer vision and speech recognition. Warren McCulloch 

and Walter Pitts in 1943 firstly created a computational model for neural networks 

based on mathematics and algorithms (McCulloch and Pitts, 1943). Subsequently, much 

advancement in the technique was realized by different researchers and Neural 

Networks have been widely applied to solve complex remote sensing problems (Del 

Frate and Solimini, 2004; Atkinson and Tatnall, 1997). 

 

For the retrieval of forest parameters, the selection of the modeling approach is usually 

data-driven, and an initial exploratory analysis of the ground truth and remote sensing 

data can reveal relevant information to detect data issues, such as multicollinearity or 

non-linearity which can violate the assumption of traditional statistical regression 

http://en.wikipedia.org/wiki/Herman_Wold
http://en.wikipedia.org/wiki/Herman_Wold
http://en.wikipedia.org/wiki/Chemometrics
http://en.wikipedia.org/wiki/Ensemble_learning
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Leo_Breiman
http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Central_nervous_system
http://en.wikipedia.org/wiki/Central_nervous_system
http://en.wikipedia.org/wiki/Brain
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Speech_recognition
http://en.wikipedia.org/wiki/Warren_McCulloch
http://en.wikipedia.org/wiki/Walter_Pitts
http://en.wikipedia.org/wiki/Mathematics
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techniques. The limited availability of ground truth data, typical in forestry research, 

represents another issue to take into consideration for model selection. In the present 

research three different approaches have been adopted to model the biophysical and 

ecological parameters of interest, with both the purpose of experimenting innovative 

techniques and finding the best solution to fit the data. Mixed Effects Models (MEM) 

have been employed to take advantage of the availability of ancillary data on vegetation 

types (Chapter 3); Partial Least Squares Regression (PLSR) and Random Forests (RF) 

have been used to deal with a complex set of remote sensing input data and for their 

ability to provide information on the most relevant remote sensing inputs that 

contributed to the models (Chapters 6 and 7). Multilinear regression technique has also 

been adopted as a benchmark for results comparison in two of the three regression case 

studies.  

A MEM is a statistical model containing both fixed effects and random effects. These 

models are particularly useful where measurements are made on clusters of related 

statistical units, such as field data collected in plots belonging to different vegetation 

classes. Linear MEM describe the relationship between a continuous response variable 

and some covariates that have been measured or observed along with the response, 

where at least one of the covariates in the model is a categorical variable. This 

categorical variable may represent the study location, or more generally, the 

observational unit such as the vegetation type in case study in Chapter 3. Parameters 

associated with the particular categories of a covariate are sometimes called the 

“effects”. If the set of possible values (or levels in the case of categorical variables) of 

the covariate is fixed and reproducible we model the covariate using fixed-effects 

parameters. If the levels that we observed represent a random sample from the set of all 

possible levels we incorporate random effects. Thus we can distinguish between “fixed-

effects parameters”, which are indeed parameters in the statistical model, and “random 

effects”, which, strictly speaking, are not parameters: random effects are unobserved 

random variables. Random effects contribute only to the covariance structure of the 

data, but their presence often introduces correlations between cases as well. In the case 

study in Chapter 5, about estimation of above ground biomass based on LiDAR data, 

the random effects are caused by the presence of different vegetation types, identified in 

http://en.wikipedia.org/wiki/Fixed_effect
http://en.wikipedia.org/wiki/Random_effect
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the ancillary information by means of a vegetation map. Though the fixed effect is the 

primary interest in most studies or experiments, it is possible to adjust for the 

covariance structure of the data, in our example the vegetation types, and in this way 

increase the accuracy of the model by means of incorporation of categorical values. 

Thus, modeling variance structure is probably the most powerful feature of MEM, 

which allows correlation among observations. Additionally, MEM are useful when the 

number of observation is limited and does not allow for setting up a specific model for 

each cluster of statistical units. Technical literature on MEM include: Pinhero and Bates 

(2000), Brown and Prescott (2006) and Faraway (2004). 

PLSR is a recent technique that generalizes and combines features from principal 

component analysis and multiple regression. It is particularly useful when there is a 

very large set of independent variables and multicollinearity issues. Several approaches 

have been developed to cope with this problem; one approach is to eliminate some 

predictors using step-wise methods. Another one, called principal component 

regression, is to perform a principal component analysis of the predictors matrix and 

then use those principal components as regressors on the dependent variable. The 

orthogonality of the principal components eliminates the multicollinearity problem, but, 

the problem of choosing an optimum subset of predictors remains. A possible strategy is 

to keep only a few of the first components, but they are chosen to explain the 

independent variables rather than the dependent one, and so there is no guarantee that 

the principal components, which explain X , are relevant for Y. PLSR instead finds 

components from X that are also relevant for Y. In the case study illustrated in Chapter 

6, the Y variable is above ground biomass, while the X variables are the huge number of 

bands values and statistical metrics derived by hyperspectral and LiDAR datasets. 

Specifically, PLSR regression searches for a set of components (called latent vectors) 

that perform a simultaneous decomposition of X and Y with the constraint that these 

components explain as much as possible of the covariance between X and Y. This step 

generalizes PCA. It is followed by a regression step where the decomposition of X is 

used to predict Y (Abdi 2003). An additional feature of PLSR is the calculation of the 

Variable of Importance in the Projection (VIP) to evaluate importance of individual 
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predictors for estimation (Peerbhay et al. 2013). Technical details on PLSR are found in 

Wold et al. (2001). 

Random Forests (RF) (Breiman 2001)  is an ensemble learning method for regression 

and classification, which creates multiple decision trees and provides in output a 

regression model that is the mode of the regression output by individual trees. The main 

principle behind ensemble methods is that a group of weak learners can come together 

to form a strong learner. Each classifier or regressor, individually, is a weak learner, 

while all taken together are a strong learner. RF starts with a standard machine learning 

technique, called a decision tree which, in ensemble terms, corresponds to a weak 

learner. In a decision tree, an input is entered at the top and as it traverses down the tree 

the data gets bucketed into smaller and smaller sets. RF combines trees and, in 

ensemble terms, the trees are weak learners and the random forest is a strong learner. 

Thus, RF method combines bagging (Breiman 1996), which is a bootstrap aggregating 

method performing a resampling that creates n dataset composed by observation 

randomly selected from the original dataset, and the random selection of features in 

order to build a collection of decision trees with controlled variation. Bagging improves 

the stability and accuracy of machine learning algorithms, reducing variance and 

avoiding overfitting. Out-of-bag samples, so those not included in the previous bagging 

procedure used to build the trees, are used to calculate the error rate, eliminating the 

need for a test set or cross-validation; because a large number of trees are grown, 

generalization error is limited. Furthermore, RF can estimates the importance of a 

regression variable by looking at how much prediction error increases when out-of-bag 

data for that variable is permuted while all others are left unchanged (Liaw and Wiener  

2002). RF runs efficiently on large data bases and can handle thousands of input 

variables without variable deletion or pruning needs. Parameter tuning in RF is 

relatively easy but in regression, values out of the range of those occurring in the 

training sample cannot be predicted. In the case study presented in Chapter 7, RF 

received in input hundreds of collinear features derived from the contiguous 

hyperspectral bands. Furthermore, as the available ground truth was obtained from a 

limited  number of field sites, the possibility to avoid separating a cross-validation 

subset from limited field data constitutes an advantage. Additional technical details are 
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found in the official RF website 

(http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm), as well as in 

Cutler et al. (2007), Evans and Cushman (2009) and Prasad et al. (2006).  

 

With respect to the classification problem, the main goal of image classification in a 

forested landscape is often a thematic map describing forest characteristics (Wulder 

1998). Image classifications label pixels into classes, or categories, based on distinctive 

patterns of digital numbers or reflectance values, attempting to find patterns in the 

spectral or structural response in relation to land cover groups known to be present. The 

classification procedures are normally grouped either as supervised or unsupervised. For 

more accurate information, a supervised classification is recommended as it involves 

field observation data and a priori knowledge of land characteristics of the study area 

(Lillesand and Kiefer 1994).  

Among the supervised methods for image classification, the most popular one is the 

maximum likelihood (ML) approach. This approach is a statistical decision rule method 

that examines the probability of a pixel to belong to each class, with assignment of the 

pixel to the class with the highest probability. It has the underlying assumption of a 

normal distribution of the data within each class and may be biased with unequally 

sized training classes (Jensen 1996). This is a limiting assumption that cannot be always 

be met in a real world dataset and which justifies the use of more flexible and efficient 

approaches. 

Neural Network (NN) is a machine learning classification approach, which needs no 

assumption on data distribution and is based on interconnected networks of simple 

processing elements (Rumelhart et al. 1986). NN has been widely used in remote 

sensing due mainly to the ability to perform accurate classifications, particularly when 

the feature space is complex and the source data have different statistical distributions 

(Atkinson and Tatnall 1997; Del Frate and Solimini 2004). Feed forward back-

propagation neural network is probably among the most popular neural network 

approaches and has proven to enhance the classification of forest regenerating stages 

(Liu et al. 2005). In this research, Neural Networks has been used to perform the two 

http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
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complex classification tasks presented in Chapter 3 and 4, and ML has been used as a 

benchmark to evaluate the performance of NN machine learning approach. 

 

1.2 Materials and methods 
 
This thesis is divided into two main topics: 

(1) land cover classification and vegetation type discrimination in complex forest 

landscapes: case studies are in a tropical and an alpine sites, using SAR and LiDAR 

data, and SAR and optical data respectively, with traditional maximum likelihood 

approach used as a benchmark against Neural Network machine learning  

(2) estimation of biophysical and ecological forest parameters: case studies are in a 

temperate and in a tropical site, using LiDAR, and LiDAR and hyperspectral 

respectively, to retrieve AGB and the Shannon-Wiener biodiversity index. Ancillary 

vegetation type information was also use for the temperate site. 

Detailed description of the remote sensing data corrections, images preparation, 

filtering, ground truth data, and of the classification or statistical modeling techniques 

are presented in chapters 3 to 7, which are related to specific case studies. 

Here a summary table of the remote sensing data directly used for this thesis is 

presented, with the case studies in which were employed, and the algorithms used for 

tests. 

 

Table 1: Materials of the study 

 

Case study Study area Algorithm 

 

Data type 

 

Spatial 

Resolution 

Vegetation type 

discrimination 

(classification) 

 

Alps, 

Bozen 

Maximum 

Likelihood and 

Neural Networks 

ALOS PALSAR 20m 

RADARSAT-2 20m 

LiDAR-derived 

Canopy Height 

Model 

 

20m 

   SPOT 5 20m 

Land cover 

(classification) 

Gola, Sierra 

Leone 

Maximum 

Likelihood and 

Neural Networks 
Landsat TM 

ALOS AVNIR 

ALOS PALSAR 

30m 

10m 

10m     

AGB modeling 

(regression) 

Sierra 

Nevada 

Mixed Effects 

Models 

Discrete return 

LiDAR 

Points per 

meter: 2-4 

AGB modeling 

(regression) 

Gola, Sierra 

Leone 

Partial Least 

Squares 

Discrete return 

LiDAR 

Points per 

meter: 10 
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Regression Hyperspectral 

AISA Eagle 

 

1m    

Shannon-Wiener 

index modeling 

(regression) 

Gola, Sierra 

Leone 

Random Forests 

Regression 

 

Hyperspectral 

AISA Eagle 1m 

 

 
1.2.1 The Sierra Nevada, U.S.A. 

 

The Sierra Nevada study site is located in the United States Forest Service Sagehen 

Creek Experimental Forest in California, on the eastern slope of the Sierra Nevada. The 

area covers approximately 3925 ha, in an elevation range of 1862 m to 2670 m with 

average slope of 18%.  The Sagehen Experimental Forest has a Mediterranean type 

climate with cold, wet winters and warm, dry summers. Annual precipitation is about 

847 mm; snowfall accounts for more than 80 percent of the annual precipitation. Five 

major vegetation cover types can be found in the experimental forest: grass, shrub, 

mixed conifer, true fir, and conifer plantation. Mixed conifer stand is a mixture of 

several co-dominant species including ponderosa pine (Pinus ponderosa), Jeffrey pine 

(Pinus Jeffreyi), sugar pine (Pinus lambertiana), white fir (Abies concolor), red fir 

(Abies magnifica), and incense cedar (Calocedrus decurrens). Mixed conifer stands are 

found in higher elevations, mainly on the slopes south of Sagehen Creek. The true fir 

forest cover type occurs on northeast- and northwest-facing, high-elevation slopes south 

of Sagehen Creek in moist soil areas. Red fir is the dominant tree species, growing on 

deep, moist soils. White fir is the major associated species in lower elevations, while 

mountain hemlock (Tsuga mertensiana) and mountain mahogany (Cercocarpus 

betuloides) are associates at higher elevations. Other associated species are western 

white pine (Pinus monticola), lodgepole pine (Pinus contorta), Jeffrey pine, and 

western juniper (Juniperus occidentalis). Non-forested areas include fens, wet and dry 

montane meadows and shrub fields.  

 

1.2.2 The Alps, Bozen, Italy 

The selected site is located in the Autonomous Province of Bolzano (Bozen), South 

Tyrol, in Northern Italy, in an area of approximately 30 × 30 km with elevations from 

224 to 3343 m. Four main vegetation types were identified according to structural 
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criteria and ancillary data: needle-leaved forest, broadleaved forest, shrubs and dwarf 

pines, and grasslands. Broadleaved forest is typical of sub-mountain and basal planes, 

with mesophilous species (i.e. Fagus sylvatica) and thermophilous or 

thermomesophilous examples (i.e. Quercus, Carpinus, Castanea genera). Needle-leaved 

forest is found in the upper part of the mountain plane, with trees from different genera 

such as Picea, Larix, and Pinus, and in the cooler areas of the submountain plane mixed 

with broadleaved ones. Grasslands are frequently composed of tens of genera and are 

found in both the alpine plane (intermixed with short woody vegetation) and the lower 

planes, with flat terrain and deeper soil, where they are grazed by livestock. Few very 

resistant species can also be found in the the nival plane, which is dominated by lichens 

and mosses. Shrubs and dwarf pines are characteristic of an alpine plane – due to high 

winds, the vegetation has horizontal growth and its height is reduced, usually below 1 

m. Pinus mugo formations are prevalent in the study site.  

 

1.2.3 The Gola Rainforest National Park, Sierra Leone 

This area is located along the border of Sierra Leone and Liberia and has been the 

subject of three of the presented case studies. In the first, land cover classification, the 

study area is larger, covering not only the Gola Rainforest National Park (GRNP) but 

also most of the Liberian Gola National Forest. In the second and third case studies 

(estimation of AGB and of Shannon-Wiener biodiversity index) the research has 

interested only the GRNP. Forests of the whole region are classified mainly as lowland 

moist evergreen with some drier parts occurrence, and are dominated by Fabaceae, 

Euphorbiaceae and Sterculiaceae families (Cole 1993). Outside the protected areas, in 

the north-western range, there is a fragmented landscape comprising small patches of 

disturbed forest, farmbushes, plantations, active agriculture areas, bare lands and 

settlements; in the southeastern range outside of GRNP and in Liberia the landscape is 

sparsely populated and dominated by forests. Overall, the area is characterized by a 

moist tropical climate with annual rainfall around 2500–3000 mm, a wet season lasting 

from May to October, and an altitude in the range 70–410 m without abrupt elevation 

changes. The dry period occurs between December and March, and corresponds to the 

semi-deciduous phenological stage of vegetation in the moist forest. 
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1.3 Thesis outline 

A general overview of remote sensing in forested landscapes is presented in Chapter 2, 

with reference to land cover mapping and retrieval of parameters in the framework of 

forest research. In the same chapter, a review of the most recent challenges and 

problems in these two forest remote sensing main topics, classification and retrieval, 

follows.  

The discrimination of vegetation types in an Alpine area is the case study presented in 

Chapter 3. Different SAR data (ALOS PALSAR and RADARSAT-2) have been used to 

perform a complex discrimination task taking advantage of data fusion with a Canopy 

Height Model derived by a LiDAR survey. The study compares Maximum Likelihood 

and Neural Networks algorithms abilities to perform the vegetation discrimination task, 

highlighting the advantages of machine learning methods and SAR data.  

Chapter 4 presents the classification of a complex tropical forested landscape using both 

optical (Landsat TM and ALOS AVNIR) and SAR data (ALOS PALSAR), illustrating 

the benefits of data fusion, of Neural Networks for classification, of SAR data in 

tropical context, of textural features, and of different spatial resolution to capture useful 

forest information. A land cover map of this previously unstudied area is provided. 

Chapter 5 focuses on the retrieval of above ground biomass in Sierra Nevada forest 

using airborne LiDAR and ancillary information on vegetation types, derived from 

aerial photography. The advantages of using Mixed Effects Models, which allow 

integration of vegetation types, against conventional multilinear regression is illustrated. 

The reported tests allow speculating on the importance of species-specific allometric 

equations and of highly precise geolocation of field data.  

In Chapter 6 the AGB of a tropical forest is estimated by means of an innovative fusion 

of LiDAR and hyperspectral airborne data. This is one of the few studies dealing with 

these joined datasets and one of the few available estimations of forest biomass in 

Africa. It takes advantage of Partial Least Squared Regression to deal with the complex 

and multiple inputs generated by LiDAR metrics and hyperspectral contiguous 

reflectance bands.  

The arboreal biodiversity of a tropical forest, a proxy for overall ecosystem biodiversity, 

is retrieved using hyperspectral data in a case study presented in Chapter 7. The study 
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illustrates that standard deviation of hyperspectral bands is most important in estimating 

the Shannon-Wiener index collected in the field, a measure of trees diversity and 

abundance. Random forests has been used to deal with the high number of collinear 

inputs and provided a mean to understand the most informative spectral regions. The 

use of derivative of reflectance and vegetation indices has been also tested.  

Chapter 8 summarizes the thesis contributions, the achievements obtained in the applied 

case studies, the research questions answered, and draws conclusions and 

recommendations. 
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Chapter 2 

Remote sensing of forested landscapes 

 

Recent researches in earth observation of forested landscapes are so advanced that is 

now possible to set up operational services to map land cover, forests, and their 

associated characteristics and changes. Examples are the Corine Land Cover program of 

the European Union, the Forest Resource Assessment of the United Nations Food and 

Agriculture Organization, the European Forest Fire Information System and the Forest 

layers of the Copernicus Land Monitoring Service realized by the Joint Research Center 

of the EU. Most of these operational mapping services are based on optical remote 

sensing data from sensors acquiring at different spatial resolutions. Forest landscape 

monitoring exercises have been carried out with any sensor, and with the broad range of 

currently available satellites and tools, so that the successful approaches are multiple. 

Due to the vastness of the topic, in the first paragraph of this chapter only a short review 

of the main approaches and sensors for land cover mapping is presented.  

Also developed, but less consolidated, is the ability to retrieve forest parameters and 

specifically those of interest in this study: the main approaches of remote sensing 

estimation of AGB and biodiversity are briefly reviewed in two dedicated paragraphs. 

Biomass estimation has received increased attention in the last decade due to its 

relevancy to climate change and mitigation program such as REDD+. Differently from 

land cover mapping, in this case the most useful sensors are the active ones, such as 

radar and LiDAR, able to provide structural information on vegetation which is related 

to its biomass content. However, a clear methodology for AGB estimation has not been 

developed yet, and research efforts are still undergoing to try to overcome existing 

limitations and test the effectiveness of different tools in specific forested environments. 

Biodiversity estimation from remote sensing has been attempted for years with 

contrasting results. However, considering the different levels at which biodiversity can 

be estimated (ecosystem, species and genetic levels), and its indirect link with the 

electromagnetic signal, its accurate estimation is even more challenging and it 

represents an area of active and innovative research.   
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The remaining paragraphs in this chapter focus on the analysis of the recent challenges 

and problems in classification of vegetation and estimation of forest parameters by 

means of remote sensing.  In fact, with the usefulness of remote sensing for natural 

remote sensing monitoring already proven, most of the recent scientific efforts are 

devoted to the identification of effective techniques to improve the results, or to 

overcome specific problems in forestry study. These challenges correspond to the 

specific research questions that the thesis addresses, and are related to both 

classification and retrieval tasks.  

Specifically, a first set of questions is related to the usefulness of ancillary data in 

improving the results of classifications and AGB estimations, considering the 

availability of accessory datasets over many areas and from local administrations 

(paragraphs 2.3.1 and 2.3.2). Then, the effectiveness of integration of different data 

type, again for both classification and retrieval, which is favored by the increased 

availability of many sensors with different characteristics, such as optical, SAR, 

hyperspectral and LiDAR, is treated in paragraphs 2.3.3 and 2.3.4. Finally, the recurrent 

problem of geolocation in forest studies is considered in paragraph 2.3.5, evaluating 

how relevant is to AGB estimation the availability of accurate field data positional 

information. 

 

2.1 Land cover mapping  
 

The most popular sensors for land cover classification are optical ones, e.g. Landsat 

data, possibly for their historical availability, the high temporal resolution, the existing 

processing facilities in terms of software and algorithms, and the range of spatial 

resolutions allowing for different monitoring purposes, such as 15m (ASTER), 30m 

(Landsat), 250m and 500m (MODIS), and 1km (AVHRR).  After image preprocessing, 

the classification task can be performed, with its complexity greatly depending on the 

selected classification algorithm, the number of classes to be identified, their similarity, 

and the heterogeneity and fragmentation of the territory.   

In case of forested landscapes, Vegetation Indices (VIs) are used as an additional input 

to increase the discrimination of different forest classes or forest disturbances, based on 

phenological changes among different tree species (Wolter et al. 1995). The indices are 
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also useful to assess burn severity due to forest fires (Epting et al. 2005). Despite some 

advantages, the sensitivity of vegetation indices is rather limited to some wavelength 

windows, such as red or near infrared bands, and the saturation problem also reduces 

their applicability (Huete et al. 1997). 

In addition to spectral information, also the spatial information provided by texture 

features is useful in image classification. Texture information involves information from 

neighboring pixels which is important to characterize the identified objects or regions of 

interest in an image (Haralick et al. 1973). In the present research, texture has been 

successfully used for the discrimination of vegetation types characterized by spectral 

similarities, and for the classification of a complex forested area. In Chapter 3 and 4 

literature relevant to texture use is also presented and discussed. 

The use of SAR data in land cover classification represents a great advantage when 

persistent cloud cover prevents optical data usage, like in tropical regions (Salas et al. 

2002). Classification of vegetation types in tropical forest landscape has especially 

benefitted from lower frequency data: first studies took advantage of  L-band JERS-1 

data (Miranda et al. 1998) and then many researches and applications were developed 

based on ALOS PALSAR L-band data (Rosenqvist et al. 2008), including the two cases 

here presented.  

A greater challenge in remote sensing is however the combination of optical and SAR 

sensors for improving the classification accuracy (Lu 2006), as demonstrated by 

Kuplich et al. (2005) combining JERS-1, SIR-C and X SAR and optical bands from 

Landsat TM for discriminating regenerating forest stages in the tropical Amazon. 

Attempts to combine optical and SAR data are also experimented in the present study 

(Chapter 4) to classify a tropical forested landscape. 

Recently, LiDAR and hyperspectral sensors have been also used in vegetation 

classification efforts, often leading to the identification of single species (Korpela et al. 

2010; Zhang et al. 2011). LiDAR provides highly detailed 3D structural information 

which can help in distinguishing among vegetation different physiognomy. LiDAR data 

are presently provided only by airborne surveys: the high acquisition cost allows the use 

of this data only over limited areas. LiDAR-derived data, such as Canopy Height 

Models, can be a cost effective way for improving classification and are often available 
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as by-products by local administrations; such an example is provided in the case study 

in Chapter 3 for an Alpine forested region. 

Hyperspectral sensor, collecting hundreds of contiguous narrow bands in the VIS to 

SWIR regions of the spectra, are able to provide information on the biochemical 

components of leaves, and have been used alone and in conjunction with LiDAR data to 

characterize vegetation species and biodiversity (Asner and Martin 2008; Baldek and 

Asner 2013; Carlson et al. 2007;  Leutner et al. 2012). The availability of both 

hyperspectral airborne and satellite data, and the forthcoming new space missions 

(EnMAP, PRISMA) make this data very promising for detailed ecological mapping. 

 

2.2 Estimation of forest parameters 
 
Among the different biophysical and ecological parameters which characterize forested 

landscapes, two are especially relevant with respect to main international environmental 

agreement: above ground biomass and biodiversity.  

Above Ground Biomass (AGB) or biomass, terms here used interchangeably, is defined 

as all living biomass above the soil including stem, stump, branches, bark, foliage and 

seeds (IPCC 2003). Since over 50% of the forest dry biomass is carbon, AGB and its 

temporal changes is an important indicator for carbon sequestration estimation and 

climate change studies. Furthermore, its quantification is critical for the system of 

economic incentives to developing countries in preparation under the UN REDD+ 

framework. This, as well as national requirements for internal natural resources 

management, implies the need to develop precise procedures to quantify forest biomass. 

Those procedures are not yet established at international level; in spite of increasing 

studies and funding devoted to this topic in recent years, there is still a critical need of 

researching on AGB mapping methods and options. Biomass is usually expressed as 

mass per unit area, e.g. Mega gram (Mg)/ha (Brown 1997). 

Biodiversity is defined in terms of genes, species and ecosystems, corresponding to 

three fundamental and hierarchically-related levels of biological organization. At least 

40 per cent of the world’s economy and 80 per cent of the needs of the poors are derived 

from biological resources. Forests are biologically diverse systems, representing some 

of the richest biological areas on Earth, as they offer a variety of habitats for plants, 
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animals and micro-organisms. However, forest biodiversity is increasingly threatened as 

a result of deforestation, fragmentation, climate change and other stressors, and it is a 

main target of the UN Convention of Biological Diversity. In forests, arboreal diversity 

can be considered a proxy measure of overall biodiversity (Gentry 1988). A common 

index to measure biodiversity is the  

 

Shannon-Wiener Index:                              
    

 

where pi is the percentage of individuals belonging to the species ith in a field plot 

including N species. 

 

2.2.1 Biomass estimation 
 

The main approaches to biomass estimation in forested areas are direct field 

measurement and remote sensing. Field measurement is considered to be accurate but 

proves to be very costly and time consuming (De Gier 2003); often destructive sampling 

for developing specific allometric relationships between biomass and field measured 

parameters is required. Remote sensing approach has become an efficient technique, 

especially taking into account the recent availability of data with increased temporal, 

spectral and spatial resolutions. Modeling of forest biophysical parameters, such as 

biomass, from remote sensing data means that the forest properties are retrieved using 

spectral and/or structural information from the data, and the predicted results are then 

validated using a set of field measurements.  

GIS-based (or combine and assign) approaches (Lu 2006) are also common, and take 

advantage of pre-existing datasets to reduce costs, usually attaching AGB-range values 

derived from literature or national inventories to land cover classes. These methods are 

as good as the input data used to set them, and are often limited by the availability of 

fine scale land cover maps and accurate AGB records per each class. 

Many remote sensing studies explored the potential of optical satellite, LIDAR data, or 

SAR data for estimating forest biomass.  

Multispectral optical data have been widely used for estimating AGB, often joined with 

data-derived features such as vegetation indices or textures (Foody and Cox 1994; 
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Houghton et al., 2001; Lu et al. 2004). Anyhow, the scattered energy perceived by 

optical sensors originates mainly from the upper canopy layer, causing a saturation 

problem at high vegetation density and hampering the use of this data type (Lu 2005; 

Steininger 2000). In tropical regions the dense cloud cover represents an additional 

issue against optical data use for AGB estimation. 

On the other side, microwave remote sensing data are insensitive to the cloud-free and 

daylight conditions needed for optical image acquisition, and SAR data have been also 

widely employed for estimation of forest biophysical properties (Austin et al. 2003; 

Englhart et al. 2011; Fransson and Israelsson 1999; Kuplich et al. 2005; Rauste 2005). 

Empirical models of microwave data showed sensitivity to the density, shape, length, 

dielectric properties, and orientation of the scatterers (Kingsley and Quegan 1999). The 

X-band (2.4 – 3.75 cm) and C-band (3.75 – 7.5 cm) SAR data are useful to generate 

digital terrain models if interferometric pairs are available, and for discriminating the 

top canopy of vegetated land. In facts, due to their limited penetration ability as optical 

data, limitations for biomass retrieval at these frequencies exist: the backscattered 

response originates mainly from the upper canopy region and saturation at low 

vegetation densities occurs, for instance making difficult to distinguish forest 

regeneration after disturbance (Saatchi et al. 1997). In contrast, L-band SAR data (15 – 

30cm) showed good ability for modeling the forest parameters under dense vegetation 

(Luckman et al. 1997; Rauste 2005) and using dual polarized SAR data discrimination 

between different forest succession stages was demonstrated feasible (Ranson et al. 

1997; Rignot et al. 1997). Still, saturation limits exist at this frequency around 100 

Mg/ha (far beyond the common 300 Mg/ha tropical forest values), and are dependent on 

the geometry of data acquisition, the polarization compositions, and the complexity of 

vegetation structure (Imhoff 1995; Ferrazzoli and Guerriero 1995). The use of 

polarimetry SAR interferometry (PolInSAR) data is an alternative but technically 

demanding approach to estimate AGB more accurately (Hajnsek et al. 2009). The 

BIOMASS P-band polarimetric and inteferometric SAR forthcoming ESA Earth 

Explorer is thus expected to provide unprecedented data for AGB estimation (Scipal et 

al. 2010).  

Laser altimetry or Light Detection And Ranging (LiDAR) is an active remote sensing 

technology that determines ranges (distances) by taking the product of the speed of light 
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and the time required for an emitted laser to travel to a target object. The intense pulses 

density allows for laser returns both from the canopy and the ground, thus collecting 

data on the vertical distribution of vegetation in forests (Lim et al. 2003). Biomass is 

highly correlated to vegetation height metrics derived from LiDAR even at very high 

AGB densities (Lefsky et al. 2002). Much research has been done to estimate AGB 

using LiDAR data from ground, airborne and satellite platforms (e.g. Asner et al. 2009; 

Dubayah et al. 2010; Lefsky et al. 1999; Nelson et al. 2009; Ni-Meister et al. 2010); in 

all cases the accuracy of LiDAR-based AGB estimations confirmed this to be the most 

precise tool for detecting biomass in different ecosystems. However, the failure of the 

LiDAR instrument (GLAS) on board the IceSAT NASA satellite in 2012 and the high 

costs associated with airborne acquisitions limit the use of this instrument for 

monitoring purposes.  

Hyperspectral sensors, recording the reflectance of a large number of fine resolution 

spectral bands in the VIS-NIR or VIS-SWIR range, are another frontier technology in 

remote sensing. Hyperspectral data can capture information on the biochemical 

composition of the upper canopy layer and has been used for forest type or species 

classification, and estimation of biophysical and biochemical properties and health 

status (Asner and Martin 2008; Koch 2010; Goodenough et al. 2006). Moreover, the 

ecosystem information recorded by hyperspectral data may relate to plant functional 

types –such as whether a species is light demanding -which could in turn affect wood 

density and thus biomass content (Baker et al. 2004; Chave et al. 2009). 

Thus, integrating lidar and hyperspectral data for biomass estimation is a promising 

research area (Koch, 2010) which has seen only limited research, especially considering 

the forthcoming opportunities from future hyperspectral missions (EnMap, PRISMA, 

MERIS). 

For biomass mapping purposes, the combination of different sensors is considered the 

most promising and innovative approach (Lu 2006; Lu et al. 2012; Tian et al. 2012). In 

the present research biomass estimation is attempted with an innovative combination of 

LiDAR and hyperspectral data and LiDAR and aerial photography-derived data 

(Chapter 6 and 3). 
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2.2.2 Biodiversity estimation 
 
 

There are two general approaches to the remote sensing of biodiversity, as defined by 

Turner et al. (2003). One is the direct remote sensing of individual organisms, species 

assemblages, or ecological communities from airborne or satellite sensors with high 

spatial and spectral resolutions. For instance, hyperspectral sensors slice the 

electromagnetic spectrum into many discrete spectral bands, enabling the detection of 

spectral signatures that are characteristic of certain plant species or communities. The 

other approach is the indirect remote sensing of biodiversity through reliance on 

environmental parameters as proxies. For example, many species are restricted to 

discrete habitats that can be clearly identified remotely. By combining information 

about the known habitat requirements of species with maps of land cover derived from 

satellite imagery, precise estimates of potential species ranges and patterns of species 

richness are possible. 

Palmer et al. (2002) proposed the spectral variation hypothesis to explain why 

electromagnetic measures are related to biological diversity: the spectral variation of 

reflectance values is correlated with spatial variation in the environment by means of 

landscape structure and complexity. Habitat heterogeneity is further linked to niche 

complexity which is known to enhance species diversity (Simonson et al. 2012). 

Considering tree diversity in forests, the remote sensing measures are in relationship 

with the chemical and structural properties of the vascular species. 

Different studies revealed that the variability in vegetation biodiversity can only be 

partially captured with medium spatial resolutions and multispectral data (Carlson et al. 

2007; Foody and Cutler 2003; Gould 2000; Rocchini et al. 2004, 2007). On the other 

hand, indirect mapping methods cannot be used where land cover information is lacking 

or where the cover is homogeneous, such as in tropical forests (Nagendra 2001), while 

fine scale biodiversity maps are needed by land managers and scientists, because they 

can provide an understanding of species distributions on a scale commensurate with 

conservation, management and policy development activities (Carlson et al. 2007). The 

increased availability of very high spectral resolution sensors has provided the 

opportunity to conduct detailed ecological studies on terrestrial ecosystems 

characteristics (Kumar et al. 2001; Thenkabail et al. 2004), but few previous researches 
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related hyperspectral data to biodiversity (Carlson et al 2007; Kalacksa et al. 2007). The 

present research offers an example of modeling the Shannon-Wiener biodiversity index 

in a tropical forest using airborne hyperspectral data (Chapter 7), developed with the 

aim of contributing to the identification of advanced tools to detect and monitor the 

distribution of life diversity on Earth. 

 

 

2.3 Recent challenges in forest studies 

This section deals with specific problems currently faced in forestry research, which 

correspond to the research questions that this study attempts to answer. 

 

2.3.1 Ancillary data usefulness in AGB LiDAR-based estimations 

 

Vegetation height metrics derived from LiDAR have been found to be highly correlated 

to biomass even at very high AGB densities (Gonzalez et al. 2010; Means et al. 1999). 

However, this relationship could vary across different vegetation types, as observed in 

different studies, because the biomass at the individual tree level is determined not only 

by canopy structure but also by floristic-related factors such as trunk taper and wood 

density (Chave et al. 2006; Niklas 1995). Drake et al. (2003) found that the relationships 

between LiDAR metrics and AGB differ between two tropical forest sites even after the 

models had adjusted for deciduousness of canopy trees, and attributed the differences to 

the underlying allometric relationships between stem diameter and AGB.  Næsset and 

Gobakken (2008) estimated AGB in young and mature coniferous forests located in 

different areas of Norway, finding significant improvement of models when variables 

including tree species composition were included. Ni-Meister et al. (2010) found that 

the relationships between biomass and canopy structure are distinctly different for 

deciduous and conifer trees in temperate forests in New England, U.S.  

Thus the inclusion of floristic information on forests can improve the models and should 

be attempted, as it can provide those accurate estimations needed in order to inform 

national policies and international treaties regarding forest management and carbon 

sequestration (Malmsheimer et al. 2011). This information is always available in non-
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tropical countries, for which fine scale land cover databases are maintained (i.e. 

CORINE in EU), but is sometimes available also in developing countries thanks to 

advancements in research and international cooperation efforts. 

One approach for incorporating ancillary forest information into biomass estimation is 

to stratify the forest plots according to vegetation types, each one having a separate 

statistical model (e.g., MacLean and Krabill 1986; Nelson et al. 1988). However, such 

an approach has practical and theoretical limitations. First, in most previous studies, 

only a limited number (typically 20–60 in total) of field plots were available for 

biomass modeling due to issues such as accessibility and cost. The stratification of a 

study area will lead to even fewer number of field plots per vegetation type, making it 

difficult to fit reliable statistical models for each vegetation type. Another problem of 

such an approach is that it assumes that the field data contains an exhaustive list of all 

vegetation types which exist in a given area. This is hardly true for natural forests 

because the vegetation types collected through field measurements are typically only a 

sample of the vegetation types which exist over that area.  

Recent advances in mixed-effects modeling can circumvent the aforementioned 

problems. In a conventional statistical model, the regression coefficients (such as 

intercept and slopes) are treated as constants. However, in mixed-effects models, these 

coefficients could be modeled as random Gaussian variables with their specific values 

varying among vegetation types. This approach makes it feasible to estimate biomass 

even when the sample size per vegetation type is small.  

Mixed effects modeling tool was applied in Chapter 5, in which the integration of 

ancillary floristic information into LiDAR based estimation was tested. The study area 

was located in a mixed and conifer forest in Sierra Nevada (US) where a LiDAR survey 

was conducted and where the availability of aerial photographs allowed the USDA 

Forest Service to develop a detailed vegetation type map. The study demonstrated the 

feasibility of this integration, which resulted in increased accuracy in estimates, and 

suggest a wider use of ancillary information into AGB studies. 
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2.3.2. Ancillary data (LiDAR-derived) usefulness in discriminating 

vegetation types 

 

The usefulness of vegetation type identification is evident in forest studies, because 

single species or vegetation association need different management options, and 

because forest parameters can be better estimated at this level (as discussed in paragraph 

2.3.1), thus providing more accurate estimates important for carbon accounting, timber 

industry, resource conservation and management.  But the task of classification of 

vegetation types by remote sensing data is not always straightforward, especially when 

the spectral signatures of the objects to be identified are similar. The monitoring of 

natural areas is routinely conducted in most industrialized countries and, despite great 

advances in recent years in the availability of new remote sensing instruments, 

monitoring is mainly conducted with optical sensors. Thus, it is important to test 

advanced sensors, such as those exploiting very high-resolution synthetic aperture radar 

(SAR), hyperspectral, or LiDAR, for their integration in operational activities, and to 

evaluate their contribution to improve the quantity and quality of environmental 

information. Furthermore, some of these advanced remote sensing datasets can be easily 

obtained; often LiDAR data most commonly used for forestry and mapping applications 

are not produced by dedicated flights, with technicians exploiting the raster Canopy 

Height Model, which provides a measure of the height of the upper canopy for each 

pixel of vegetation in the surveyed area (Kraus and Pfeifer 1998), available at either a 

low cost or even for free from surveys carried out for purposes other than vegetation 

applications (Corona et al. 2012).  

The increased availability of these LiDAR-derived products, released by local 

administrations due to widespread lidar use in topographic mapping, can be very 

valuable in the support of vegetation monitoring efforts. These data sets could be 

integrated in routine monitoring activities if their use is proven to be beneficial in 

increasing the ability to discriminate and map natural vegetation. 

This issue is faced in Chapter 3, where the discrimination of natural vegetation based on 

SAR sensors in performed in an Alpine mountain area, threatened by climate change. 

Few other attempts exist on the integration of LiDAR into classification of vegetation; 
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the results are encouraging but those researches were located in other environments and 

based on optical sensors. For instance, Dowling and Accad (2003) joined the height 

information generated by LiDAR with digital video to map vegetation types and height 

classes in a riparian zone in Australia; Bork and Su (2007) compared the classifications 

obtained by LiDAR, multispectral, and the two combined data types in Canadian 

rangelands, finding more accurate the one including LiDAR data. Similarly, Geerling et 

al. (2007) found that the fused Compact Airborne Spectrographic Imager (CASI) 

spectral and LiDAR information produced better results than single dataset use in a 

natural floodplain classification in The Netherlands; while Onojeghuo and Blackburn 

(2011) combined hyperspectral imagery and textural information with LiDAR CHM for 

the effective mapping of reed bed habitats in the UK. The research presented in Chapter 

3 is probably the first attempt based on SAR and LiDAR-derived data to discriminate 

among vegetation types, and shows how important is the height information provided 

by LiDAR in increasing the classification accuracy. The research thus offers an example 

on how improving operational monitoring of natural resources with limited effort, 

further discussing the additional advantages brought in by SAR, such as all-weather 

capabilities and retrieval of information on AGB. 

 

2.3.3 Data fusion: evaluating the benefits of optical and RADAR 

sensors integration for tropical land cover classification 

 

Optical sensors have been the primary data sources for land cover classification since 

the launch of the Landsat satellite series in early 1970s. In recent years, SAR sensors 

have emerged as important tools for vegetation studies, being well suited to detect 

volumetric scattering (Rahman and Sumantyo 2010; Santos et al. 2004; Simard et al. 

2000) and offering a supplementary data source when atmospheric conditions hamper 

optical data use (Lehmann et al. 2012; Lu et al. 2007; Mitchard et al. 2011). Therefore, 

the combination of the two data types is considered beneficial (Lefsky and Cohen 

2003). In fact optical and SAR provide information on different and complementary 

forest characteristics, such as canopy foliar composition and health, and vegetation 
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volume and canopy water content. But the benefits of data integration can vary 

according to landscape and specific sensors characteristics.  

As seen in previous chapters, the distinction of different vegetation types is considered a 

difficult task. In tropical landscape the difficulties are generally represented by the 

smooth transition between forest successional stages, the presence of different forest 

types with spectral similarity, such as evergreen and the semi-deciduous forest classes, 

with latter in leaf-drop period only for few weeks (Lucas et al. 2002; Vieira et al. 2003).  

The extent of the benefits offered by optical and SAR data integration is explored in 

Chapter 5 in a forested tropical area located in West Africa, where no previous 

classification studies exist at a fine spatial resolution scale. Vegetation-oriented 

classification efforts are especially needed in the region, in which a trans-boundary 

peace park is planned by the Liberia and Sierra Leone governments. 

The results showed that SAR combination with any optical data – TM or AVNIR-2 –

always produced the best classification accuracies. Furthermore, the results obtained 

using only SAR data as classification input went beyond the usual SAR-based 

forest/non-forest mapping and the obtained accuracy was similar or higher than other 

classifications based on SAR in African environments (Haack and Bechdol 2000; 

Herold et al. 2004), enabling the detection of six different classes. It is frequent to 

experience optical data unavailability in tropical regions, such in this case study in 

which both optical images (Landsat and ASTER) were impacted by atmospheric 

conditions. The integrated optical and SAR data offered more information on forests 

details, with respect to classification based on single data types, but this information 

was available only where optical data were cloud free, i.e. in imagery sub-portions. 

Instead, SAR offered full coverage data, and SAR alone can still provide important 

landscape information. Thus, the use of SAR is suggested as a strategy to cope with 

persistent cloud cover affecting tropical regions, possibly merged with optical data to 

increase the information content, even considering different optical sensor for 

integration with SAR. If available, finer resolution sensors such as AVNIR-2 can help 

to detail specific subareas of interest, while larger areas or zones covered by clouds can 

be filled with SAR or optical lower resolution data. 
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2.3.4 Data fusion: evaluating the integration of LiDAR and 

hyperspectral sensors for AGB estimation 

 

LiDAR is considered the most effective tool for biomass mapping.  This instrument is 

not affected by the saturation problems characterizing SAR signal in dense forests and, 

differently from optical sensors, penetrates the forest down to the ground, collecting 3D 

information on vegetation which is related to AGB by means of allometric relationships.  

However, LiDAR application in tropical forests has been limited, particularly in Africa. 

Zolkos et al. (2013) in a comprehensive review identified eight studies carried out with 

this system in tropical forests, with none in continental Africa; considering the results 

obtained from tropical LiDAR application, a margin of improvement of accuracies of 

AGB retrieval seems to exist. 

Hyperspectral sensors, recording the reflectance of a large number of fine resolution 

spectral bands in the VIS-NIR or VIS-SWIR range, are another frontier technology in 

remote sensing, capturing information on the biochemical composition of the upper 

canopy layer.  The ecosystem information recorded by hyperspectral data may relate to 

plant functional types, or group of species, which develop in a site in response to 

environmental constraints,  such as water and light availability. The arboreal species can 

differ substantially in their wood density, which in turns impact the biomass content 

(Baker et al. 2004; Chave et al. 2009). 

Thus, the integration of these two data type may constitute an advantage, as each sensor 

brings in information which is complementary to the other one. Considering the 

opportunities from forthcoming hyperspectral missions, such as the Environmental 

Mapping and Analysis Program (EnMap), the PRecursore IperSpettrale of the 

application mission (PRISMA) and the Medium Resolution Imaging Spectrometer 

(MERIS), and the increased availability of LiDAR data, the joined use of the two data 

types can open new opportunities in ecological monitoring.  Despite the interest of this 

approach, overall the number of published studies on integrating LiDAR and 

hyperspectral data for biomass estimation is very small, and the few researches that 

attempted it in boreal, temperate and tropical forests reported only modest or no 
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improvement in model fit compared to the results from using LiDAR only (Anderson et 

al. 2008; Clark et al. 2012; Latifi et al. 2012; Swatantran et al. 2011).  

In the present thesis, Chapter 6 offers an example of increased accuracy obtained by the 

addition of hyperspectral features to LiDAR for AGB estimation in a tropical dense 

forest.  Previous researches are scarcely comparable to the present one, either due to 

different sensors and spatial resolutions used (Anderson et al., 2008; Swatantran et al., 

2011), or to the different forest biomes considered. Anyhow, Swatantran et al. (2011) 

suggested that the predictive power of hyperspectral data could be higher when LiDAR 

relationships with biomass are weaker, as observed by Anderson et al. (2008) and Roth 

(2009). This hypothesis is in part confirmed by the case study presented in Chapter 6, in 

which the LiDAR-AGB relationship in a complex tropical biome is not as high as in 

less complex temperate forests, and an increase in accuracy was brought by inclusion of 

hyperspectral data. Other attempts of LiDAR and hyperspectral data fusion at very high 

resolution are also difficult to compare with the present case study for the different 

techniques used in data acquisition, processing and analysis. Latifi et al. (2012) used a 

full waveform lidar and HyMap hyperspectral sensors, reporting minimal improvement 

in AGB estimates from fused datasets, using Principal Component Regression. The 

Partial Least Squares regression used in this study is preferable to PCR, as detailed in 

Chapter 6, which might account for the difference. The only AGB estimation for a 

tropical area at very high resolution, carried out using a FLI MAP LiDAR (Fugro Aerial 

& Mobile Mapping Inc.) and the hyperspectral HYDICE sensor reported no 

improvement by data fusion (Clark et al. 2012). In that case the authors used 

hyperspectral VIs and spectral mixture fractions, while in this study original 

hyperspectral bands were used. Possibly, important information for biomass estimation 

was excluded in deriving the VIs or spectral mixture fractions, with respect to the full 

information content included in the original bands.  

Even considering the positive results obtained in Chapter 6, the status of current 

research in hyperspectral and LiDAR data fusion is not advanced enough to derive clear 

conclusions on the effectiveness of the use of joined sensors. In this view, the case study 

illustrates an example of innovative research in remote sensing of natural resources. 
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2.3.5 Evaluating the impact of field data geolocation in LiDAR-based 

AGB estimates 

 

The accuracy of the calibration data used for deriving forest parameters estimates from 

remote sensing data is influenced not only by the specific earth observation data and the 

statistical approaches used, but also by the accuracy of the field data geolocations. Low 

geo-location accuracy can be caused by either the use of low-cost GPS or the existence 

of dense forests. The use of differential GPS (DGPS) correction can improve the 

geolocation recorded by low-costs GPS, from the 15 meter nominal GPS accuracy to 

about 10 cm in case of the best implementations. DGPS uses a network of fixed, 

ground-based reference stations to broadcast the difference between the positions 

indicated by the satellite systems and the known fixed positions. These stations 

broadcast the difference between the measured satellite pseudoranges (ranges including 

errors) and actual (internally computed) pseudoranges, and receiver stations may correct 

their pseudoranges by the same amount. The digital correction signal is typically 

broadcast locally over ground-based transmitters of shorter range. Unfortunately, these 

ground-based reference stations are not always operating in tropical areas.  

Furthermore, the bouncing of GPS signal into a dense canopy can result in a delay of 

the GPS time information which results in an imprecise geolocation recorded by the 

instrument. This phenomenon is called multipath effect; presently different brands offer 

multipath correction systems integrated into their GPS, but these effects cannot be 

completely eliminated.  

The effects of geolocation accuracy on the accuracy of forest parameter estimations 

have been scarcely investigated. Dominy and Duncan (2001) reported the difficulty of 

quality satellite reception beneath a dense forest canopy, with the degree of spatial error 

seriously affecting fine-scale vegetation mapping. Miura and Jones (2010) used a 

Garmin eTrex GPS (average±5.5 m horizontal error) to locate the centers of 25-m radius 

circular plots for field measurements and related to airborne LiDAR data. They had to 

manually shift the plots to achieve a better registration between lidar data and field 

measurements.  

http://en.wikipedia.org/wiki/Satellite
http://en.wikipedia.org/wiki/Pseudorange
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In this research, the geolocation problem was investigated and discussed with respect to 

the estimation of AGB (Chapter 3 and Chapter 6) and of the Shannon-Wiener diversity 

index (Chapter 7). The availability of both differential GPS coordinates and recreational 

GPS coordinates for the field plots in Sierra Nevada study site (Chapter 3) made it 

possible to directly assess the impacts of plot coordinate accuracy on biomass 

estimation.  The use of recreational instead of differential GPS in that study site resulted 

in a significant decrease of the accuracy of biomass estimates. This degradation in 

performance due to GPS accuracy will likely vary depending on the site-specific 

conditions (e.g., canopy structure, spatial heterogeneity, and topography), and 

emphasize the value of differential GPS to locate field plots for vegetation 

measurements. Instead, in the Sierra Leone tropical study site (Chapter 6 and 7) field 

data geolocations were recorded only using a recreational low-cost GPS, and this was 

considered among the causes of errors associated with the estimates, with both 

researches suggesting that high quality ground truth data is needed when planning forest 

parameters estimates in tropical forests.  
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The relationship between lidar-derived metrics and biomass could vary across different vegetation types.
However, in many studies, there are usually a limited number of field plots associated with each vegetation
type, making it difficult to fit reliable statistical models for each vegetation type. To address this problem, this
study used mixed-effects modeling to integrate airborne lidar data and vegetation types derived from aerial
photographs for biomass mapping over a forest site in the Sierra Nevada mountain range in California, USA. It
was found that the incorporation of vegetation types via mixed-effects models can improve biomass estimation
from sparse samples. Compared to the use of lidar data alone inmultiplicativemodels, themixed-effects models
could increase the R2 from 0.77 to 0.83 with RMSE (root mean square error) reduced by 10% (from 80.8 to
72.2 Mg/ha) when the lidar metrics derived from all returns were used. It was also found that the SAF (Society
of American Forest) cover types are as powerful as the NVC (National Vegetation Classification) alliance-level
vegetation types in themixed-effects modeling of biomass, implying that the futuremapping of vegetation classes
could focus on dominant species. This research can be extended to investigate the synergistic use of high spatial
resolution satellite imagery, digital image classification, and airborne lidar data for more automatic mapping of
vegetation types, biomass, and carbon.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Vegetation biomass, the weight of plant materials that exist over
an area, is a critical measure of ecosystem structure and productivity
that informs a range of applications such as fire emission calculations
(e.g., De Santis et al., 2010), wildlife habitat analysis (e.g., Morris et al.,
2009), hydrological modeling (e.g., Ursino, 2007), and greenhouse gas
accounting (e.g., De Jong et al., 2010). In particular, accurate estimates
of biomass are needed in order to inform national policies and interna-
tional treaties regarding forest management and carbon sequestration
(Malmsheimer et al., 2011).

Lidar is a state-of-the-art remote sensing technology with a proven
ability tomap aboveground biomass (AGB). The accuracy and sensitivity
of themetrics derived from optical and radar imagery (such as NDVI and
backscatter coefficient) decline with increasing AGB (Waring et al.,
1995). In contrast, vegetation height metrics derived from lidar have
been found to be highly correlated to biomass even when the biomass
density is very high (Gonzalez et al. 2010, Means et al., 1999). In the
+1 808 956 3512.

rights reserved.
past, much research has been done to estimate AGB using airborne
discrete-return lidar (e.g., Asner et al., 2009; Banskota et al., 2011; Lim
et al., 2003), airborne profiling lidar (e.g., Nelson et al., 2009, 1988;
Stahl et al., 2011), airborne waveform lidar (e.g., Dubayah et al. 2010;
Lefsky et al., 1999; Ni-Meister et al., 2010), satellite lidar (e.g.,
Boudreau et al., 2008; Guo et al., 2010; Nelson et al., 2009), and
ground-based lidar (e.g., Loudermilk et al., 2009; Ni-Meister et al.,
2010). In these applications, statistical models were used to quantify
the relationship between biomass measurements and vegetation struc-
ture metrics derived from lidar for a number of forest plots or stands.
Their performance varies depending on the vegetation conditions, the
density of field observations, and the approach used for statistical
modeling.

Most of these existing studies have focused on the use of lidar-
derived canopy structure metrics, such as height and canopy cover,
for biomass estimation. However, studies of plant allometry sug-
gested that biomass at the individual tree level is determined not
only by canopy structure but also by factors such as trunk taper and
wood density (Chave et al., 2006; Niklas, 1995), which are closely re-
lated to the floristic characteristics of the plants. As a result, biomass
should be related to vegetation types. For example, Drake et al.
(2003) examined the relationships between lidar metrics from an

http://dx.doi.org/10.1016/j.rse.2012.01.021
mailto:qichen@hawaii.edu
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airborne waveform lidar LVIS (Laser Vegetation Imaging Sensor) and
AGB for two study sites in Central America, one in a tropical moist for-
est in Panama and the other in a tropical wet forest in Costa Rica. They
found that the relationships between lidar metrics and AGB differ be-
tween these two sites even after the models had adjusted for the frac-
tion of crown area that was deciduous (FCAD) of canopy trees. They
attributed the differences to the underlying allometric relationships
between stem diameter and AGB in tropical forests. Næsset and
Gobakken (2008) estimated the aboveground and belowground bio-
mass for 1395 sample plots in young and mature coniferous forests
located in ten different areas within the boreal forest zone of Norway.
With one canopy height metric and one canopy density metric de-
rived from airborne discrete-return lidar, they were able to estimate
aboveground and belowground biomass with R2 of 0.82 and 0.77, re-
spectively. When variables including tree species composition were
included, the R2 increased to 0.88 and 0.85. In a recent study, Ni-
Meister et al. (2010) found that the relationships between biomass
and canopy structure are distinctly different for deciduous and coni-
fer trees in temperate forests in New England, U.S. Their analysis
was based on the canopy structure information measured in the
field as well as those derived from LVIS and Echidna® validation in-
strument (EVI), a ground-based lidar system.

The dependence of biomass-canopy structure relationship on vege-
tation types is well-known (e.g., Nelson et al., 1988; Ni-Meister et al.,
2010). One approach for incorporating vegetation type information
into biomass estimation is to stratify the forest plots according to vege-
tation types, for each of which a separate statistical model is developed
(e.g., MacLean and Krabill 1986; Nelson et al., 1988). However, such an
approach has practical and theoretical limitations. First, in most previ-
ous studies, only a limited number (typically 20–60 in total) of field
plots were available for biomassmodeling due to issues such as accessi-
bility and cost. The stratification of a study area will lead to even fewer
number of field plots per vegetation type, making it difficult to fit reli-
able statistical models for each vegetation type. Another problem of
such an approach is that it assumes that the field data contains an ex-
haustive list of all vegetation types which exist in a given area. This is
hardly true for natural forests because the vegetation types collected
through field measurements are typically only a sample of the all vege-
tation types which exist over that area.

Recent advances in mixed-effects modeling can circumvent the
aforementioned problems. In a conventional statistical model, the re-
gression coefficients (such as intercept and slopes) are treated as con-
stants. However, in mixed-effects models, these coefficients could be
modeled as random Gaussian variables with their specific values
varying among vegetation types. This approach makes it feasible to
estimate biomass even when the sample size per vegetation type is
small. Mixed-effects models have recently been used to estimate can-
opy height from satellite lidar (GLAS) data (Chen, 2010) and tree di-
ameter from airborne discrete-return lidar data (Salas et al., 2010).
Chen (2010) used mixed-effects model to test the generalizability of
height estimation from GLAS data within and across three study
sites in the Pacific coast region (one conifer site and one woodland
site in California and another conifer site inWashington). He found sig-
nificant random effects between the conifer andwoodland sites but not
between the two conifer sites. Salas et al. (2010) compared four statis-
tical models including ordinary least squares (OLS), generalized least
squares with a non-null correlation structure (GLS), linear mixed-
effects model (LME), and geographically weighted regression (GWR)
for estimating diameter of individual trees using discrete-return lidar
data. They found that LME was significantly better than the other
three models. Despite the promising results obtained in these two
lidar remote sensing studies, no studies, to our best knowledge, have
been done to explore the use of mixed-effects model for biomass esti-
mation using lidar data.

In this study, vegetation types derived from aerial photographs are
used to stratify forest for biomass modeling. Aerial photography is a
fundamental remote sensing data source that possesses fine spatial
and temporal details for producing base maps and performing envi-
ronmental analysis (Lillesand et al., 2008). It has been widely used
for mapping vegetation types for decades (e.g., Avery, 1978;
Colwell, 1946; Fensham and Fairfax, 2002; Morgan et al., 2010). The
recent advances in digital imaging and analysis also make aerial pho-
tography a rapidly-evolving tool for environmental analysis and eco-
logical management (Morgan et al., 2010). In the U.S., a number of
national programs such as NHAP (National High Altitude Program),
NAPP (National Aerial Photography Program), NAIP (National Agri-
culture Imagery Program), and NDOP (National Digital Orthophoto
Program) have collected and delivered aerial photographs every
3–10 years that cover the conterminous states from the late 1980s.
Besides their wide temporal and spatial coverage, the aerial photo-
graphs acquired through these programs are usually free or at low
cost for public use, making them ideal for detailed vegetation type
mapping (Davies et al., 2010; Higinbotham et al., 2004).

The main goal of this study is to investigate whether integrating
airborne lidar data with traditional vegetation maps derived from ae-
rial photographs can improve biomass estimation for forest landscape
in California. We specifically explore the efficacy of mixed-effects
modeling to integrate the two remotely sensed data sources. We
also compare the performance of two common but different ap-
proaches to vegetation classification.

2. Study area and data

2.1. Study area

Our study area is located in the United States Forest Service Sagehen
Creek Experimental Forest in California, which covers approximately
3925 ha and is on the eastern slope of the Sierra Nevada approximately
32 km north of Lake Tahoe (Fig. 1). Conifer species present include
white fir (Abies concolor), red fir (Abies magnifica), mountain hemlock
(Tsuga mertensiana), lodgepole pine (Pinus contorta), Jeffrey pine
(Pinus jeffreyi), sugar pine (Pinus lambertiana), and western white
pine (Pinus monticola) (Table 1). Non-forested areas include fens, wet
and dry montane meadows and shrub fields. Elevation ranges from
1862 m to 2670 m with slopes averaging 18% but can reach 70% in
parts of the watershed.

2.2. Field data collection

A systematic grid of geo-referenced 0.05 ha circular plots was
installed with a random starting location (Fig. 2). The grid consists
of three sampling densities, 500 m, 250 m, and 125 m spacing. The
entire watershed was sampled by plots spaced on a 500 m interval.
Areas not occupied by Jeffrey pine plantations were further sampled
at 250 m spacing; 125 m spacing was used in 10 unique forest types
to conduct high density sampling. A total of 523 plots were established
in the field between 2004 and 2006. These field plots were located with
a handheld Garmin eTrex recreational GPSwith horizontal accuracy of 3
to 11 m, which are called RGPS plots hereinafter. Nine of the ten loca-
tions of 125 m plot spacing were revisited in 2006 and a Trimble®
GeoXH™ handheld GPS with Zephyr Geodetic antenna was used to
re-measure the center of 81individual plots. The average horizontal ac-
curacy of the newGPSmeasurements is 0.1 mwith themajority b0.2 m
and, at the worse case, 1.5 m. These plots are DGPS plots hereinafter.

At each plot, all trees greater than 5 cm in diameter at breast
height (DBH, breast height=1.37 m) were measured with a nested
sampling design. Canopy trees (≥19.5 cm DBH) were tagged and
measured in the whole plot; Understory trees (≥5 cm DBH to
b19.5 cm DBH) were measured in a randomly selected third of the
plot. Tree measurements include species, DBH, tree height, and
vigor. Vigor was defined into six different classes: 1) healthy trees
with no visible defects, 2) healthy trees with minimal damage or



Fig. 1. Location of the study area. Top-right: Aerial photographs draped over the lidar DEM. Bottom-right: A hillshade of the lidar DEM.
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defect (broken top/dead top, abnormal lean, etc.), 3) live trees that
are near death or will be dead in the next five years, 4) recently
dead trees with little decay and that retain their bark, branches and
top, 5) trees that show some decay and have lost some bark, branches
and may have a broken top, and 6) extensive decay and missing bark
and most branches and have a broken top. The first three vigor classes
are for live trees and the last three are for dead trees.

2.3. Lidar data

Lidar data were collected from September 14 to 17, 2005 for the
study area using an Optech ALTM 2050 system on an airplane flying
at an altitude of ~800 m and average velocity of 260 km per hour.
The ALTM 2050 acquired up to three returns per pulse at a pulse fre-
quency of 50 kHz, scan frequency of 38 Hz, and a maximum scan
angle of 15°, creating a swath width of ~580 m. The point density is
about 2–4 returns per square meter. Optech, Inc. rates the RMSE pre-
cision of individual point locations surveyed by the ALTM 2050 as ±
15 cm vertical and ±50 cm horizontal.

2.4. Vegetation types from aerial photographs

USDA Forest Service (USFS) provided a vegetation type map,
which was produced by visually interpreting 1 m NAIP (National Ag-
ricultural Imagery Program) Digital Orthophoto Quadrangles (scale
1:15,840, natural color) taken on September 16, 2005 and manually
delineating the vegetation polygons. The vegetation polygonswere ini-
tially typed using the CALVEG (Classification and Assessmentwith Land-
sat of Visible Ecological Groupings) classification system (USDA, 1981),
Table 1
Common tree species in this study area and their allometric equations for calculating biomass.
stem without bark; CIR = stem basal circumference; DBH = diameter at breast height; HT =

Species Abbr. Common name Equation

Abies concolor ABCO White fir ln(BST)=3.011904+2.772
Abies magnifica ABMA Red fir ln(BST)=3.020046+2.759
Juniperus occidentalis JUOC Sierra juniper ln(BSW)=−8.5802+2.63
Pinus contorta PICO Lodgepole pine ln(BST)=−9.10508+2.33
Pinus jeffreyi PIJE Jeffrey pine ln(BST)=1.817891+2.952
Pinus lambertiana PILA Suger pine ln(BST)=3.229148+2.686
Pinus monticola PIMO Western white pine BAT=20,800+0.1544× (D
Populus tremuloides POTR Quaking aspen ln(BAT)=−2.6224+2.482
Tsuga mertensiana TSME Mountain hemlock ln(BAT)=−10.1688+2.59
which is a provisional system that meets the floristically based level of
the U.S. National Vegetation Classification Standard (NVCS) hierarchy.
The CALVEG systemwas designed to classify California's existing vegeta-
tion communities and the CALVEG types are also called “Dominant
Types” in accordance with the USFS Existing Vegetation Classification
andMapping Technical Guide (Brohman and Bryant, 2005). The CALVEG
types were crosswalked to other classification systems including SAF
(Society of American Forester) (Eyre, 1980), CWHR (California
Wildlife-Habitat Relationships) (Meyer and Laudenslayer, 1988), and
U.S. NVC (National Vegetation Classification) alliance-level vegetation
types (FGDC, 2008).

In this study, the two national-wide vegetation classification sys-
tems, SAF and NVC alliance-level vegetation types, were chosen for bio-
mass estimation due to their broad applicability (Fig. 3). The NVC
alliance-level vegetation types are based on NVCS, which establishes
national procedures for field plot records and classification of existing
vegetation types for the United States. These procedures provide a dy-
namic and practical way to publish new or revised descriptions of vege-
tation types while maintaining a current, authoritative list of types for
multiple users to access and apply (Jennings et al., 2009). The early ef-
forts of NVC started in 1994 and the first NVCS was adopted in 1997 by
FDGC (Federal Geographic Data Committee). As early as of April 1997,
a total of 1571 NVC types had been identified at the alliance-level
(Grossman et al., 1998). Since then, the vegetation classification has
been continuously evolving and updated (Jennings et al., 2009). In con-
trast to NVC that uses all vascular plant species present in a community
to help define vegetation classes, the SAF types emphasize dominant
species of a stand. In many cases, the SAF types are more broad-
ranging over both structural and environmental gradients than are the
BAT= total above ground biomass; BST = biomass of stemwith bark; BSW= biomass of
tree height.

Units (biomass, DBH or CIR, height) Source

7×ln(DBH) g, cm, – Halpern and Means, 2004
0×ln(DBH) g, cm, – Halpern and Means, 2004
89×ln(CIR) kg, cm, – Means et al., 1994
63×ln(DBH) mg, cm, – Means et al., 1994
×ln(DBH) g, cm, – Halpern and Means, 2004
3×ln(DBH) g, cm, – Halpern and Means, 2004
BH2×HT) g, cm, cm Halpern and Means, 2004
7×ln(DBH) kg, cm – Jenkins et al., 2004
15×ln(DBH) mg, cm, – Jenkins et al., 2004

image of Fig.�1


Fig. 2. Field plots of vegetation measurements. The smaller dots indicate the plots located with a recreational GPS. The larger dots indicate the plots located with both a recreational
GPS and a differential GPS. The thick line is the boundary of the vegetation type map.
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alliances recognized in NVC (Grossman et al., 1998), so in total a much
smaller number of SAF types (86 forest types) have been identified for
the whole United States.

3. Methods

3.1. Biomass calculation at the plot-level

Biomass can be most accurately calculated using species-specific
allometric equations. A comprehensive review of the literature was
conducted to search species-specific allometric equations and, during
the selection process, preference was given to equations meeting all
or most of the following criteria: 1) being derived from a high number
(~40–100) of sample trees, 2) from DBH ranges similar to those in our
dataset, 3) from geographical sites most similar to our study location,
and 4) including all or the most relevant biomass components of a
tree. The final equations we selected are from Halpern and Means
(2004), Jenkins et al. (2004), and Means et al. (1994) (see Table 1).
To derive the biomass at the plot level, we summed the biomass of
live trees with DBH>5 cm (the total biomass of understory trees
was multiplied by three given that only a random third of each plot
was measured for them) and converted the biomass total to density
based on the area of each plot. We only consider live trees because
the dead trees usually have few or no leaves and thus generate
much fewer laser returns.

3.2. Lidar data processing

The first step of lidar data processing is to filter the raw lidar points
and separate them into ground and non-ground returns (Chen et al.,
2007). Then, the ground returns identifiedwere interpolated to generate
a Digital ElevationModel (DEM) of 1 m cell size. The canopy height of in-
dividual points was calculated as the difference between their original Z
values and the corresponding DEM cell elevations. Based on the canopy
height, the following statistics were calculated for all points within a
given field plot: mean (hu), standard deviation (hstd), skewness (hskn),
and kurtosis (hkurt); proportion of lidar points within different height
bins (0 to 5 m, 5 to 10 m, …, 45 to 50 m, and >50m, denoted as p0to5,
p5to10, …, p45to50, and p>50, respectively); percentile heights (5, 10, …,
100 percentile, denoted as h5, h10, …, h100, respectively; note that 100
percentile height corresponds to maximum height); and quadratic
mean height (hqm) (see Table 2). The quadratic mean height was calcu-
lated as Lefsky et al. (1999). Two sets of lidar metrics were generated:
one is based on all lidar returns and the other is based on first returns
since some studies have found that first returns may have better perfor-
mance in predicting vegetation attributes (e.g., Kim et al., 2009). All of
the above lidar data processing was conducted using the Tiffs (Toolbox
for Lidar Data Filtering and Forest Studies) software (Chen, 2007).

3.3. Statistical analysis

The mixed-effects model used to predict plot-level biomass from
lidar metrics and vegetation types is as follows:

Y ¼ Xbþ Zbþ e
b eN 0;Gð Þ
e eN 0;Rð Þ
cov b; eð Þ ¼ 0

ð1Þ

where Y is a vector of biomass for n field plots, X is the n×p design
matrix for the p fixed effects, Z is the n×q design matrix for q random
effects, β is a p×1 vector for the fixed effects, b is q×1 vector for the q
random effects, and ε is the n×1 vector for the error random effects.
Note that 1) the random effect vector b has Gaussian (Normal) distri-
butions with zero means and variance–covariance matrix G, which is
called the G covariance structure; 2) the error vector ε could be cor-
related with variance–covariance matrix R, which is modeled with
variograms in this study; and 3) the random effects b and ε are inde-
pendent. Given that there usually exist power–law relationships be-
tween biomass and other vegetation attributes such as DBH or
height (Zianis and Mencuccini, 2004), biomass and all lidar metrics
were log-transformed so that the developed models are linear at the
log-scale.

Weused stepwise regression to select the statistically significant lidar
metrics for predicting biomass. Since both the response and predictor
variables are at the log-scale, the developed models are multiplicative at
the original scale. The multiplicative models served as the benchmark
and starting point for developing mixed-effects models; in other
words, we added and tested random effects only for the lidar metrics se-
lected in the multiplicative models. Modeling variance structure is
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Fig. 3. Vegetation type maps of the study area. (a) SAF type, (b) NVC alliance-level type.
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probably themost powerful and critical feature of mixed-effects models,
which allows correlation among observations. To find themost parsimo-
nious yet effective G covariance structure, we initially fit amodel with all
predictor variables having random effects and their covariance matrix
being unstructured (UN), then fit models with a Variance Components
(CV) covariance structure, which means that the individual random ef-
fects are independent and the off-diagonal elements of the covariance
matrix are zeros. If the estimate of any random effects is statistically in-
significant from zero across all different vegetation types, the random
effectwas dropped from themodel. A total of four different types of var-
iogram models (exponential, spherical, Gaussian, and Matern) were
tested to model the spatial dependence of the residuals and calculate
the variance–covariance matrix R. AIC (Akaike Information Criteria)
was used to help select the best models, which usually have the lowest
AIC. However, if theAIC values of twomodels have a difference less than
2, such models are considered indistinguishable (Burnham and
Anderson, 2002). Once the best models had been selected, leave-one-
out cross-validation was used to calculate the model coefficient of
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Table 2
Lidar metrics for predicting forest attributes.

Lidar metrics Description

hu, hstd, hskn, hkurt Mean, standard deviation, skewness, kurtosis of height of
lidar points

p0to5, p5to10, …,
p45to50,p>50

Proportion of lidar points within height bins (0 to 5 m, 5 to
10 m, …, 45 to 50 m, and>50 m)

h5, h10, …, h100, Percentile height of lidar points
hqm Quadratic mean height of lidar points
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determination (R2) and RMSE so that a straightforward comparison can
bemade between the results from this study and those from others.We
used SAS 9.1.3 (SAS Institute Inc.) to fit mixed-effects models.

Among the 81 DPGS plots, one has questionable GPS accuracy and
another three plots are outside of the vegetation type map so they are
excluded from our analysis. When stepwise regression was used to
estimate biomass for the remaining 77 DGPS plots, it was found that
four plots have large residuals (>3 standard deviations). After a care-
ful examination of the tree characteristics of the four plots and in-
spection of their corresponding point clouds, it was found that there
was obvious mismatch of tree information (e.g., tree density, size) be-
tween lidar point clouds and field data for three plots. It is suspected
that there might be large errors of plot coordinates or vegetation
measurements in the field data of these three plots, so they were ex-
cluded from our analysis as well. However, the remaining plot was
kept since no distinct mismatch can be identified, resulting in a
total of 74 DGPS plots in our ground truth data. Table 3 shows the
cross-tabulation of the 74 DPGS plots in the NVC alliance-level and
SAF vegetation type classification systems. We developed mixed-
effects models based on two vegetation types (SAF vs. NVC alliance-
level) and two sets of lidar metrics (derived from all returns vs. first
returns), which lead to a total of four sets of mixed-effects models
for the DGPS plots.
4. Results

When the lidar metrics from all returns were used for the 74 DGPS
plots, the two-way stepwise regression (with an enter probability of
Table 3
Cross-tabulation of 74DGPS plots in two vegetation classification systems: NVC alliance-level
type (rows N1–N16) and SAF type (HRC-Hard Chaparral, LPN-Lodgepole Pine, RFR-Red Fir,
SMC-Sierra Nevada Mixed Conifer, WFR-White Fir). The name of each NVC alliance-level
type lists 1–3 dominant tree species in that type. See Table 1 for the abbreviated species
names in each NVC type.

NVC type SAF type

HRC LPN RFR SMC WFR Total

N1: 1ABCO 2ABMA 3PIJE 0 0 0 0 1 1
N2: 1ABCO 2PICO 3ABMA 0 0 0 0 4 4
N3: 1ABCO 2PIJE 0 0 0 0 5 5
N4: 1ABCO 2PIJE 3ABMA 0 0 0 0 13 13
N5: 1ABMA 0 0 4 0 0 4
N6: 1ABMA 2ABCO 0 0 0 0 7 7
N7: 1ABMA 2TSME 0 0 1 0 0 1
N8: 1CEVE 2QUVA 3ARPA 2 0 0 0 0 2
N9: 1PICO 0 3 0 0 0 3
N10: 1PICO 2PIJE 0 7 0 0 0 7
N11: 1PICO 2PIJE 3ABCO 0 1 0 0 0 1
N12: 1PICO 2POTR 0 1 0 0 0 1
N13: 1PICO 2POTR 3ABCO 0 3 0 0 0 3
N14: 1PIJE 2ABCO 0 0 0 8 0 8
N15: 1PIJE 2ABCO 3PICO 0 0 0 10 0 10
N16: 1PIJE 2PICO1 3ABCO 0 0 0 4 0 4
Total 2 15 5 22 30 74
0.05 and leave probability of 0.1) selected two lidar metrics hqm and
p35to40 in the multiplicative model:

ln AGBð Þ ¼ 1:571ln hqm

� �
þ 0:055ln p35to40ð Þ þ 2:066 ð2Þ

where AGB is the aboveground live tree biomass in Mg/ha and hqm is
the quadratic mean height in meters, and p35to40 is the proportion of
lidar points between 35 and 40 m. Starting with the two lidar metrics
selected in Eq. (2) and using the SAF vegetation types, we follow the
procedure described in Section 3.3 to develop and test mixed-effects
models (see DGPS.A.SAF.M1-7 in Table 4 for the models developed).
When both hqm and p35to40 are modeled as random effects, it was
found that the model with the variance components (VC) covariance
structure of random effects (model DGPS.A.SAF.M2) produced much
smaller AIC compared to the one with the unconstructed (UN) covari-
ance matrix (model DGPS.A.SAF.M1, Table 4), indicating that model
DGPS.A.SAF.M2 should be preferred. An examination of model
DGPS.A.SAF.M2 revealed that (1) the estimates of the random effects
of intercept and the metric p35to40 are zeros and (2) the fixed-effects
p35to40 is not statistically significant. So, the lidar metric p35to40 was
removed and no random effect for intercept was modeled, resulting
in model DGPS.A.SAF.M3. This further reduced the AIC to 23.4 com-
pared to the AIC of 26.3 from model DGPS.A.SAF.M2. Starting with
model DGPS.A.SAF.M3, four different variogram models (exponential,
spherical, Gaussian, and Matern) were used to model the variance-
covariance matrix R (models DGPS.A.SAF.M4-7). It was found that
these models have higher AICs (models DGPS.A.SAF.M5-7) or very
small (=0.2) AIC differences (model DGPS.A.SAF.M4) compared to
model DGPS.A.SAF.M3. This indicates that, after incorporating the
fixed and random effects in model DPGS.A.SAF.M3, the residuals of
AGB have no significant spatial autocorrelation at the scale of current
minimal plot spacing (125 m) or larger. As a result, model DGPS.A.-
SAF.M3 was chosen as the final mixed-effects model in this case of
using SAF vegetation type and the lidar metrics from all returns for
the 74 DGPS plots.

Similarly, we developedmodels for the cases of using 1) SAF vegeta-
tion types and lidar metrics from first returns (see models
DPGS.F.SAF.M1-7 in Table 4), 2) NVC alliance-level vegetation types
and lidar metrics from all returns (see models DGPS.A.NVC.M1-7 in
Table 5), and 3) NVC alliance-level vegetation types and lidar metrics
Table 4
Different mixed-effects models of biomass estimation based on differential GPS plots
(denoted as DGPS in the model no.), lidar metrics derived from all or first returns
(A or F in the model no.), and SAF forest cover type. UN means that the G covariance
matrix is unconstructed; VC means that the Variance Components matrix is used as
the G covariance structure. The best model in each set is bolded.

Model no. Fixed effects Random
effects

G cov.
structure⁎

Variogram
model

AIC

DGPS.A.SAF.M1 Intercept, hqm,
p35to40

Intercept, hqm,
p35to40

UN None 49.2

DGPS.A.SAF.M2 Intercept, hqm,
p35to40

Intercept, hqm,
p35to40

VC None 26.3

DGPS.A.SAF.M3 Intercept, hqm hqm VC None 23.4
DGPS.A.SAF.M4 Intercept, hqm hqm VC Exponential 23.2
DGPS.A.SAF.M5 Intercept, hqm hqm VC Spherical 23.8
DGPS.A.SAF.M6 Intercept, hqm hqm VC Gaussian 23.6
DGPS.A.SAF.M7 Intercept, hqm, hqm VC Matern 25.2
DGPS.F.SAF.M1 Intercept, hqm,

h40, p35to40
Intercept, hqm,
h40, p35to40

UN None 50.7

DGPS.F.SAF.M2 Intercept, hqm,
h40, p35to40

Intercept, hqm,
h40, p35to40

VC None 28.9

DGPS.F.SAF.M3 Intercept, hqm hqm VC None 26.0
DGPS.F.SAF.M4 Intercept, hqm hqm VC Exponential 26.0
DGPS.F.SAF.M5 Intercept, hqm hqm VC Spherical 25.9
DGPS.F.SAF.M6 Intercept, hqm hqm VC Gaussian 25.5
DGPS.F.SAF.M7 Intercept, hqm, hqm VC Matern 27.5



Table 5
Different mixed-effects models of biomass estimation based on differential GPS plots
(DGPS in the model no.), lidar metrics derived from all or first returns (A or F in the
model no.), and NVC alliance-level vegetation type. UN means that the G covariance matrix
is unconstructed; VCmeans that theVariance Componentsmatrix is used as the G covariance
structure. The best model in each set is bolded.

Model no. Fixed effects Random
effects

G cov.
structure⁎

Variogram
model

AIC

DGPS.A.NVC.M1 Intercept,
hqm, p35to40

Intercept,
hqm, p35to40

UN None 104.0

DGPS.A.NVC.M2 Intercept,
hqm, p35to40

Intercept,
hqm, p35to40

VC None 31.8

DGPS.A.NVC.M3 Intercept,
hqm

hqm VC None 25.8

DGPS.A.NVC.M4 Intercept, hqm hqm VC Exponential 25.2
DGPS.A.NVC.M5 Intercept, hqm hqm VC Spherical 25.9
DGPS.A.NVC.M6 Intercept, hqm hqm VC Gaussian 25.5
DGPS.A.NVC.M7 Intercept,

hqm,
hqm VC Matern 27.7

DGPS.F.NVC.M1 Intercept,
hqm, h40,
p35to40

Intercept,
hqm, h40,
p35to40

UN None 161.4

DGPS.F.NVC.M2 Intercept,
hqm, h40,
p35to40

Intercept,
hqm, h40,
p35to40

VC None 33.7

DGPS.F.NVC.M3 Intercept,
hqm

hqm VC None 28.8

DGPS.F.NVC.M4 Intercept, hqm hqm VC Exponential 28.3
DGPS.F.NVC.M5 Intercept, hqm hqm VC Spherical 28.6
DGPS.F.NVC.M6 Intercept, hqm hqm VC Gaussian 28.5
DGPS.F.NVC.M7 Intercept,

hqm,
hqm VC Matern 30.5
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from first returns (see models DGPS.F.NVC.M1-7 in Table 5). With the
same rationale as above, we selected the best models for these three
cases, which are model DPGS.F.SAF.M3, DGPS.A.NVC.M3, and
DGPS.F.NVC.M3, respectively. Note that the multiplicative models
based on first returns include an additional lidar metric, h40. However,
in the correspondingmixed-effectsmodels, thismetric is not statistically
significant any more. As a result, all best mixed-effects models have the
same model structure in terms of the fixed effects, random effects, G co-
variance structure, and R covariance matrix (i.e., variogram models).

Table 6 summarizes the fitting statistics of multiplicative and the
best mixed-effects models developed based on the 74 DGPS plots.
The examination of fitting statistics of the mixed-effects models indi-
cates that all mixed-effects models, based on either NVC alliance-level
or SAF vegetation types, outperformed the corresponding multiplica-
tive models. For example, when all returns were used, the R2 in-
creased from 0.77 to 0.83 for NVC alliance-level types and to 0.82
for SAF types. The RMSE decreased by about 10% for all returns and
by about 5% for first returns. Among all models based on the DGPS
Table 6
Model fitting statistics calculated with leave-one-out cross validation for multiplicative
and mixed-effects models.

Multiplicative
model

Mixed effects model

NVC alliance-
level
type

SAF type

R2 RMSE
(Mg/ha)

R2 RMSE
(Mg/ha)

R2 RMSE
(Mg/ha)

DGPS plots
(n=74)
All returns 0.77 80.8 0.83 72.2 0.82 72.8
First returns 0.77 80.2 0.81 74.5 0.81 75.1

RGPS plots (n=74)
All returns 0.66 98.7 0.70 94.0 0.72 92.5
First returns 0.67 97.4 0.70 95.2 0.68 98.2
plots, the mixed-effects model based on all returns and NVC
alliance-level vegetation type (model DGPS.A.NVC.M3) has the high-
est R2 (0.83) and the lowest RMSE (72.2 Mg/ha). However, since the
model based on all returns and SAF vegetation type (model DGPS.A.-
SAF.M3) has almost the same R2 (0.82) and RMSE (72.8 Mg/ha) as
model DGPS.A.NVC.M3 while using a smaller number of vegetation
classes (5 SAF classes instead of 16 NVC classes), it was considered
as the best model from the aspects of both model parsimony and fit-
ting statistics. Fig. 4 shows the biomass map of the study area based
on model DGPS.A.SAF.M3.
5. Discussion

5.1. Comparison with previous studies

Our results indicate that the mixed-effects models have better
performance than the corresponding fixed-effects models. This find-
ing is consistent with previous studies that used other remotely-
sensed data: Meng et al. (2007) used NDVI derived from Landsat
ETM+imagery and forest inventory data to develop a linear fixed-
effects model and linear mixed-effects models to estimate merchant-
able biomass for the state of Georgia. They found that the linear
mixed-effects model with random effects in both intercept and
slope best fits the data and achieved a R2 of 0.57 while the fixed-
effects model produced a R2 of 0.31 only.

Some previous studies found that the integration of lidar data and
optical or radar imagery does not necessarily produce better results in
biomass modeling. For example, Hyde et al. (2006) found that the ad-
dition of Quickbird and SAR/InSAR structure metrics (such as NDVI
and backscatter intensity) to LVIS (Laser Vegetation Imaging Sensor)
resulted in no improvement for estimating biomass across 120 one-
hectare circular plots in the Sierra Nevada of California. This was
explained by the fact that the structure metrics from lidar, radar,
and Quickbird are redundant (Hyde et al., 2006). Using different in-
puts (categorical vegetation types instead of continuous structure
metrics such as NDVI) and statistical approaches (mixed-effects in-
stead of fixed-effects models), we found that it is possible to improve
biomass estimation by integrating lidar and optical remote sensing
data. The difference between this study and Hyde et al. (2006) might
be attributed to our different modeling strategy (i.e., considering the
biomass dependence on vegetation types) and our use of mixed-
effectsmodels and vegetation types, butmore research is needed to fur-
ther investigate this issue.

The two multiplicative models have the same R2 (0.77) and simi-
lar RMSE (80.8 Mg/ha for all returns; 80.2 Mg/ha for first returns).
These fitting statistics are comparable to those from Gonzalez et al.
(2010), which used the lidar data collected by the same lidar system
(Optech ALTM 2050). They used field measurements of 39 plots col-
lected by a modified FIA (Forestry Inventory and Analysis) design to
develop stepwise regression model to estimate aboveground live
tree biomass in North Yuba in the Tahoe National Forest in California,
a site only ~50 km away from our study area. Their final model in-
cluded lidar metrics such as quadratic mean height and five percen-
tile heights (p10, p20, p30, p40, and p50), with R2 of 0.80, slighter
higher than our fixed-effects model. However, their model RMSE is
123 Mg/ha, much larger than 80.8 Mg/ha of our fixed-effects model
(Eq. 2). The causes of the large RMSE difference between this study
and Gonzalez et al. (2010) are multifaceted: besides using fixed- in-
stead mixed-effects models, their study uses field plots consisting of
four subplots of 17.95 m radius while we use single plots of 12.62 m
radius: the larger field plot introduces more variability of canopy
structure, making it more difficult to characterize using a single set
of metrics; another reason for the larger RMSE in Gonzalez et al.
(2010) is that they incorporated uncertainty in their field biomass
using Monte Carlo simulations.



Fig. 4. Biomass map of the study area (based on model DGPS.A.SAF.M3).
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5.2. Advantages of mixed-effects models

When vegetation types or other information are available to parti-
tion a study area into different strata, an alternative approach is to fit
a statistical model for each stratum. Compared to the approach of fit-
ting individual stratum-specific regression models, mixed-effects
models have the advantage of using fewer parameters while possibly
achieving comparable or even better performance. For instance, Meng
et al. (2007) compared a mixed-effects model with the approach of
fitting an individual regression model within each region (IRR).
They divided the state of Georgia in USA into five eco-regions, each in-
cluding 10 to 67 counties. The mixed-effects models were developed at
the county-level, so theminimal sample size of each stratum (eco-region)
is 10. They found that the mixed-effects model obtained slightly better
performance than the IRR approach even though the mixed-effects
model used much fewer parameters.

In our study, the need to use mixed-effects models instead of fit-
ting individual vegetation type specific statistical models is obvious
because we have very limited numbers of plots per vegetation type
(see Table 3). For example, among the 16 NVC alliance-level vegeta-
tion types, 11 types have 5 or less field plots associated with each.
Using the SAF classification system leads to fewer types and thus
higher average number of plots per vegetation type. However, there
are only 2 plots for the Hard Chaparral (HRC) and 5 plots for the
Red Fir (RFR) types. Fitting statistical models for such small samples
is clearly questionable from the statistical standpoint (Green, 1991).

Mixed-effects models deal with the biomass dependence on vege-
tation types from a different perspective: the coefficients of the bio-
mass models for different vegetation types could be assumed to
vary as random Gaussian variables. This assumption puts a constraint
on the variability of model coefficients and prevents unreliable esti-
mates of model coefficients from being produced even when the sam-
ple size is small. Take model DGPS.A.SAF.M3 as an example (see
Table 4), which is essentially a random slope model with the coeffi-
cient of hqm (at the log scale) varying among different vegetation
types:

lnAGBij ¼ 1:6971ln hqm;ij

� �
þ bi

�ln hqm;ij

� �
þ 1:3860 ð3Þ

where AGBij is the aboveground live tree biomass for plot j of vegeta-
tion type i; hqm,ij is the quadratic mean height of all lidar points for
the plot j of vegetation type i. bi is the random coefficient estimated
with the empirical best linear unbiased predictions (EBLUPs) for vegeta-
tion type i and it represents the estimated deviation from themean slope
(i.e., 1.6971). Fig. 5 shows the estimated biomass models for different
vegetation types. These regression lines could be much different from
the ones derived from vegetation type specific regressionmodels. For in-
stance, a regular “least squares” regressionmodel for the HRC vegetation
type will create a line that passes through the two HRC plots; such a line
will be highly sensitive to the small sample size problem and thus will
have less generalization ability for prediction. Instead, in the mixed-
effects models, the regression line of a given vegetation type is a combi-
nation of a) the coefficients of the fixed effects (1.3860 for intercept, and
1.6971 for slope for this example as shown in Eq. 3), and b) the estimated
coefficients of the random effects (bi in Eq. 3). The mean regression line
(determined by the coefficients of the fixed effects) can be thought as an
initial estimate for the regression model of a specific vegetation type,
much like the prior estimate in Bayesian statistics. This is the essential
reason why mixed-effects models could be less susceptible to the small
sample size issue. Additionally, if more samples are available for a
given vegetation type, mixed-effects modeling will take advantage of
the available sample data and the estimated model will be closer to the
one derived from the regular least square regression, exemplified by
the models for the WFR, SMC, and LPN vegetation types shown in
Fig. 5. This explains why mixed-effects models are effective in modeling
biomass when vegetation types of a wide range of sample sizes exist.
5.3. NVC alliance-level versus SAF vegetation types

One of the interesting results from this study is the lack of differences
between the mixed-effects models developed from the two vegetation
types (NVC alliance-level vs. SAF). The differences are less than 0.01 for
R2 values and less than 0.6 Mg/ha for RMSE. As introduced in
Section 2.4, NVC alliance-level types define a vegetation class based on
all vascular plants present while SAF types are defined by the dominant
species. Thus, NVC alliance-level types represent a finer scale of vegeta-
tion classification. However, from the perspective of biomass estimation,
the more coarsely scaled SAF types perform nearly as well because the
dominant species account for the vast majority of AGB. These results
suggest that we can focus classification and mapping schemes on the
dominant species for mixed-effects modeling of biomass.
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Fig. 5. Mixed-effects model of biomass estimation kmodel DGPS.A.SAF.M3). RFR-Red Fir,
WFR-White Fir, LPN-Lodgepole Pine, SMC-Sierra Nevada Mixed Conifer, HRC-Hard
Chaparral.
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5.4. Lidar metrics from all returns vs. first returns

A few studies have also used lidar metrics derived from first
returns only for predicting biomass. For example, Hall et al. (2005)
found that a canopy cover metric derived from first returns was
able to predict the foliage biomass and total aboveground biomass
in a Ponderosa pine forest in Colorado with R2 of 0.79 and 0.74, re-
spectively. Kim et al. (2009) found that the model using first returns
improved the R2 by 0.1 for predicting the total aboveground biomass
in a mixed coniferous forest in Arizona compared to the one using all
returns.

Our results indicate that using first returns reduced RMSE by
0.6 Mg/ha compared to using all returns, which are in line with the
findings from Kim et al. (2009). However, the improvement is too
small to be considered statistically significant. It is interesting that,
among the mixed-effects models, the ones based on all returns out-
performed the ones based on first returns. The R2 increased from
0.81 to 0.83 for NVC alliance-level type and, correspondingly, the
RMSE decreased by 3%. The reasons for this contrasting pattern and
the discrepancy between this study and previous studies are unclear,
but it might be related to specific forest conditions and the way with
which the specific lidar system generates individual returns (Wagner
et al., 2007).

5.5. Biomass estimation using field data located with a recreational GPS

The accuracy of remote sensing based biomass maps is influenced
not only by the specific earth observation data and the statistical ap-
proaches used, but also by the accuracy of the calibration data used
for deriving models and estimates. One of the common problems in
field data is the low geo-location accuracy caused by either the use
of low-cost GPS or the existence of dense forests. Dominy and
Duncan (2001) reported the difficulty of quality satellite reception
beneath a dense forest canopy, with the degree of spatial error seri-
ously affecting fine-scale vegetation mapping. Miura and Jones
(2010) used a Garmin eTrex GPS (average±5.5 m horizontal error)
to locate the centers of 25-m radius circular plots for field measure-
ments and related to airborne lidar data. They had to manually shift
the plots to achieve a better registration between lidar data and
field measurements. However, few studies have evaluated the im-
pacts of GPS accuracy on biomass estimation using lidar data.

The availability of both differential GPS coordinates and recrea-
tional GPS coordinates for the 74 plots in our study site made it
possible to directly assess the impacts of plot coordinate accuracy
on biomass estimation. Table 6 reported the fitting statistics of the
multiplicative and mixed-effects models based on RGPS plot coordi-
nates. The use of recreational instead of differential GPS in our study
site resulted in a decrease of R2 by 0.10–0.13 and an increase of
RMSE by about 21–31%. This degradation in performance due to
GPS accuracy will likely vary depending on the site-specific condi-
tions (e.g., canopy structure, spatial heterogeneity, and topography).
Nevertheless, our results emphasize the value of differential GPS to
locate field plots for vegetation measurements.

6. Conclusions

Lidar is a state-of-the-art technology for mapping biomass, which
relies on the fundamental relationship between biomass and canopy
structure metrics such as height. Motivated by the biomass depen-
dence on vegetation types, this study uses an innovative method,
mixed-effects models, to integrate airborne lidar and vegetation
types derived from aerial photographs tomap biomass over the Sagehen
Creek Experimental Forest in the Sierra Nevada of California. Itwas found
thatmixed-effectsmodels can effectively dealwith the small samples as-
sociated with each vegetation type and can improve biomass estimation
compared to the use of lidar data alone in multiplicative models.

The vegetation of our study sitewas classified based on twodifferent
systems: SAF and NVC alliance-level classes. We found that, despite its
emphasis on dominant species, the SAF cover types are as powerful as
the NVC alliance-level vegetation types in the mixed-effects modeling
of biomass. This result suggests that vegetation classification for carbon
assessment could focus on dominant species given the strong relation-
ship between forest stand biomass and dominant species. The vegeta-
tion types of this study were visually interpreted from aerial
photographs. Formany places, especially those in developing countries,
updated aerial photographs are not always available. Due to the increas-
ing accessibility of high spatial resolution satellite imagery such as
Worldview-2, further research should be done in the future to investi-
gate the use of high spatial resolution satellite imagery, digital image
classification, and airborne lidar data for biomass and carbon mapping.
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Natural vegetation monitoring in the alpine mountain range is a priority in the European
Union in view of climate change effects. Many potential monitoring tools, based on
advanced remote sensing sensors, are still not fully integrated in operational activities,
such as those exploiting very high-resolution synthetic aperture radar (SAR) or light
detection and ranging (lidar) data. Their testing is important for possible incorporation
in routine monitoring and to increase the quantity and quality of environmental infor-
mation. In this study the potential of ALOS PALSAR and RADARSAT-2 SAR scenes’
synergic use for discrimination of different vegetation types was tested in an alpine het-
erogeneous and fragmented landscape. The integration of a lidar-based canopy height
model (CHM) with SAR data was also tested. A SPOT image was used as a benchmark
to evaluate the results obtained with different input data. Discrimination of vegetation
types was performed with maximum likelihood classification and neural networks. Six
tested data combinations obtained more than 85% overall accuracy, and the most com-
plex input which integrates the two SARs with lidar CHM outperformed the result based
on SPOT. Neural network algorithms provided the best results. This study highlights the
advantages of integrating SAR sensors with lidar CHM for vegetation monitoring in a
changing environment.

1. Introduction

Mountain areas are vulnerable, heterogeneous, and dynamic regions continuously changed
by human land use, hazard phenomena, and increased socio-economic competition.
Monitoring the evolution of mountain areas at various scales in space and time is an urgent
issue that can be addressed by remote sensing technology (Schneiderbauer, Zebisch, and
Steurer 2007) responding to the European Union (EU) climate change monitoring needs.
Endemic mountain plant species are threatened by the upwards migration of more compet-
itive sub-alpine shrubs and tree species, leading to considerable loss of endemic species
in mountain regions (Voigt et al. 2004) and severe loss in the economic value of EU forest
land (Hanewinkel et al. 2013). Proper management action relies on natural vegetation mon-
itoring, and should at least be sufficiently detailed to detect changes in the extent of main
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vegetation types. Advanced remote sensing sensors are still not fully integrated in oper-
ational activities, such as those exploiting very high-resolution synthetic aperture radar
(SAR), hyperspectral, or light detection and ranging (lidar) data. Their testing is impor-
tant for possible incorporation in routine monitoring of forested areas and to increase the
quantity and quality of environmental information.

SAR sensors can be of meaningful support in vegetation studies, being well suited to
provide cover information (Rahman and Sumantyo 2010; Simard, Saatchi, and De Grandi
2000), distinguish forest from non-forest (Lehmann et al. 2012; Longepe et al 2011),
or monitor regrowth (Minchella et al. 2009). SAR is an all-weather system (Lehmann
et al. 2012; Lu, Batistella, and Moran 2007), recently made available at very high spatial
resolution with increased polarimetric and revisiting capabilities.

In recent land cover applications, RADARSAT-2 (5.04 GHz centre frequency, 5.6 cm
wavelength) has been used in China to identify forest area and deforestation (Zhang et al.
2012), and in the Brazilian Pantanal, in combination with Advanced Land Observation
Satellite (ALOS) Phased Arrayed L-band SAR (PALSAR; 1.27 GHz centre frequency,
23 cm wavelength), to map land cover (Evans et al. 2010). SAR systems can success-
fully compete with optical ones for forest mapping: in a comparison between the radar
vegetation index (RVI) extracted from ALOS PALSAR full polarimetric data and Landsat
TM data, Ling et al. (2009) found that RVI is much better suited for this kind of
application.

It is also recognized that SAR channels, especially at C and L bands and in single
temporal acquisition, have a limited ability to distinguish different woody vegetation with
high biomass content, such as forest types or dense shrubs (Kurvonen and Hallikainen
1999; Lee et al. 2005; Touzi, Landry, and Charbonneau 2004; Yatabe and Leckie 1996).
Thus there is great interest in understanding the effectiveness of advanced SAR systems in
woody vegetation type discrimination, especially in those areas requiring operational and
frequent monitoring.

Besides classification purposes, SAR data can be exploited for the estimate of forest
above-ground biomass (AGB), which is fundamental information for climate change mod-
elling activities and mitigation policies. Indeed, the dependence of SAR backscattering on
AGB has been broadly documented (Dobson et al. 1992; LeToan et al. 1992; Kasischke,
Christensen, and Bourgeau-Chavez 1995), especially at longer wavelengths such as L and
P bands (Ferrazzoli and Guerriero 1995), and several retrieval methods have been proposed
(Rignot et al. 1994; Del Frate and Solimini 2004; Englhart, Keuck, and Siegert 2012) which
take advantage of this peculiarity of microwave remote sensing.

Several studies have illustrated the usefulness of SAR texture (the spatial arrangement
of the intensity or backscattering of pixels) in improving classification accuracy. Most
exploited texture from both optical and SAR data (Lu, Batistella, and Moran 2007; Wijaya,
Marpu, and Gloaguen 2008; Vaglio Laurin et al. 2013), while others only based their analy-
sis on SAR and derived texture: Dekker (2003) and Del Frate, Pacifici, and Solimini (2008)
experimented with SAR texture data in an urban area; in Gabon, Simard, Saatchi, and De
Grandi (2000) used the texture from the Japanese Earth Resources Satellite (JERS-1) SAR
data to refine the classification of the flooded forest class; Li et al. (2012) used ALOS
PALSAR and RADARSAT-2 textures for the classification of a tropical moist region, prov-
ing that by using data combination, results are considerably more accurate than when data
sets are considered individually.

When using SAR operating at different frequencies, such as at L and C bands, the
backscattered energy can return from different portions of the vegetation along the vertical
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profile, due to the varying penetration capabilities of the bands and the scattering mecha-
nisms peculiar to foliar strata or branches. Information on the textural arrangement of these
vegetation portions can represent an additional value in classification and discrimination of
natural vegetation.

Vegetation and forestry analyses have enormously benefitted from the advent of lidar
technology over the last two decades: penetrating the canopy, this system can provide
information on the vertical canopy structure. The lidar backscattered signal can be used
as punctual height information or it can be interpolated to generate digital terrain mod-
els (DTMs) from ground returns, and digital surface models (DSMs) from above-ground
returns. Subtraction of DTM from DSM corresponds to the canopy height model (CHM),
which provides a measure of the height of the upper canopy for each pixel of vegetation in
the surveyed area (Kraus and Pfeifer 1998).

Lidar data have been used in the alpine area to gather structural information on forests
(Chauve et al. 2008; Hollaus et al. 2006; Jochem et al. 2011). In other environments, the
effort of integrating lidar with other data types for classification of vegetation types has
been proved successful. For instance, Dowling and Accad (2003) joined the height infor-
mation generated by lidar with digital video to map vegetation types and height classes
in a riparian zone in Australia; Bork and Su (2007) compared the classifications obtained
by lidar, multispectral, and the two combined data types in Canadian rangelands, find-
ing that data integration resulted in accuracy improvements of 16% to 20%. Similarly,
Geerling et al. (2007) found that the fused Compact Airborne Spectrographic Imager
(CASI) spectral and lidar information produced better results than single dataset use in
a natural floodplain classification in The Netherlands; while Onojeghuo and Blackburn
(2011) combined hyperspectral imagery and textural information with lidar CHM for the
effective mapping of reed bed habitats in the UK.

Lidar data most commonly used for forestry and mapping applications are not produced
by dedicated flights: technicians often exploit the raster CHM available at either a low cost
or even for free from surveys carried out for purposes other than vegetation applications
(Corona et al. 2012). The increased availability of these Lidar-derived products, released
by local administrations due to widespread lidar use in topographic mapping, can be very
valuable in the support of vegetation monitoring efforts. These data sets could be integrated
in routine monitoring activities if their use is proven to be beneficial in increasing the ability
to discriminate and map natural vegetation.

The innovation of this study is twofold. Initially, it is to explore the potential of ALOS
PALSAR and RADARSAT-2 SAR scenes’ synergic use for discrimination of different veg-
etation types – with a focus on woody vegetation – in an untested alpine heterogeneous
and fragmented landscape, thus assessing the effectiveness of advanced SAR systems
to provide detailed mapping in natural environments. Four vegetation types were con-
sidered in the study sites, which are covered by two RADARSAT-2 Standard Quad-Pol
(SQP) and one ALOS PALSAR Fine Beam Dual (FBD) polarimetric scenes. The dis-
crimination ability of these two SAR types was explored singularly and simultaneously,
also using textural variables. A second innovative feature is the integration of a lidar-
based CHM with SAR data to evaluate the advantages offered by the addition of this
frequently available data type. Vegetation types were discriminated by means of neural
networks (NNs), comparing the results with those obtained by a maximum likelihood clas-
sification (MLC). The performances obtained by a SPOT 5 optical sensor were used as a
benchmark.
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2. Materials and methods

2.1. Study area

An area of approximately 30 × 30 km in the Autonomous Province of Bolzano (Bozen),
South Tyrol, in Northern Italy (Figure 1), with elevations from 224 to 3343 m, was selected
for this study according to the availability of ground truth in its northeastern (NW limit
700000 E, 5174000 N) and southwestern ranges (SW limit 670500 E, 5142300 N).

In the mountain ranges, the floristic composition is shaped according to altitudinal
planes along an elevation gradient: the planes’ extent is flexible and changes according
to many variables (i.e. morphology, orientation, soil type, orography, human influence,
etc.). A rough division identifies the basal (<600 m), the sub-mountain (400–1200 m), the
mountain (800–2200 m), the alpine (2000–3000 m), and the nival planes (2600–3000 m).

In the study sites several vegetation associations, based on floristic criteria, are found
in the different planes. The ground truth generation allowed differentiation of four main

Figure 1. The study area, covering regions where PALSAR and RADARSAT-2 data are overlapped,
is illustrated by the two grey-level main images (RADARSAT-2 HV channels in both scenes, in white
areas masked for distortion) with respect to South Tyrol (in the upper right) and sites of ground truth
availability (green spots over the images). The scale bar refers to SAR images. The location of South
Tyrol with respect to Italy is in the upper left in orange.
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vegetation types according to structural criteria, which are those detected by remote
sensing: needle-leaved forest, broadleaved forest, shrubs and dwarf pines, and grasslands.

According to information provided by the SEA (Scuola Educazione Ambiente)
Dobbiaco centre of Alta Pusteria (accessed December 21, 2012: http://www.sea-dobbiaco.
it/Default.aspx), the vegetation of the area can be characterized as follows. Broadleaved
forest (Figure 2(a)) is typical of sub-mountain and basal planes, the former preferred by
mesophilous species (i.e. Fagus sylvatica) and the latter by thermophilous or thermo-
mesophilous examples (i.e. Quercus, Carpinus, Castanea genera). Needle-leaved forest
(Figure 2(b)) is found in the upper part of the mountain plane, with trees from dif-
ferent genera such as Picea, Larix, and Pinus. Historically, human influence tended to
expand grassland for livestock grazing, lowering the natural upper limit of these forests
by 200–300 m. Needle-leaved species can also be found in the cooler areas of the sub-
mountain plane mixed with broadleaved ones. Grasslands (Figure 2(c)) are frequently
composed of tens of genera and are found in both the alpine plane (intermixed with short
woody vegetation) and the lower planes, in plateaux with flat terrain and deeper soil, where
they are grazed by livestock. Few very resistant species (e.g. Saxifraga caesia) with highly
patchy distribution can also be found in the the nival plane, which is dominated by lichens
and mosses.

Shrubs and dwarf pines are (Figure 2(d)) characteristic of an alpine plane – due to high
winds, the vegetation has horizontal growth and its height is reduced, usually below 1 m.

Figure 2. Vegetation types in the study area, from orthophotographs: (a) broadleaved forest, (b)
needle-leaved forest, (c) grasslands, (d) shrubs, and dwarf pines. All images here are illustrated at
1:2000 m scale.
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Pinus mugo formations are prevalent in the study sites, as are Rhododendron and Carex
genera; at lower ranges, Alnus viridis and Salix spp. can be found.

2.2. Remote sensing data

One ALOS PALSAR Fine Beam Double Polarization (HH, HV) scene was acquired on
27 June 2010, and two RADARSAT-2 Standard Quad Polarization (HH, HV, VH, VV)
scenes on 11 and 28 September 2010, with incidence angles of 28.8◦, 32.1◦, and 34.3◦,
respectively. Original images were provided in single-look complex (SLC) format with
pixel sizes of 4.93 m and 17.48 m in azimuth and ground range directions, respectively.
All SAR scenes were multi-looked, radiometrically calibrated, and geocoded with the help
of a high-geometrical resolution (2.5 m) digital elevation model and filtered with a Frost
filter with a 5 × 5 window size for further speckle reduction. The final resolution was set
to 20 × 20 m.

Masks over areas of distortion from layover, shadowing, and foreshortening effects
were generated and used to exclude some areas during ground truth selection. All prepro-
cessing was carried out with SARscape software (http://www.sarmap.ch/). To compensate
geolocation inaccuracies, all scenes were co-registered with a SPOT 5 image dated
5 September 2006 (4 VIS-NIR bands), with a RMSE of 0.86 (of pixel size) for both
RADARSAT-2 scenes, and of 0.69 for ALOS PALSAR.

The SPOT 5 image was orthocorrected, atmospherically corrected with the Fast Line-
of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) algorithm in ENVI
version 4.7 (Exelis Visual Information Solutions, Boulder, Colorado), and resampled to
20 m with bilinear interpolation, for use in tests as a benchmark for comparison with other
results.

SAR amplitude values were extracted for pixels outside masked areas and used for
further analysis. The values of two cross-polarized channels from RADARSAT-2 scenes
were averaged, thus obtaining a single channel hereafter denoted as HV. Similarly, CHM
heights and SPOT reflectance values were extracted for ground truth pixels.

A lidar survey, requested by the South Tyrol government, was carried out between
October 2006 and December 2007 over the Autonomous Province of Bolzano using a first–
last return Optech ALTM3100 sensor operating at a frequency of 100.000 kHz (25◦ of
maximum field of view; minimum 12 points per 2.5 × 2.5 m area; 30 cm error in stan-
dard deviation for height values; and 90% of pulses penetrating the canopy in broadleaved
forests). The DTM and DSM data sets generated from this lidar survey were provided
for the present study by the Autonomous Province of Bolzano – Office of Territorial
Coordination, and were then algebraically subtracted to generate a CHM. The CHM, origi-
nally provided at 2.5 m resolution, was resampled with bilinear interpolation to 20 m. This
step was needed to perform the integration of different data types, harmonizing their spa-
tial resolution to the coarser one. SAR and lidar data geolocation accuracies were compared
in correspondence of visible features (roads, bridges, large buildings, etc.) in the scenes,
indicating no need for further co-registration of these different data sets.

Eight textures based on the Grey-Level Co-Occurrence Matrix (GLCM) (Haralick,
Shanmugan, and Dinstein 1973) were generated with ENVI version 4.7 for each of the
polarizations of ALOS PALSAR and RADARSAT-2 scenes: mean, variance, homogene-
ity, contrast, dissimilarity, entropy, second moment, and correlation. We used 64 greyscale
quantization levels, 1 pixel shift, and different window sizes: 3 × 3, 5 × 5, 7 × 7, 9 × 9, and
15 × 15. A wrapper-based approach for texture variable selection was adopted to reduce the
number of features entering in classification (see Kohavi and John 1997 for a description of
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feature selection methods). With this approach, the feedback from a classifier was used to
guide the search, in this case Kappa coefficient and overall accuracies obtained with MLC.
We based the selection of features only on MLC results, since classification tests including
those textures were satisfactory for both MLC and NN. This allowed us to compare the
two classifiers considering the same inputs. Furthermore, the selection based on MLC was
automated and successfully applied during previous research (Vaglio Laurin et al. 2013):
this adds one texture at a time to SAR data, repeating the tests with increasing window
size; one variable is selected for each polarization, retaining the one that when added to the
original data produces the best classification. The selection process ends when any further
increase in window size does not correspond to accuracy improvement. When applied to
this data set, the procedure resulted in the choice of a 9 × 9 window size for both SAR types,
with RADASAT-2 mean textures selected for HH and HV polarizations and homogeneity
for VV polarization, and ALOS PALSAR mean textures selected for both HH and HV
channels.

2.3. Ground truth data

An automated sampling method, performed over an orthorectified and georeferenced spring
2006 SPOT 5 image, with the support of field and auxiliary data, was used to generate an
original ground truth data set for this area; the procedure is fully described in Notarnicola
et al. (2009). Part of these ground truth samples were located in areas of strong geometric
distortion of the SAR data used for this research, and some classes missed sufficient sam-
pling. Therefore, the masks of distortion were first applied to select the exploitable ground
truth; then a visual interpretation procedure was used to increase the number of pixels and
sites, and thus the representativeness of all of the vegetation classes of interest.

The procedure used the Corine Land Cover 2000 (CLC2000) database and ortho-
corrected aerial photographs at 0.5 m spatial resolution, collected during summer 2006
(provided by the Autonomous Province of Bolzano – Office of Territorial Coordination)
as information layers additional to the original ground truth data. Areas classified in
the CLC2000 vector layer as corresponding to our vegetation classes were selected and
identified over the orthophotographs, on which the original ground truth areas were also
visualized. This allowed us to enlarge the original areas, thus gathering enough ground
truth for each vegetation type, with a minimum of 21 regions of interest (ROIs) for the less
diffused grasslands type. Pixels within these ROIs were randomly selected in order to obtain
the same number of pixels per vegetation type (i.e. 1450 for each type). Although the ROIs
were collected as evenly distributed as possible over the entire study area, a certain degree
of spatial correlation can occur due to the distribution of vegetation according to altitudi-
nal plans. We confirmed the absence of significant differences in the different ground truth
used for training, validation, and testing with statistical tests (not reported here).

2.4. Classification algorithms

Tests were conducted by both MLC and NN. The network architecture, defined after a trial-
and-error approach, was composed of two hidden layers, each with a doubled number of
neurons with respect to the number of inputs in tests, and a scale conjugate gradient (Moller
1993) training algorithm.

The ROIs were randomly divided into three sets: training (60%, 870 pixels), validation
(15%, 232 pixels) exclusively for NN usage, and test (25%, 348 pixels) for both NN and
MLC.
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The division of ground truth into three sets is required in NN to evaluate the network
generalization capabilities and perform cross-validation, avoiding overfitting and falling
into local minima of error (Bishop 1995). Rather, the MLC only employs training and
testing sets.

The MLC and NN algorithms were chosen as being very widespread and suited to solv-
ing complex tasks. The MLC used to select texture features is a robust algorithm available
in all image analysis software, and is still used in SAR-based forest mapping and classifica-
tion (Lehmann et al. 2012; Rahman and Sumantyo 2010). It can serve as a benchmark for
results obtained with more complex algorithms such as NN, which belong to the machine
learning-algorithm family, thus being able to learn from empirical data provided as input
with a non-parametric approach. NN is broadly used in remote sensing research (Del Frate
et al. 2003; Lu and Weng 2007), and we used it to assess the extent of improvement in
vegetation discrimination by machine learning, with respect to MLC.

2.5. Data analysis

We conducted different tests with the aim of assessing the best data combination for the
discrimination of the considered vegetation types, starting with the testing of SAR data
singularly and in multiples, then progressively adding the selected texture features and
CHM, as in Table 1.

This progressive approach showed how the contribution of different data sets influenced
the results, which are expressed by the overall accuracy (OA) and Kappa (K) coefficient of
agreement (Cohen 1960). The overall accuracy is the percentage of correctly classified
pixels; the Kappa coefficient represents the difference between the actual agreement and
chance agreement.

The statistical differences in MLC and NN results were determined at the 95% level
of significance using the Z-test (Congalton and Green 1999), which is performed for a
pairwise comparison of the proposed methods and takes into account the ratio between the
difference value of two Kappa coefficients and the difference in their respective variance.

Table 1. List of data sets used for tests carried out with MLC and NN.

Inputs Description

(1) RS2 RADARSAT-2 (HH, VV, averaged HV/VH polarizations)
(2) PSR ALOS PALSAR, with HH and HV polarizations
(3) RS2+PSR Combination of (1) and (2)
(4) RS2+TX As in (1) with the addition of selected RADARSAT-2 texture

features
(5) PSR+TX As in (2) with the addition of PALSAR selected texture

features
(6) RS2+PSR+2TX As in (3) with the addition of two PALSAR and

RADARSAT-2 selected texture features
(7) RS2+CHM As in (1) with the addition of CHM
(8) PSR+CHM As in (2) with the addition of CHM
(9) RS2+PSR+CHM As in (3) with the addition of CHM
(10) RS2+TX+CHM As in (4) with the addition of CHM
(11) PSR+TX+CHM As in (5) with the addition of CHM
(12) RS2+PSR+2TX+CHM As in (6) with the addition of CHM
(13) SPOT SPOT 5, 4 VIS-NIR bands
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3. Results

3.1. Separability analysis

The Jeffries–Matusita (J–M) separability measurement (Richards 1999) was computed
for training ROIs for all possible pairs of vegetation types (Figure 3). The value of the
J–M measurement ranges from 0 to 2.0 and indicates how well the selected ROI pairs
are statistically separated; values close to 1.9 indicate that the ROI pairs have good
separability.

The good separability of ‘needle-leaved forest vs. grassland’ pair in all tests, except in
the case of test 1 based on RADASAT-2 channels only, is evident from Figure 1. Similarly,
it is possible to observe a good separability for the pair ‘shrubs and dwarf pines vs. grass-
land’ in all tests featuring PALSAR data; RADARSAT-2, even with the addition of texture
features, is not able to differentiate between these two vegetation types, and the informa-
tion from lidar cannot help either. The behaviour of the two pairs ‘broadleaved vs. shrubs
and dwarf pines’ and ‘needle-leaved vs. shrubs and dwarf pines’ is quite similar: the sep-
arability largely increases with the addition of height information. Only in the case of test
13 is there a marked difference between the separability of these two pairs: the optical
inputs alone are not able to differentiate the ‘needle-leaved vs. shrubs and dwarf pines’
pair. The ‘broadleaved vs. grassland’ pair has very good separability in all inputs, includ-
ing RADARSAT-2 texture and where PALSAR channels and CHM are both present. The
least separable pair is the ‘broadleaved vs. needle-leaved’, which has a good score – but
does still not indicate full separability – only for SPOT inputs; nonetheless, it is impor-
tant to be aware that for this pair the inputs including PALSAR texture features are those
producing higher J–M values.

3.2. MLC results

Results obtained with MLC are reported in Table 2. The OA from SAR channels inputs,
singularly or combined, show the lowest OA values among the tests (always <70%),
evidencing a low capability to discriminate the four different forest/vegetation types,
with lowest values obtained for shrubs and dwarf pines and broadleaved vegetation.
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Figure 3. Jeffrei–Matusita index for inputs as in Table 1, and vegetation type pairs as follows: b_n =
broadleaved vs. needle-leaved; b_s = broadleaved vs. shrubs and dwarf pines; b_g = broadleaved vs.
grassland; n_s = needle-leaved vs. shrubs and dwarf pines; n_g = needle-leaved vs. grassland; s_g
= shrubs and dwarf pines vs. grassland.
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Table 2. Test result obtained with MLC.

Inputs OA K

(1) RS2 61.3 0.48
(2) PSR 67.6 0.56
(3) RS2+PSR 68.9 0.58
(4) RS2+TX 74.0 0.65
(5) PSR+TX 80.2 0.73
(6) RS2+PSR+2TX 85.4 0.80
(7) RS2+CHM 82.4 0.76
(8) PSR+CHM 84.1 0.78
(9) RS2+PSR+CHM 86.9 0.82
(10) RS2+TX+CHM 87.6 0.83
(11) PSR+TX+CHM 92.0 0.89
(12) RS2+PSR+2TX+CHM 93.6 0.91
(13) SPOT 92.8 0.90

Note: OA, overall accuracy; K, K coefficient.

RADARSAT-2 fails completely to separate shrubs and dwarf pines from the rest, but it
identifies all other types with >70% accuracy. ALOS PALSAR, even with a higher OA
with respect to RADARSAT-2 (67.6% vs 61.3%), shows broad confusion among types,
with lowest accuracy for the broadleaved forest (excepting grasslands).

When the CHM is added as input to previous channels, the OA values strongly increase
(from 16.5% to 21.1%), with OA always >80% and noticeable improvement in the identi-
fication of shrubs and dwarf pines. More specifically, RADARSAT-2 improvement is due
only to the correct identification of shrubs and dwarf pines and grasslands, while other
classes showed practically no change. For PALSAR, the largest improvement is found for
shrubs and dwarf pines discrimination, but with a remarkable positive change occurring
also for the two forest types. The combined use of the two SAR types and CHM produces
higher OA but does not yield much improvement with respect to PALSAR and CHM inputs
only (OA, respectively, 86.9% and 84.1%): the positive changes are in favour of the forest
types.

When the texture features are added to channels, the improvement in OA is also remark-
able (from 12.6% to 16.5%) in regard to all vegetation types. Unreported tests where the
textures from the two SARs were added separately showed that ALOS PALSAR yielded
higher accuracy. In any case, the best result (OA >85%) was obtained using textures at both
frequencies, with shrubs and dwarf pines the most difficult types to discriminate (72.9%),
and accuracy >83% for all other types.

When both texture features and CHM are used in input together with SAR channels,
OA are the highest obtained (from 87.6% to 93.6%). The best result occurs using both
SAR types, and it is higher than that obtained with SPOT optical bands, which are used
as a benchmark (OA 92.8%); singularly, PALSAR outcomes RADARSAT-2 for accuracy,
with confusion still slightly present in forest classes. The resulting user’s and producer’s
accuracies are described in Table 3.

3.3. NN results

The results obtained with NN follow an identical pattern with respect to those obtained
by MLC, with respect to both overall results (Table 4) and single-class accuracies: classes
behave very similarly regardless of algorithm. All NN overall accuracies were higher than
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Table 3. Producer’s (PA) and user’s (UA) accuracies obtained for the different inputs with MLC
listed as in Table 1, and expressed in percentages.

Test 1 Test 2 Test 3 Test 4 Test 5

PA UA PA UA PA UA PA UA PA UA

BL 77.0 53.8 48.0 63.3 62.9 65.8 85.3 67.6 76.15 84.4
NL 70.7 55.4 65.5 66.7 79.0 59.0 74.1 67.2 66.67 81.4
SD 12.4 49.4 61.5 48.8 38.8 52.3 42.2 64.5 83.62 63.5
GS 85.3 81.8 95.7 96.0 95.1 98.8 94.5 96.5 94.54 98.2

Test 6 Test 7 Test 8 Test 9 Test 10

PA UA PA UA PA UA PA UA PA UA

BL 83.6 86.9 77.3 78.4 67.5 79.1 71.8 87.1 84.5 83.0
NL 86.5 76.0 70.7 87.2 74.4 78.0 81.6 81.6 76.1 92.7
SD 73.0 80.4 89.4 76.4 97.1 83.9 97.1 83.2 95.1 80.7
GS 98.6 99.4 92.5 89.4 97.4 94.2 97.4 96.6 97.4 96.6

Test 11 Test 12 Test 13

PA UA PA UA PA UA

BL 82.8 91.1 88.8 92.0 93.7 92.6
NL 89.4 90.7 89.9 92.0 91.7 87.6
SD 98.6 91.0 97.4 91.1 90.8 93.2
GS 98.0 95.8 98.6 99.7 95.1 98.2

Note: BL, broadleaved forest; NL, needle-leaved forest; SD, shrubs and dwarf pines; GS, grasslands.

Table 4. Test results obtained with NN.

Inputs OA Z

(1) RS2 65.9 2.57*
(2) PSR 70.3 1.52
(3) RS2+PSR 74.3 3.15*
(4) RS2+TX 79.0 3.14*
(5) PSR+TX 82.1 1.23
(6) RS2+PSR+2TX 88.1 2.13*
(7) RS2+CHM 84.5 1.43
(8) PSR+CHM 85.8 1.23
(9) RS2+PSR+CHM 89.8 2.32*
(10) RS2+TX+CHM 92.1 3.97*
(11) PSR+TX+CHM 94.3 2.22*
(12) RS2+PSR+2TX+CHM 97.7 5.20*
(13) SPOT 93.0 0.14

Notes: OA, overall accuracy; Z, scores from Z-test.

* denotes when the result, to be considered in absolute values, is significantly different from
that obtained by MLC.

those of MLC, but not all differences were found to be significant. In fact, to be significantly
different at the 95% confidence level, the absolute value of the Z score should be >1.96,
and this happened for eight inputs out of 13.
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4. Discussion and conclusions

First, this study evaluated the performance and integration of PALSAR and RADARSAT-2
for discriminating vegetation in the alpine mountain range, and subsequently tested the
addition of lidar-derived information (CHM) for improving the results. The tests were con-
ducted using two different algorithms, MLC and NN; results were evaluated by means of
ground truth data, and were compared with those obtained by optical data, which are usually
employed in routine monitoring activities.

The results underline how different input combinations are able to distinguish vege-
tation types, with variations due to inputs used and the vegetation type. Six combinations
obtained >85% in overall accuracy (Table 4), over the value generally considered as a qual-
ity threshold. The most complex input (Test 12), which integrates the two SARs with CHM,
outperformed the result based on SPOT data used here as a benchmark.

The synergic use of two SAR frequencies, C and L bands, improved vegetation type
discrimination. As expected and confirmed by the separability analysis, discriminating
grassland type is a simple task due to the absence of woody structure (Figure 3). Inputs
based solely on the C band are less effective for this purpose due to the low penetra-
tion ability at this frequency. As evidenced in other research (Ferrazzoli, Guerriero, and
Schiavon 1999), the simultaneous use of different frequencies is beneficial to improving
SAR discrimination power, especially if texture is also added.

Woody vegetation distinction, the most difficult task, was fully obtained with Tests
11 and 12, both also including CHM, producing values included in the 80–90% range for
all user’s and producer’s accuracies (Table 3). In this case the synergic use of SARs and
derived textures is essential but insufficient to perform complete separation, and height
information provided by lidar is required as discussed below. It is worth noting that even
the separability obtained with SPOT optical bands (Test 13, Figure 3), interacting primarily
with the leaf stratum, is low for the pair ‘needle-leaved vs. shrubs and dwarf pines’. In this
case the separability is higher with synergic SAR use (Test 6) than with optical bands (Test
13). This is attributed to the similarity of the spectral responses between P. mugo leaves
(main species in this vegetation type) and conifer tree leaves in the visible and near infrared
bands.

This research evidenced that between the two SARs, PALSAR was better suited for
vegetation distinction, especially for the woody vegetation types: as expected, lower fre-
quencies having higher penetration characteristics are more sensitive to difference in
biomass contents (Ferrazzoli et al. 1997; Ranson and Sun 1994). When analysing SAR
scenes the texture elements can be as important as backscatter data (Kourglia et al. 2010;
Nelson, Ward, and Bauer 2006), and in this context the textural information was very help-
ful in the discrimination of woody vegetation types, especially for those having similar and
high biomass, such as broadleaved and needle-leaved forests. The improvement obtained
with the addition of texture features is similar to that reported by other studies, both for the
level of improvement (Vaglio Laurin et al. 2013; Simard, Saatchi, and De Grandi 2000) and
for being differently related to each land cover class (Nyoungui, Tonye, and Akono 2002).
Texture highlights differences in the spatial arrangement of backscattered values, which
in this environment correspond to differences in the structural and spatial arrangement of
leaves and branches. The broadleaved and needle-leaved forest types show obvious dif-
ferences in leaves, but also in the arrangement of the branches, with needle-leaved species
characterized by an ordering of branches in the horizontal plane around the stem. Therefore,
for the discrimination of this pair the use of textural information, better if derived from
PALSAR, accounts for the improvements obtained in Tests 6 and 12.
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The integration of CHM with SAR data was successfully performed. CHM always
provided increased separability and accuracies, but this was especially relevant for discrim-
ination between shrubs and dwarf pines versus both forest types. All three types cover the
areas densely (Figure 2) and look similar when SAR penetration is limited. Similarities are
found also in leaf shape and in the structural arrangement of the branches. Furthermore,
the soils at those mountain elevations are rarely dry in the months of SAR acquisition
(June and September) and, due to the limited height of shrubs and dwarf pines, part of the
signal received returns from the ground. Thus, the backscattered values for this type can
be high due to this wet ground component, becoming comparable to the values of forest
or vegetation with higher biomass. In this study we found that only the information on
height differences provided by CHM is able to fully solve this ambiguity. Rather, CHM
does not help in those cases where vegetation heights are similar, such as in the distinction
of grassland from shrubs and dwarf pines.

Adoption of the NN algorithm improved the results in most of the cases analysed,
and based on a Z-test it did so significantly in 8 cases out of 13. The comparison – not
reported here – of the confusion matrices obtained with NN with those obtained with MLC
showed that the improvement obtained by NN was equally distributed among all vegetation
types. The effectiveness of NN and SAR for complex forest analysis tasks has already been
suggested (Del Frate and Solimini 2004), and it is confirmed here, as this machine learning-
algorithm suffers less from noise and saturation effects. It allows the efficient integration
of different inputs, exploits non-linear relationships, and thus optimizes the combination of
data characterized by different ranges and dynamics.

With climate change recognized as a driving force for vegetation species distribution
(Ruiz-Labourdette, Fe Schmitz, and Pineda 2013), vegetation monitoring is required to
tackle present climate challenges, which are severely impacting the alpine flora in Europe
(Pauli et al. 2012), besides the day-to-day management of natural resources. The frequency
of vegetation monitoring will have to be raised to provide prompt information for adapta-
tion strategies and management needs. The availability of SAR data has greatly increased in
recent years and is going to grow even more with forthcoming missions such as the planned
ALOS-2 and Sentinel-1, and lidar data availability has also increased considerably, mak-
ing these sensors suitable for introduction in operational monitoring. This study confirms
the advantages of integrating SAR sensors with lidar CHM for vegetation monitoring in
a changing environment, suggesting their increased use to complement or replace optical
sensors, while also considering the all-weather capabilities of SAR sensors. More impor-
tantly, SAR allows the retrieval of vegetation AGB through the analysis of backscattering
levels, a task that is not achievable using optical data alone. Multifrequency SAR data are
already available at the global level, and the interferometric capabilities of the forthcom-
ing ALOS2 mission may allow the acquisition of forest height information, removing the
need for lidar coverage. Here, AGB retrieval was not attempted due to the unavailability
of ground truth data from the National Forest Inventory, but the possibility of exploiting
SAR for different purposes and its global coverage represent strong points in favour of the
adoption of this data type for forest studies worldwide.

The high heterogeneity and fragmentation of the study site, resulting in vegetation areas
intermixed with agricultural zones, urban areas, rocks, and other cover types, made the
production of a classification map unadvisable here and is beyond the scope of this research.
Nevertheless the users’ community can often access local high-resolution maps, ground
truth for all cover types present, and masks of vegetated and non-vegetated areas. Users
could easily introduce into their operational activities SAR and lidar CHM advanced tools
to monitor specific vegetation types and to classify land cover and its changes.
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a  b  s  t  r  a  c  t

The  classification  of  tropical  fragmented  landscapes  and  moist  forested  areas  is a  challenge  due  to  the
presence  of  a continuum  of  vegetation  successional  stages,  persistent  cloud  cover  and  the  presence  of
small  patches  of  different  land  cover  types.  To  classify  one  such  study  area  in  West  Africa  we  integrated  the
optical sensors  Landsat  Thematic  Mapper  (TM)  and  the Advanced  Visible  and  Near  Infrared  Radiometer
type  2 (AVNIR-2)  with  the Phased  Arrayed  L-band  SAR  (PALSAR)  sensor,  the  latter  two  on-board  the
Advanced  Land  Observation  Satellite  (ALOS),  using  traditional  Maximum  Likelihood  (MLC)  and  Neural
Networks  (NN)  classifiers.  The  impact  of texture  variables  and  the  use  of  SAR  to  cope  with  optical  data
unavailability  were  also  investigated.  SAR  and  optical  integrated  data  produced  the  best  classification
overall  accuracies  using  both  MLC  and  NN, respectively  equal  to  91.1%  and  92.7%  for  TM and  95.6%
andsat
VNIR-2
exture

and  97.5%  for  AVNIR-2.  Texture  information  derived  from  optical  images  was  critical,  improving  results
between  10.1%  and 13.2%.  In our  study  area,  PALSAR  alone  was  able  to provide  valuable  information  over
the entire  area:  when  the  three  forest  classes  were  aggregated,  it achieved  75.7%  (with  MCL)  and  78.1%
(with  NN)  overall  classification  accuracies.  The  selected  classification  and  processing  methods  resulted
in fine  and accurate  vegetation  mapping  in  a previously  untested  region,  exploiting  all  available  sensors

g  the
synergies  and  highlightin

. Introduction

The classification of moist tropical areas is a challenging task
or a number of reasons. Firstly, the atmospheric conditions cause
ersistent cloud cover and limit the use of optical data. Secondly,
he landscape is often fragmented into small patches of different
and use and land cover types. Furthermore, the peculiar charac-
eristics of natural vegetation cause a continuous transition among
egetation types, making it difficult to spectrally differentiate var-
ous successional stages, as exemplified by Lu et al. (2007) over
mazonian moist forested regions.

The Upper Guinean forests of West Africa have experienced a

ramatic decrease of their original extent. Logging, mining, hunting
nd human population growths are still placing extreme stress on
his biodiversity hotspot (CEPF, 2003). The few classification studies

∗ Corresponding author. Tel.: +39 6 72597710; fax: +39 6 72597710.
E-mail address: laurin@disp.uniroma2.it (G. Vaglio Laurin).

303-2434/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.jag.2012.08.002
 advantages  of each  dataset.
©  2012  Elsevier  B.V.  All rights  reserved.

available for West Africa report problems in mapping forest and
vegetation classes (Igue et al., 2006; Judex et al., 2006). Neverthe-
less, mapping activities are extremely important for conservation
and planning issues and with respect to the emerging REDD+
(Reducing Emissions from Deforestation and Forest Degradation
in Developing Countries) program (Gibbs et al., 2007). Detailed
mapping is also important for national planning in many tropical
countries, where local communities rely on woody vegetation as a
primary source of products and energy (Avitabile et al., 2012).

Optical sensors have been the primary data sources for land
cover classification since the launch of the Landsat satellite series
in early 1970s. In recent years, Synthetic Aperture Radar (SAR) sen-
sors have emerged as important tools for vegetation studies, being
well suited to detect volumetric scattering, especially at L- and P-
bands (Rahman and Sumantyo, 2010; Santos et al., 2004; Simard

et al., 2000). Since radar can penetrate clouds, it is a supplementary
data source when atmospheric conditions hamper optical data use
(Lehmann et al., 2012; Lu et al., 2007; Mitchard et al., 2011). In gen-
eral, the combination of the two data types is considered beneficial

dx.doi.org/10.1016/j.jag.2012.08.002
http://www.sciencedirect.com/science/journal/03032434
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Fig. 1. Location of the study area; protected areas are shown in green. Area covered
 G. Vaglio Laurin et al. / International Journal of Appli

Lefsky and Cohen, 2003) because optical data allows the measure-
ent of the reflectance of the topmost layer of the canopy and SAR

ata deliver useful geometric information without being affected
y weather conditions. However, the benefits of data integration
an vary according to landscape and specific sensors characteristics,
aking it useful to explore the synergistic use of different datasets

n the West African region where, according to our knowledge, no
lassification study exists at a fine scale.

In addition to reflectance or backscattering coefficient, texture
the spatial arrangement of color or intensities of pixels) has been
roved useful to improve classification accuracy (Berberoglu et al.,
007; Chica-Olmo and Abarca-Hernandez, 2000; Dekker, 2003;
origo et al., 2012; Lu et al., 2007). Textural differences can poten-

ially be observed in optical data between the uneven canopy
topography’ of secondary and mixed semi-deciduous forests and
he more uniform mature evergreen forests, classes which are usu-
lly hard to distinguish. In fact, forests of different ages and types
re known to structural differences, i.e. in canopy gaps and/or in
ree height composition (Yavitt et al., 1995), resulting in shadows
nd different reflectance values that influence the texture variables
alculated over near infrared (NIR) or short wave infrared highly
eflecting bands. In the case of semi-deciduous forest, bare trees
re seen at these wavelengths as low reflecting objects and there-
ore produce less smooth textures. It is known that shadows are a
unction of canopy structure and cover and Asner (1998) reports
hat both red and NIR wavelength regions are highly sensitive to
ub-pixel shadow fractions in Amazon tropical forests. A number
f studies have used texture from multiple remotely sensed data
uch as Landsat and Advanced Land Observation Satellite (ALOS)
hased Arrayed L-band SAR (PALSAR;1.27 GHz center frequency,
3 cm wavelength) for mapping tropical environments (Erasmi and
wele, 2009; Kuplich, 2006; Longepe et al., 2011; Wijaya et al.,
008). For instance, Chan et al. (2003) used textures from Landsat
ata and machine learning techniques to improve discrimination of

ogged versus non-logged semi-deciduous forest classes in Central
frica. In Gabon, Simard et al. (2000) used texture from Japanese
arth Resources Satellite (JERS-1) SAR data to refine the classifica-
ion of the flooded forest class. The permutation of different bands,
indow sizes, and texture variables could potentially generate a

arge number of texture features: given a training dataset of a cer-
ain size, including too many variables may  decrease classification
ccuracy and a feature selection method can be beneficial (Price
t al., 2002). In our research, a relatively simple and automatic
rapper based approach for feature selection is proposed, which

s considered optimal for supervised learning problems (Talavera,
005).

In this study, we primarily investigate the potential of combin-
ng optical and radar sensors for discriminating land cover classes
or a moist tropical area which has never been classified by high
esolution remote sensing before. The optical sensors to be tested
re Landsat TM (Thematic Mapper) and ALOS AVNIR-2 (Advanced
isible and Near Infrared Radiometer type 2); the SAR sensor used

s the dual polarimetric ALOS PALSAR. The specific research objec-
ives are multifold: (1) to assess the results obtained by sensor
ntegration; (2) to explore the degree SAR can support land cover
nd vegetation mapping when atmospheric conditions affect opti-
al data availability and quality, (3) to assess the value of textures
or improving vegetation classification.

. Materials and methods
.1. Study area

The study area (covering a total of 7749 km2) spans the border of
ierra Leone and Liberia and includes the recently established Gola
by  TM and ALOS PALSAR data is shown in blue and by AVNIR-2 in red. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Rainforest National Park (GRNP) which is composed of three dis-
junct areas covering about 710 km2 (North, Central and South), and
most of the Liberian Gola National Forest (about 2300 km2). In the
north-west of the study area there is a fragmented landscape com-
prising small patches of disturbed forest, farmbushes, plantations,
active agriculture areas, bare lands and settlements; in the south-
east the landscape is dominated by forests (Fig. 1). Forests of the
region are classified mainly as lowland moist evergreen with some
drier parts occurrence, are dominated by Fabaceae, Euphorbiaceae
and Sterculiaceae families (Cole, 1993).

Within Sierra Leone, the protected areas comprise the GRNP
and Tiwai Island Wildlife Sanctuary. Inside GRNP, recent field sur-
veys (Klop et al., 2008) identified a range of vegetation types:
moist evergreen forest, moist semi-deciduous forest, freshwater
inland swamp forest, forest regrowth and secondary/disturbed for-
est, farmbush, herbaceous swamps and floodplains. Commercial
logging in Gola South was carried out in the periods 1963–1965
and 1975–1989. Since 1989, Gola has been subject to a conservation
program. Outside of the protected areas, land cover is largely influ-
enced by human activities and includes: disturbed and secondary
forest, farmbush and shrubland/savanna, plantation, agriculture,
bare soil, water courses and ponds.

In Liberia, the study area is sparsely populated and more
forested. Verschuren (1983) indicated that the proposed Lofa-Mano
Park (now referred to as Gola National Forest) covers a large area of
evergreen rainforest in the south range, with semi-deciduous moist
forest gradually taking over to the north, and with patches of low
bush, marshes and some savannah on lateritic soil.

Overall, the area is characterized by a moist tropical climate
with annual rainfall around 2500–3000 mm,  a wet  season last-
ing from May  to October, and an altitude in the range 70–410 m
with no abrupt elevation changes. The dry period occurs between
December and March, and corresponds to the semi-deciduous phe-
nological stage of vegetation in the moist forest.

2.2. Remote sensing data

We collected Landsat TM,  ALOS AVNIR-2, and PALSAR scenes

for image classification. The analysis of Landsat imagery from 1986
to the present day revealed cloud cover and haze over the area of
interest in all seasons, as often reported for tropical forested regions
(Asner, 2001). The best image, with respect to the time of field data
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Table  1
Summary of remote sensing data used in the research.

Sensor Dates Data characteristics

Landsat TM 15 Jan. 2007 30 × 30 m spatial resolution, 7 spectral bands Band 1: 0.45–0.52 m (Blue); Band 2: 0.52–0.60 m (Green); Band
3:  0.63–0.69 m (Red); Band 4: 0.76–0.90 m (Near infrared); Band 5: 1.55–1.75 m (Short wave infrared); Band
6:  10.4–12.5 m (Thermal infrared); Band 7: 2.08–2.35 m (Short wave infrared). L1T product. Thermal band
neglected

ALOS  PALSAR 22 June 2007, 24 Aug. 2007 SAR L-band in HH and HV polarization. FBD Level 1.1 product: Single Look Complex provided in slant range
geometry

ALOS  AVNIR-2 9 Dec. 2009 10 × 10 m spatial resolution, 4 spectral bands, Band 1: 0.42–0.50 m; Band 2: 0.52–0.60 m; Band 3:
0.61–0.69 m;  Band 4: 0.76–0.89 m;  Level 1B2 product

Fig. 2. Left: Landsat TM 2007 false color image (Red: band 7, Green: band 4, and Blue: band 3) cut to match the area in common with ALOS PALSAR. Right: AVNIR-2 cloud-
masked  true color image (Red: band 3, Green: band 2, and Blue: band 1), where the black areas are affected by cloud and thus manually masked out. The Gola Rainforest
National Park and Tiwai Island Wildlife Reserve boundaries are shown in red. The locations where ROIs have been generated are shown as red points in both images. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Left: Three ALOS PALSAR mosaicked scenes (two dated 22 June 2007 and one 24 August 2007) 30 m pixel size, masked over the area common to the Landsat image.
Right: Three ALOS PALSAR mosaicked scenes, 10 m pixel size, masked over the area common to the AVNIR-2 image. Both are false color composites (Red: HH, Green: HV,
Blue:  difference HH-HV). The Gola Rainforest National Park and Tiwai Island Wildlife Reserve boundaries are shown in red. (For interpretation of the references to colour in
this  figure legend, the reader is referred to the web  version of this article.)
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Table 2
Characteristics of the selected land use classes and forest physiognomies.

Secondary (degraded)
forest (SF)

Characterized by trees with height > 5 m,
sometimes with presence of understory crops
(coffee, cocoa), canopy cover > 20%, evidence of
human disturbance, logging history, >15–20 years
from regeneration if cleared

Farmbush/Shrubland/
Savanna (FB)

Dominated by non-tree vegetation such as shrubs
and/or grasses, canopy cover < 20%, agriculture can
be present but should not occupy more than 25% of
the area, trees usually less than 5 m tall. Can be
land which has been abandoned after shifting
cultivation occurred few years before (<15–20)

Plantation (OP) Dominated by oil palm or rubber, evidence of
human activity, canopy cover >20%, tree
height > 5 m

Agriculture (AG) Dominated by specific crops such as rice on
irrigated soil, usually found in small patches,
evidence of human activity

Bare soil/Urban areas
(BS)

Represented by villages, open areas not yet
cultivated or exposed substrate with little or no
vegetation, including recently burned land

Evergreen forest (EF) Tree height > 5 m and canopy cover > 60%, no
evidence of human disturbance

Semi-deciduous forest
(DF)

Tree height > 5 m and canopy cover > 60%, no
evidence of human disturbance, presence of
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semi-deciduous species
Water (W)  Rivers, water courses and ponds

ollection was a Landsat TM scene from 15 January 2007, unevenly
ffected by haze and provided at level L1T (terrain corrected and
rojected in UTM zone 29N, Table 1, Fig. 2). This is coincident with
he dry season and is therefore better suited for semi-deciduous
egetation detection. We  acquired two AVNIR-2 scenes, dated 9
ecember 2009 (Table 1, Fig. 2), and three ALOS PALSAR FBD (Fine
eam Dual) scenes in slant range single look complex (SLC) for-
at  (Level 1.1), with pixel spacing 9.3 m in range and 2.7–4.5 m in

zimuth, two being dated 22 June 2007 and one 24 August 2007
Table 1, Fig. 3).

.3. Ground truth data acquisition

The ground truth was derived from field surveys realized in
ierra Leone and it was linked to the remotely-sensed images with
he aid of visual interpretation.

Inside GRNP, 656 forest plots realized in 2006 were classi-
ed as having prevalence of evergreen or semi-deciduous tree
pecies using TWINSPAN (Hill, 1979), a clustering algorithm for
lassifying species and samples. Outside the Park, a total of 872
and cover validation points were collected from 2008 to 2011,
ncluding: agriculture (including slash-and-burn, farmbush, and
ice fields), plantations (oil palm and rubber), secondary/disturbed
orest, undisturbed forest, burnt and urban areas, mining and water
ourses. These land cover/land use classes were re-organized as
escribed in Table 2, thus incorporating the phenological informa-
ion derived from the 2006 field survey (Klop et al., 2008).

The surveys information allowed the selection of locations
round which spectrally homogeneous Regions of Interest (ROIs)
ere digitized on screen. To mitigate any error introduced by tem-
oral mismatching between remote sensing data and field surveys,
nd spatial mismatching caused by GPS inaccuracy, we  selected
nly locations for which full agreement between available optical
magery and the field information was observed. We  double-
hecked the selection of locations using also Google Earth very high
esolution data, two Kompsat-2 (dated 17 April 2009) and three

konos (22 December 2009, 19 March 2006 and 19 February 2003),
aking into account the differences on date acquisition between
cenes. Cloud cover presence over the images seriously limited the
se of field information: a total of 208 locations were selected in
th Observation and Geoinformation 21 (2013) 7–16

the area covered by the TM image and 82 in the area covered by
AVNIR-2, with most of the AVNIR-2 locations (70) coincident with
those selected for TM data (Fig. 2). For Liberia, few forest locations
were selected thanks to the data provided by GRNP staff and local
experts (Lindsell, unpublished data). Different studies (Bayol and
Chevalier, 2004; Shearman, 2009; World Bank, 2011) have indi-
cated the similarity between the Gola North block and the Liberian
forests, with a majority cover of undisturbed forest.

The TM ROIs were subdivided into three parts: training (70%),
validation (15%) and test (15%), for the purposes of classifying
the TM and PALSAR scenes at 30 m spatial resolution, with the
validation dataset used only in NN implementation. The dataset,
initially different in amount for the various classes, was reduced
in size by a random selection to obtain 2500 pixels for each land
cover class. The ROIs are as evenly distributed as possible over the
entire image; anyway a certain degree of spatial correlation occurs
for water and oil palm plantation classes, due to their aggregated
distribution in the study area and to limited accessibility.

Prior to define the 82 ROIs for the AVNIR-2 images, we  checked
over TM the coincident locations and ROIs digitized: TM ROIs were
retained if they covered a spectrally and visually homogeneous area
in AVNIR-2 image. When the finer spatial resolution of AVNIR-2
allowed for identification of more than one land cover type inside
a ROI, that region was  either discarded, or else only the part of the
ROI matching the indicated land cover was  retained. As for TM,
the ROIs were subdivided into three sets and randomly reduced
to obtain 10,000 pixels per land cover class, for the purposes of
classifying the AVNIR-2 and PALSAR scenes at 10 m spatial reso-
lution.

Statistical tests (not reported here) confirmed the absence of
significant differences in the TM and AVNIR-2 ground truth for the
various land cover classes, as well as in the different data sets used
for training, validation and testing. With the described procedure
we derived an AVNIR-2 ground truth as compatible as possible to
the TM one while maintaining spectral purity, allowing for bet-
ter understanding the performances of each sensor in classification
tasks with respect to SAR integration.

2.4. Remote sensing image preprocessing

Atmospheric corrections were performed on the TM and AVNIR-
2 images to obtain the hemispherical directional reflectance factor
(HDRF) using the Fast Line-of-Sight Atmospheric Analysis of Spec-
tral Hypercubes (FLAASH) algorithm in ENVI version 4.7 (Exelis
Visual Information Solutions, Boulder, Colorado). This is based on a
MODTRAN4 approach for path scattered radiance, absorption, and
adjacency effects (Felde et al., 2003). After atmospheric correction,
haze was still detected on the TM image over the whole Sierra Leone
area, while clearer conditions characterized most of the Liberian
side. Haze removal was attempted using the Haze Tool developed
by Hu et al. (2009),  which is a refinement of the haze optimized
transformation (HOT) algorithm (Zhang et al., 2002; Zhang and
Guindon, 2003). The corrected scene was less affected by uneven
haze distribution, but still generated errors in classification results.
Since the haze problem occurred in the visible bands, we  excluded
bands 1–3 of the TM image in our analysis.

An orthorectification based on a digital elevation model (DEM)
from the ASTER derived Global Digital Elevation Map  mission
(GDEM, Tachikawa et al., 2011) was also performed on AVNIR-2
images. A mask was  applied in order to exclude cloudy areas and
cloud shadows, manually digitized on screen (Fig. 2). Then, the
two AVNIR-2 scenes were mosaicked and co-registered to the TM

scene (with Root Mean Square (RMS) of 0.51 at 30 m pixel size),
and eventually resampled to the original spatial resolution of 10 m.
The AVNIR-2 mosaic covers only a portion of the study area due to
cloud-masked zones and unavailability of an adjacent scene.
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Table 3
Datasets used as classification inputs and tested with MLC  and/or NN approaches.

Optical data
1) TM bands 4,5,7
2) TM bands 4,5,7 + texture (entropy b4, mean b5; 9 × 9 window)
3) AVNIR-2 all bands
4) AVNIR-2 all bands + texture (mean b3, mean b4; 15 × 15 window)

SAR data
5) ALOS PALSAR HH-HV bands
6) ALOS PALSAR HH-HV bands + texture (mean HH, mean HV; 9 × 9 window)

Combined SAR + optical data
7) TM bands 4,5,7 + texture + PALSAR HH HV
8) TM bands 4,5,7 + TM texture + PALSAR HH HV + PALSAR texture
G. Vaglio Laurin et al. / International Journal of Appli

The FBD PALSAR images were multi-looked, terrain-corrected
nd geo-coded to a 15 m spatial resolution using ASF (Alaska Satel-
ite Facility) MapReady 3.0.6 and the aforementioned ASTER GDEM.
AR scenes were calibrated according to Shimada et al. (2009),
osaicked, co-registered to a TM image (RMS of 0.96 pixels) and

hen resampled twice to produce two scenes: one at 30 m to match
andsat spatial resolution, and one at 10 m to match AVNIR-2. A
rost adaptive filter with a moderate window size of 5 × 5 was
pplied to the two SAR datasets (Fig. 3) to reduce speckle.

Our image analysis strategy was to combine either Landsat TM
r AVNIR-2 with ALOS PALSAR in classification. Since the TM image
nd the PALSAR scenes do not overlay perfectly, we  created subset
mages for TM and PALSAR corresponding to their area of overlap.
he whole AVNIR-2 image falls within PALSAR, so there was no
eed to create a subset for it. Although the TM and AVNIR-2 images
o not have equal area coverage, the ground truth for all classes is
ell represented in both images (Figs. 2 and 3).

.5. Texture variables

Five texture variables including mean, entropy, correlation, vari-
nce, and second moment based on Grey-Level Co-Occurrence
atrix (GLCM) (Haralick et al., 1973) were created with ENVI ver-

ion 4.7. Dorigo et al. (2012) describe extensively the GLCM texture
haracteristics and the need for selection of appropriate features
nd kernel size. We  generated texture for the bands useful for
egetation detection (Asner, 1998), namely TM bands 4, 5, AVNIR-

 bands 3,4, plus for both ALOS PALSAR polarizations, using 64
rayscale quantization levels, 1 pixel shift and using 3 × 3, 5 × 5,

 × 7, 9 × 9 and 15 × 15 window sizes. To reduce the number of
eatures entering in classification a wrapper-based approach for
exture variable selection was here adopted. Several features selec-
ion methods exist, such as wrapper- and filter-based (Kohavi and
ohn, 1997); filter-based methods are algorithms that use only
raining data to calculate the feature weights, whereas wrapper-
ased algorithms use feedback from a classifier to guide the search.
e automated the comparison of the overall accuracies and Kappa

oefficients obtained with MLC, using the training and validation
OIs specific for each dataset. We  added one texture at a time to
ptical and SAR data, repeating the tests with increasing window
ize. We  selected one variable for each band or channel, choosing
he one that when added to the original data, produced the best
lassification result.

The automated procedure selected the following texture vari-
bles: for TM,  entropy on band 4 and mean on 5 (9 × 9 window);
or AVNIR-2, mean on bands 3 and 4 (15 × 15 window); for ALOS
ALSAR, mean on both HH and HV polarizations (9 × 9 window).
ny further increase in window size did improved classification
ccuracy. The selected window size of 9 × 9 for TM is well in agree-
ent with other studies based on the same sensor (Li et al., 2011;

hu et al., 2012).

.6. Classification algorithms and selected tests

The Maximum likelihood classifier (MLC) is probably the most
idely used parametric classifier (Richards and Jia, 1999), consid-

red robust and still employed in recent forestry research (Herold
t al., 2004; Lehmann et al., 2012; Lu et al., 2007; Rahman and
umantyo, 2010). It was here used to select texture features and
s benchmark classification algorithm for all tests. Among the most
ommonly used non-parametric classifiers is neural networks (NN),
hich has several advantages including its non-parametric nature,
asy adaptation to different input data, learning and generalization
apabilities (Lu and Weng, 2007), and is a rather competitive classi-
er even if compared with other sophisticated approaches (Pacifici
t al., 2002; Licciardi et al., 2009). Atkinson and Tatnall (1997)
9)  AVNIR-2 + texture + PALSAR HH HV
10) AVNIR-2 + texture + PALSAR HH HV + PALSAR texture

reported that neural networks usually overcome typical problems
experienced using parametric classifiers for land targets and are
suitable for fusing multisource spatial data. Del Frate and Solimini
(2004) critically analyzed NN in forestry problems, also in view of
collinearity of inputs, observing that NN less suffers with respect
to other algorithms from noise and saturation in L-band SAR data.

Here NN were used only for selected input combinations, with
the aim of assessing the extent of improvement that a machine
learning algorithm can bring in classification tasks. The NN were
trained and tested with the same ground truth sets used in MLC
classifications, while the validation dataset was used exclusively
for NN implementation, avoiding the overfitting that results from
the termination of the training phase when the error over the
test dataset reaches a minimum (Bishop, 1995). The Conjugate
Gradient (SGC; Moller, 1993) method was employed in the feed-
forward neural networks. NN architecture was selected for each
input dataset with a trial and error approach.

In our test strategy we  first compared the classification accu-
racies obtained with MLC  and NN algorithms on progressively
complex inputs: (1) optical reflectance alone, (2) optical reflectance
with its texture variables, (3) optical reflectance with its texture
features, and SAR backscatter, and (4) optical reflectance, SAR
backscatter, and texture variables from both. We  repeated the tests
over the TM and the AVNIR-2 datasets, thus exploring data integra-
tion with different optical datasets.

Finally, we  performed additional tests using SAR data alone, and
with its derived textures, to assess its potential to support land
cover mapping in areas persistently affected by clouds or haze and
replace optical data. In these tests, we  used two  additional clas-
sification schemes by (1) merging two  forest classes (secondary
and semi-deciduous), and (2) merging all three classes (including
evergreen) to reduce the complexity of the classification task and
the number of land cover classes to be seven and six, respectively.
Merged ROIs were randomly sampled to obtain again 2500 pixels
per class. A list of the classification tests is reported in Table 3.

Classification accuracies were assessed using overall accuracy,
error matrix and Kappa coefficient of agreement (Cohen, 1960). The
overall accuracy is the percentage of the correctly classified pixels
in the validation dataset whereas the Kappa coefficient is a mea-
sure of the difference between the actual agreement and the chance
agreement. The statistical differences in the Kappa coefficients
of MLC  and NN classifications at a 95% level of significance was
determined using the Z-test (Congalton and Green, 1999), which is
performed for a pairwise comparison of the proposed methods and
takes into account the ratio between the difference value of two
Kappa coefficients and the difference of their respective variance.
3. Classification results

Optical data only: the MLC  classification based on optical bands
reached an overall accuracy of 80.4% for AVNIR-2 and 73.1% for TM
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Table 4
Classification results for optical data obtained with MLC.

Land cover class TM bands 4,5,7 TM bands 4,5,7 + TM texture AVNIR-2 bands AVNIR-2 bands + AVNIR-2 texture

PA% UA% PA% UA% PA% UA% PA% UA%

AG 59.6 73.6 76 84.3 93.8 80.3 96.6 95.1
BS  99.6 99.3 100 99.6 82.2 96.7 98.3 99.1
EF  65.3 72.6 89.3 87 81.4 78.7 92.5 87
FB 81 68.9  86.6 81 85.2 87.1 95.4 94
OP  84.9 65.3 94.6 95.3 88.8 70.7 96.2 96.3
SF 38.6  57.6 65 70.3 36.6 56 80.8 88.9
DF  62.9 54.3 78 71.6 76.3 71.3 90.4 89
W  97.6 100 98.3 100 99 100 99.2 100
OA%  73.1 85.7 80.4 93.7
KC 0.69 0.83 0.77 0.92

PA, producer accuracy; UA, user accuracy; OA, overall accuracy; KC, kappa coefficient.

Table 5
Classification results for SAR data obtained with MLC.

Land cover
class

PALSAR HH HV PALSAR HH HV + texture Land cover
class

PALSAR HH HV +
texture 7 classes

Land cover
class

PALSAR HH HV +
texture 6 classes

PA% UA% PA% UA% PA% UA% PA% UA%

AG 43.3 47.9 58.6 57.6 AG 58.0 59.0 AG 57.6 58.9
BS  56.6 69.6 87.0 75.9 BS 75.9 87.0 BS 75.0 87.0
EF  52.3 32.6 43.3 61.3 EF 90.0 49.6 EF + SF + DF 76.0 68.9
FB  42.0 48.6 63.3 48.3 FB 49.6 66. 3 FB 89.0 76.0
OP  72.0 50.9 72.6 86.0 OP 86.3 71.9 OP 53.3 73.9
SF 8.6  38.6 37.6 17.3 SF + DF 4.6 25.9 W 86.3 97.3
DF  43.6 34.6 45.6 60.9 W 91.9 74.3
W 87.3  95.3 97.3 95.3
OA% 49.9 62.1 OA% 64.5 OA% 75.7
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A, producer accuracy; UA, user accuracy; OA, overall accuracy; KC, kappa coefficie

Table 4). The addition of texture selected variables to each type
f image resulted in a noticeable increase in overall accuracy, with
VNIR-2 obtaining 93.7% and TM 85.7%. For TM, the increase in
ser accuracy was over 10% in all classes except bare soil/urban
reas, already well discriminated by bands only (Table 4). The most
ignificant increases with texture use are for oil palm plantation
30%), semi-deciduous forest (17%) and evergreen forest (14%), with
espect to user’s accuracy. For AVNIR-2 the increase in user accu-
acy was more than 10% for agriculture (14%), oil palm plantation
25%), secondary (32%) and semi-deciduous forest (15%) classes.

SAR data only: the overall accuracy of the MLC  classification with
AR inputs (Table 5) was 49.9% and improved to 62.1% when using
ean texture variables derived from both polarizations. Individual

lasses obtained a user accuracy increase between 6.3% and 35.1%,

xcept in the case of water and farmbush (no change) and sec-
ndary forest (decrease due to confusion with other forest classes).
ccording to users accuracies, texture was especially beneficial in

able 6
lassification results for joined optical and data obtained with MLC.

Land cover
class

TM b4,5,7 + TM
texture + PALSAR

TM b4,5,7 + TM texture
PALSAR + PALSAR textu

PA% UA% PA% UA%

AG 91.6 92.9 94.6 93.9
BS 100.0 100.0 100.0 99.6
EF  89.3 88.6 90.0 91.0
FB  93.0 93.3 93.6 95.0
OP  97.9 96.0 99.6 98.9
SF  69.6 73.6 70.9 77.6
DF 78.0 74.3 82.3 75.0
W 98.6 95.3 99.3 95.3
OA%  89.5 91.1 

KC 0.88 0.89 

A, producer accuracy; UA, user accuracy; OA, overall accuracy; KC, kappa coefficient.
0.58 KC 0.70

detecting evergreen forest (+28.7%), deciduous forest (+26.3%) and
oil palm plantation (+35.1%). We  obtained an overall accuracy of
64.5% when two forest types were merged, and of 75.7% when all
forests were merged in a single class, thus with an increase of over
11% for a six classes land cover task.

Optical and SAR integrated data: SAR channels and their derived
textures were concatenated to TM and AVNIR-2 datasets in two
steps, first adding the channels only and then the selected tex-
tures parameters. The joint use of optical and SAR sensors increased
overall accuracies (Table 6). When the TM bands 4–7 and their tex-
ture are used for MLC, the overall accuracy is 85.7% (Table 4); the
addition of two  PALSAR channels increases the accuracy to 89.5%
and the further addition of PALSAR texture features increases it to
91.1%. For AVNIR-2, the pattern was  similar, as the MLC  of bands

and texture leads to an overall accuracy of 93.7% (Table 4); the
addition of PALSAR bands increases the accuracy to 94.1% and the
further addition of PALSAR texture increases it to 95.6%. The use

 +
re

AVNIR-2 + AVNIR-2
texture + PALSAR

AVNIR-2 + AVNIR-2 texture +
PALSAR + PALSAR texture

 PA% UA% PA% UA%

 97.4 95.3 97.6 96.6
 97.8 99.4 98.8 99.5

 92.9 87.8 94.6 92.1
 95.8 94.6 96.4 94.8

 96.8 97.1 98.0 98.3
 81.7 89.4 85.7 93.1

 91.2 89.4 94.0 90.5
 99.4 100.0 99.8 100.0

94.1 95.6
0.93 0.95
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Fig. 4. Land cover classification map  obtained with MLC and input ‘TM bands 4,5,7 + TM Textures + PALSAR HH HV + PALSAR Textures’. The black box in the main figure (A)
delimits  a small area of the TM classification map  shown in close up in (B); the same area as seen in the classification based on AVNIR-2 (C) (input ‘AVNIR-2 + AVNIR-2
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extures + SAR + SAR textures’). The Gola Rainforest National Park and Tiwai Island
olour  in this figure legend, the reader is referred to the web version of this article.)

f SAR improved especially the agriculture (+8.6%) and farmbush
lasses (+12.3%) when added to TM data, as shown by users accu-
acies; when added to AVNIR-2 data, the increase was  lower and
istributed in all classes (Table 4 and Table 6). The use of SAR tex-
ure slightly changed the user accuracies from −0.4% to 4.3% with

ajor benefits obtained for the semi-deciduous forest, evergreen
orest and oil palm plantation classes.

Classification algorithms: the use of NN significantly increased
ccuracy of the results of optical data in the range 0.7–5.1% with
espect to MLC  according to Z statistics. With combined optical
nd SAR data, NN significantly increased results accuracy in the
ange 1.6–1.9% compared to MLC. For radar data as input, the use
f NN increased overall accuracies from 1.1% to 3.3%, but the dif-
erence was significant only in one case. The increases brought by
N were not observed in any specific class but instead they were
venly distributed across all the land cover classes.

. Discussion and conclusion

In the present study TM and AVNIR-2 optical datasets were used
ogether with joined dual polarization SAR data to accurately clas-
ify a tropical area in West Africa, showing the effectiveness of
ntegrating different data types in this complex region. The MLC
lassification map  using TM near and shortwave infrared bands and
AR inputs is presented in Fig. 4 as the best result obtained with

 freely available optical dataset and a widespread classification
lgorithm.

The distinction of different vegetation types is a task considered
ifficult due to the smooth transition between successional stages,
uch as farmbush (characterized by varying amounts of vegeta-
ion re-growth) and different forest types (Lucas et al., 2002; Vieira
t al., 2003), and for the spectral similarity between evergreen and
he semi-deciduous classes, the latter often characterized by a leaf-
rop period that could last only a few weeks. Vegetation-oriented
lassification efforts are especially needed in the region, where a

rans-boundary peace park is planned by Liberia and Sierra Leone
overnments and conservation decisions are frequently taken. The
ntegrated SAR-optical land cover map  (Fig. 4) illustrates GRNP
ffectiveness, with the undisturbed forest classes mainly confined
life Reserve boundaries are shown in red. (For interpretation of the references to

inside the park and toward Liberia. But it also shows the threat
over the Gola South block, which is internally more fragmented
than the other units and surrounded by anthropic pressure, and
thus deserves special management attention.

We found that AVNIR-2 achieved a better result in classifying
the eight land cover types, and especially the forest classes, with
respect to spectrally reduced TM (bands 4, 5, 7). AVNIR-2 has a
fine spatial resolution which allowed for capturing natural vege-
tation details (Table 4 and Fig. 4 (B)) and thus better represents
environments characterized by mosaics of different vegetation and
land cover types. Nevertheless, we  still found a low separability of
secondary and semi-deciduous classes (Table 4). Semi-deciduous
forest mainly occurs in Gola South, where most selective logging
took place until 1989. Accurate logging records are not available,
but the indications are that these areas are still characterized by
signs of old disturbances and thus share traits of secondary forest
(Lindsall et al., in review). In our case study, as well as in other
tropical environments, the distinction of forest types is useful for
conservation while the mapping of the small forest patches outside
reserves is also valuable for management, as their change in exten-
sion is a tool to assess the value of community forests as carbon
sinks and the effectiveness of financial compensation schemes.

While the discrimination of the eight land cover/land use types
of the study area was  a difficult task for the PALSAR sensor alone,
when the three forests classes were merged (thus reducing the
task to six classes) the SAR classification accuracy reached 75.7%
(Table 5). The SAR based map  allows for clear detection of the
forested areas (Fig. 5). Confusion between forest and later-stage
farmbush and overestimation of the oil palm plantation class is
observable, due to similarity of their vertical structure at L-band. In
a similar way  we  observed confusion between early-stage farm-
bush and agriculture, both having lack of woody components.
Anyway, this result goes beyond the usual SAR-based forest/non-
forest mapping and the obtained accuracy value is similar or higher
than other classifications based on SAR in African environments

(Haack and Bechdol, 2000; Herold et al., 2004). As in our case, with
both optical images impacted by atmospheric conditions (clouds
or haze), is frequent to experience optical data unavailability in
tropical regions. The loss of information on forests details, with
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Table 7
Comparison of results obtained with ML  and NN, network architecture (hidden layers and neurons used) and Z statistics scores.

Overall accuracy Hidden layers Neurons Z score

ML NN

Landsat TM
TM 4,5,7 bands 73.1 74.0 2 32 2.16
TM  4,5,7 bands + TM texture 85.7 90.8 2 54 −6.03
TM 4,5,7 bands + TM texture + PALSAR 89.5 91.4 2 32 −2.34
TM  4,5,7 bands + TM texture + PALSAR + PALSAR texture 91.1 92.7 2 54 2.2

AVNIR
AVN  bands 80.4 81.5 2 32 −1.98
AVN  bands + texture 93.7 94.4 2 32 −2.16
AVN  bands + texture + PALSAR 94.1 95.8 1 24 6.05
AVN bands + texture + PALSAR + PALSAR texture 95.6 97.5 2 32 −5.33

ALOS PALSAR
HH HV 49.9 51.1 2 18 −0.89*
HH  HV + texture 62.1 63.8 2 32 −1.35*
HH  HV + texture 7 classes 64.5 67.8 2 32 2.54
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HH  HV + texture 6 classes 75.7 

he asterisk indicates results which are not significant at the 5% confidence level.

espect to classification based on integrated optical and SAR data,
as counterbalanced by full SAR coverage of the area. The use of

AR is suggested as a strategy to cope with persistent cloud cover
ffecting tropical regions: in this study we showed that SAR alone
an still provide important landscape information. Furthermore, it
s the SAR combination with optical data – TM or AVNIR-2 – that
lways produces the best outputs (Table 6). This result confirms
AR role in forest and vegetation mapping of tropical regions, and
uggests that in areas affected by optical data loss different optical
esolutions can be exploited and joined with SAR. If available, finer
esolution sensors such as AVNIR-2 can help to detail specific sub-
reas of interest, while larger areas or zones covered by clouds can
e filled with SAR or optical lower resolution data.

With regards to the techniques here tested here to improve
he mapping accuracy, we found that the addition of the optical
exture features was very effective in improving the classification
esults in all cases, with an increase between 10.1% and 13.2%.
he result shows that the reflectance differences and the shadow
ffects occurring in different forest types can be partially captured
y optical texture measures. The addition of SAR texture variables

ncreased the accuracies significantly in SAR-only tests, similarly
o what has been found by Longepe et al. (2011) in tropical forests,

gain confirming the value of textural information when this data
ype is used singularly, and especially for discriminating classes of
ense and tall vegetation (Table 5). On the other hand, SAR texture
as much less effective when included as the last input to optical,

ig. 5. Land cover classification map  obtained with MLC  and input ‘ALOS PALSAR HH
V + texture 6 classes. The Gola Rainforest National Park and Tiwai Island Wildlife
eserve boundaries are shown in red. (For interpretation of the references to colour

n  this figure legend, the reader is referred to the web  version of this article.)
78.1 2 32 −1.89*

optical texture and SAR datasets (Table 7), perhaps due to the fact
that very high values of accuracy were already reached and thus
the margins of improvement were limited.

The use of the NN algorithm brought in an improvement in the
results with respect to MLC. This improvement is limited when SAR
and optical data are integrated (1.6–1.9%) and not significant in
most classifications based on SAR data only (Table 7). The deci-
sion to adopt machine learning should take into consideration the
need for expert knowledge, evaluating its cost against the amount
of improvement obtained in classification. In this respect we  found
that the NN accuracy increase was  beneficial but limited in amount,
partially due to the high values already obtained by MLC, thus sug-
gesting the machine learning adoption as an added tool only when
resources allows for it.

A key constraint for implementing monitoring systems at a fine
scale is the availability of finer resolution data (Achard et al., 2010).
In this view, this research showed the improvement observed with
the spatial resolution of AVNIR-2 sensors and its successful inte-
gration with a coarser SAR data. The atmospheric conditions in the
moist tropical regions pose another serious challenge for data avail-
ability. Until new sensors are available, with increased revisiting
capabilities, it is fundamental to exploit and integrate the few avail-
able data to accurately classify the landscape of those remote areas.
This research tested a possible approach in a complex environment,
and similar efforts can be easily replicated in the region to first map
and then monitor the growing number of conservation units.

Techniques to mosaic multi-date images at a pixel level are
an option for helping to solve the problem of cloud cover (Roy
et al., 2010). The use of multi-temporal SAR datasets is also known
to improve accuracy of results (Ranson and Sun, 1994; Chen
et al., 1996) and another promising approach is the integration
of microwave frequencies (e.g. at L- and C-band; Lardeux et al.,
2011), which should be able to provide information both on foliage
strata, helpful in the distinction of different canopies structure and
vegetation water content, and on forest volumes, which are related
to disturbance and age. While waiting for new data from future
generation optical and SAR space missions, the adoption of these
existing techniques and datasets could offer improved mapping
capabilities and will represent our future research step for tropical
complex regions.
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Abstract: 

The estimation of above ground biomass in forests is critical for carbon cycle modeling and 

climate change mitigation programs. Small footprint lidar provides accurate biomass estimates, 

but its application in tropical forests has been limited, particularly in Africa. Hyperspectral data 

record canopy spectral information that is potentially related to forest biomass. To assess lidar 

ability to retrieve biomass in an African forest and the usefulness of including hyperspectral 

information, we modeled biomass using small footprint lidar metrics as well as airborne 

hyperspectral bands and derived vegetation indexes. Partial Least Square regression (PLSR) was 

adopted to cope with multiple inputs and multicollinearity issues; the Variable of Importance in 

the Projection was calculated to evaluate importance of individual predictors for biomass. Our 

findings showed that the integration of hyperspectral bands (R
2
 = 0.70) improved the model 

based on lidar alone (R
2
 = 0.64); this encouraging result call for additional research to clarify the 

possible role of hyperspectral data in tropical regions. Replacing the hyperspectral bands with 

vegetation indexes resulted in a smaller improvement (R
2
 = 0.67). Hyperspectral bands had 

limited predictive power (R
2
 = 0.36) when used alone. This analysis proves the efficiency of 

using PLSR with small-footprint lidar and high resolution hyperspectral data in tropical forests 

for biomass estimation. Results also suggest that high quality ground truth data is crucial for 

lidar-based AGB estimates in tropical African forests, especially if airborne lidar is used as an 

intermediate step of upscaling field-measured AGB to a larger area. 

1. Introduction 
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Remote sensing of forest aboveground biomass (AGB) has received increasing attention 

during the last decade due to its relevance to global carbon cycle modeling and to international 

programs aimed at reducing greenhouse gas emissions in tropical areas, such as the United 

Nations Reducing Emissions from Deforestation and Forest Degradation (REDD+). In particular, 

biomass mapping in tropical biomes is particularly important given the critical role of tropical 

forests in the global carbon cycle (Gibbs et al., 2007). Recent findings show that tropical forests 

store 21% more carbon than previously expected (Baccini et al., 2012).While the biomass of 

most temperate and boreal zones has been systematically inventoried at least once (Houghton et 

al., 2009), tropical regions suffer from operational limitations and consequent lack of data, which 

is especially marked in Africa (Baccini et al. 2009). 

Airborne small-footprint Light Detection and Ranging (lidar) is considered the most accurate 

remote sensing technology for mapping biomass (Zolkos et al, 2013) and could be useful in 

filling this information gap. Discrete return (DRL) or full waveform (FWL) small-footprint lidar 

systems are now widespread and operated around the globe, enabling the collection of up to four 

returning energy pulses (as DRL) or all the returning energy (as FWL) from the forest vertical 

profile. The laser pulse returns are usually used to derive forest height metrics, which can then be 

related to field-observed AGB, with the latter obtained by means of field measures and 

allometric relationships. Due to the high operational costs, lidar-derived AGB estimates usually 

can only be obtained over limited areas. These local-scale or sub-national accurate estimates are 

crucial for REDD+ measuring, reporting, and verification (MRV), and for country level natural 

resources management and inventories (Naesset 2007; Peterson et al. 2007). Local AGB maps 

are also the basis for the extension of estimates to larger areas using remote sensing approaches 
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(Asner et al. 2010; De Sy 2012). However, to date there has been little research into mapping of 

biomass in tropical forests using airborne small-footprint lidar. Zolkos et al. (2013) conducted a 

comprehensive review and identified eight studies carried out with this system in tropical forests, 

with none in continental Africa. 

The uncertainties associated with the current knowledge of the African ecosystems’ 

carbon balance are rather high. A review of the most recent estimates of the net long-term 

carbon balance of African ecosystems, based upon observations, indicated a sink of the order 

of 0.3 Pg Cyr
-1

 with a very high uncertainty and a variable source; up to now many questions 

remain open, and it is unclear whether Africa is a net carbon source or a sink to the 

atmosphere (Ciais et al. 2011). Because of highly variable CO2 fluxes and insufficiently 

studied ecosystems and ecosystem–human–climate interactions, there is a need for continued 

and enhanced observations of carbon stocks, fluxes and atmospheric concentrations to enable 

more precise assessments of Africa’s carbon cycle (Justice et al. 2001), and its sensitivity to 

natural and anthropogenic pressures and future climate. Of primary importance is the need for 

continent-wide carbon cycle observations that support both bottom-up and top-down methods 

of estimating carbon sources and sinks (Lewis et al. 2011). An African integrated carbon-

observing system is needed,  encompassing both: (i) regional inventories and monitoring of 

soil and vegetation carbon stocks by forest and agricultural research stations; (ii) remote 

sensing-based estimates of forest biomass C stock distribution, at different scales and using 

active and/or passive sensors combined with field observations. In view of the above 

considerations regarding the contributions of African forests in the global carbon cycle, it is 
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clear how valuable it is to test biomass mapping by means of various sensors over different 

African forests.  

 

Hyperspectral sensors, recording the reflectance of a large number of fine resolution spectral 

bands from visible to near infrared (NIR) or shortwave infrared (SWIR) range, are another 

frontier technology in remote sensing. Hyperspectral data can capture information regarding the 

biochemical composition of the upper canopy layer and have been used for forest type or species 

classification, estimation of biophysical and biochemical properties and health status (Asner and 

Martin, 2008; Koch, 2010; Goodenough et al., 2006).The ecosystem information recorded by 

hyperspectral data may relate to plant functional types –such as whether a species is light 

demanding -which could in turn affect wood density and thus biomass content (Baker et al., 

2004; Chave et al. 2009). Hyperspectral data have been used to estimate grassland biomass 

directly (Cho et al. 2007; Psomas et al, 2011) and leaf canopy biomass (le Maire et al. 2008), 

while leaf area density, retrieved from fusion of hyperspectral and radar data, has been used in 

the estimation of forest AGB (Treuhaft et al. 2003). The few studies that have attempted to 

improve biomass estimates in boreal, temperate and tropical forests by combining hyperspectral 

imagery with lidar data have reported only modest or no improvement in model fit compared to 

the results from using lidar only (Anderson et al. 2008; Clark et al. 2012; Latifi et al. 2012; 

Swatantran et al. 2011). Despite these research efforts, the number of published studies on 

integrating lidar and hyperspectral data for biomass estimation is rather small. Further research is 

needed along this line, especially considering the opportunities from forthcoming hyperspectral 

missions, such as the Environmental Mapping and Analysis Program (EnMap), the PRecursore 
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IperSpettrale of the application mission (PRISMA), the Medium Resolution Imaging 

Spectrometer (MERIS) and the Hyperspectral Infrared Imager (HyspIRI). 

The main objectives of the present study are the following: (i) to test for the first time small 

footprint lidar-based AGB retrieval in a West African tropical moist forest, (ii) to examine 

whether the use of very high spatial resolution hyperspectral data in addition to lidar can improve 

the biomass estimates.  

 

2. Materials and methods 

 

2.1 Study area and ground truth data 

The study area is within the Gola Rainforest National Park (GRNP) in Sierra Leone, at the 

westernmost end of the humid Upper Guinean Forest Belt, in West Africa (Fig.1). 

 

INSERT FIGURE 1 

 

The forests of this region are largely lowland moist evergreen forest with some areas 

towards lowland dry evergreen and semi-deciduous forest types (Cole 1993). Within GRNP 

Klop et al. (2008) identified moist evergreen, moist semi-deciduous, freshwater inland swamp 

forest, forest regrowth and secondary/disturbed forest.  The GRNP area has been protected 

through conservation programs since 1989 but commercial logging, most intensively in the 

southern block, was carried out in 1963–1965 and 1975–1989. Recent land cover mapping 

(Vaglio Laurin et al., 2013) highlighted the importance of conserving this forest from 
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anthropogenic pressure in the surrounding areas. The climate is moist tropical, with annual 

rainfall around 2500–3000 mm, a dry season from November to April coincident with leaf-off 

condition of some semi-deciduous tree species, and an altitude of 70–410 m. 

 

Field data collection carried out in 2006-2007 in the GRNP established over 600 0.125 ha 

circular plots across the whole park area, recording species information as well as structural and 

environmental forest parameters. In the plots, all trees with Diameter at Breast Height (DBH) > 

30 cm were recorded, while trees with DBH included in the 10-30 cm range were measured in a 

1/10 smaller subplot. Height measures were derived with a local DBH-height relationship and 

the AGB was obtained applying the Chave et al. (2005) general equation for moist tropical forest 

including DBH, height and wood density values. The data collection protocol and the allometric 

procedure are fully documented in Lindsell and Klop (2013). We selected all the plots surveyed 

by both lidar and hyperspectral sensors excluding some plots located less than 1 km from the 

park boundary where land cover changes were most likely to have occurred in the period 

between field and aerial data collection. We also excluded plots affected by cloud shadow in the 

hyperspectral data. We retained 70 ground truth plots, with an AGB range 0-586.9 Mg ha
-1

(mean 

= 172.2 and standard deviation = 111.8 Mg ha
-1

). These plots contained 136 species with DBH> 

30 cm, and 86 occurring in the upper canopy layer. 

 

 

2.2 Remote sensing data  
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The central and parts of the southern blocks of GRPN were surveyed by an airborne 

campaign in March 2012 over pre-defined flight lines covering part of the field, using a Pilatus 

PC-6 Porter aircraft equipped with lidar and hyperspectral sensors and a digital camera for aerial 

photographs.  

 

INSERT FIGURE 2  

 

The lidar sensor ALTM GEMINI (Optech Ltd), characterized by a 1064 nm laser 

wavelength and able to record up to 4 range measurements, was operated between 650-850m 

above ground level (AGL). The minimum laser density was set to 11 points/m
2
. The lidar dataset 

was delivered as a point cloud of discrete returns, preprocessed in Terrascan (Terrasolid) 

software and adopted the ApplanixIN-Fusion
TM

PPP Inertially-Aided Precise Point Positioning 

(IAPPP) to cope with the of absence of GPS base stations in the region. Positional error in x, y, z 

was always lower than 0.27 m for any axis. An additional check with points derived from the 

AUSPOS network of Geoscience Australia indicated a positional error lower than 0.2 m. The 

raw all-returns point cloud was processed using the Toolbox for Lidar Data Filtering and Forest 

Studies (TIFFS) (Chen, 2007) to derive a range of metrics for AGB estimation from each plot, 

including: mean height, quadratic mean height, skewness, kurtosis, height bins at 5 m intervals 

and 10% percentile heights. TIFFS used the ground returns identified by the data provider to 

generate a DTM (Digital Terrain Model) and calculated the relative height above terrain of each 

laser return by subtracting the corresponding DTM elevation from its original Z value. The lidar 

metrics were derived using the relative height of all laser points. 
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Hyperspectral data were acquired in 18 strips with an AISA Eagle sensor, with FOV equal to 

39.7°, set to record 244 bands with 2.3 nm spectral resolution in the 400-970 nm range. The final 

spatial resolution was at 1 m after radiometric correction and orthorectification based on a lidar-

derived Digital Elevation Model (DEM). A visual inspection of data from 30 randomly selected 

plots revealed a spatial mismatching between hyperspectral and lidar data within a range of 1 - 4 

m. 

Atmospheric correction of the hyperspectral images was performed using the Fast Line-of-

Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) algorithm, which is based on a 

MODTRAN4 approach for path scattered radiance, absorption, and adjacency effects (Felde et 

al., 2003). Due to noise, all the bands outside the 450-900 nm range and four bands in the 759-

766 nm range were removed, reducing the total number of bands to 186. Minimum Noise 

Fraction (MNF) transformation (Green et al. 1988) was used to further reduce noise in the 

dataset. For each image strip, 9 to 15 MNF components were selected by visual screening and 

used to compute the inverse MNF to transform back the bands in the original data space. 

Different strips have different noise levels and types: generally the useful information is included 

in the first 15 components, but this is a rule of thumb. Visual screening allowed to identify the 

correct number of components to be used for analysis (Williams and Hunt 2002; Underwood et 

al. 2003; Goodwin et al. 2005). 

Eight vegetation indices (VIs) were calculated from the inverted MNF bands (Table 1): 

Normalized Difference Vegetation (NDVI) and Simple Ratio (SRI) (Sellers 1985), 

Atmospherically Resistant Vegetation (ARVI) (Kaufman and Tanre 1996), Red Edge 

Normalized Difference Vegetation (ReNDVI) (Sims and Gamon 2002), Vogelmann Red Edge 
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(VReI) (Vogelmann et al. 1993), Photochemical Reflectance (PRI) (Gamon et al. 1992), Red 

Green Ratio (GRI) (Gamon and Surfus 1999), and Anthocyanin Reflectance 2 (AR2I) (Gitelson 

et al. 2001). These indices were chosen for representing information from different portions of 

the spectra of vegetation greenness, light use efficiency and leaf pigments and for being 

relatively insensitive to shadow. For each plot we averaged the VIs and the 186 hyperspectral 

bands after MNF inversion. Table 1 summarizes the lidar and hyperspectral inputs used in tests.  

Aerial photographs were acquired simultaneously with lidar data using a Rollei H25 camera 

equipped with a Phase One Digital Back. Images were georeferenced and orthorectified using the 

lidar DEM. The orthophotos were acquired at 0.1 m spatial resolution, and used as reference for 

visual screening during data analysis (i.e. to visualize plot edge effects).  

 

Table 1. Description of remote sensing statistics used in biomass regression analyses 

Input Description 

Lidar height 

metrics 

-Mean of all plot returns 

-Standard deviation 

-Quadratic Mean  

-Skewness 

-Kurtosis 

-Proportion of points at height bins of 5m intervals  

-10% Percentiles from 10% to 100% 

Hyperspectral 

bands 

- 186 bands in the 450-900 nm interval, atmospherically corrected 

and noise minimized  

Vegetation 

Indices 

- Normalized Difference Vegetation Index (Sellers 1985) 

- Simple Ratio Index (Sellers 1985) 

- Atmospherically Resistant Vegetation Index (Kaufman and Tanre 

1996) 

- Red Edge Normalized Difference Vegetation Index (Sims and 

Gamon 2002) 

- Vogelmann Red Edge Index (Vogelmann et al. 1993) 

- Photochemical Reflectance Index (Gamon et al. 1992) 

- Red Green Ratio (Gamon and Surfus 1999) 

- Anthocyanin Reflectance Index 2 (Gitelson et al. 2001) 
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2.3 Retrieval models and tests 

 

The large number of often correlated metrics from airborne lidar and hyperspectral data pose 

challenges in statistical modeling of biomass due to the problems of multicollinearity and “curse 

of dimensionality” (Adam and Mutanga 2009; Dalponte et al. 2009). We used Partial Least 

Squares (PLS) regression to deal with these issues. PLS regression is closely related to principal 

component regression (PCR), but differs in that it uses the information from the response 

variable in addition to the predictors for feature transformation (Geladi and Kowalski 1986). PLS 

regression has been previously employed in spectral and chemical analysis of tropical forests 

(Asner and Martin 2008), for AGB estimation (Lei et al. 2012; Goodenough et al. 2005), and as a 

method for dealing with large hyperspectral datasets (Peerbay et al. 2013). 

We modeled AGB from single and fused lidar and hyperspectral data, to understand the 

ability of our dataset to estimate AGB in an African rainforest, and assess the usefulness of these 

data integration. For hyperspectral data we tested both MNF-inverted bands and the derived VIs. 

The PLS regression results were compared with those obtained by a multiplicative power model 

(MPM), well suited to explain the usual power-law relationship occurring among biological 

parameters (Marquet et al. 2005). Inputs for both models were log transformed.  

To develop the MPM, a forward stepwise regression of the log-transformed predictors and 

the AGB values was used to select the predictors; the initial model is then fitted using such 

predictors. Any of the selected predictors which were not significant from their p-value were 

http://www.sciencedirect.com/science/article/pii/S030324340700013X#bib19
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removed (p > 0.05) and the model is refitted; the procedure was iterated until all predictors are 

statistically significant. For PLS regression, the transformed features were selected by 

minimizing the 10-fold cross-validation prediction error. A traditional method like MPM or other 

common statistical techniques is often used as a benchmark in literature for AGB estimation 

(Chen et al. 2012) or vegetation type discrimination (Vaglio Laurin et al. 2013). Comparison 

between MPM and PLS regression is useful to illustrate the accuracy improvement. 

We calculated the Variable of Importance in the Projection (VIP) to evaluate importance of 

individual predictors for biomass estimation; predictors with VIP scores > 1 are considered 

especially relevant for the mode l (Wold et al. 2001; Peerbhay et al. 2013). 

 

3. Results  

 

Based on lidar metrics alone, AGB was predicted with a coefficient of determination (R
2
) 

equal to 0.64 and a RMSE of 67.8 Mg ha
-1

using PLS; results obtained by MPM were less 

accurate (R
2
 = 0.57). Hyperspectral bands had limited predictive power using PLS (R

2
 = 0.36), 

and none with MPM. The VIs had very limited predictive power when entered into the models. 

Using PLS the addition of hyperspectral bands to lidar metrics increased the accuracy 

moderately (R
2
 = 0.70, RMSE 61.7 Mg ha

-1
), whilst replacing the hyperspectral bands with the 

VIs resulted in an even smaller improvement (R
2
 = 0. 67, RMSE 64.3 Mg ha

-1
). No improvement 

of accuracy is obtained using MPM with combined lidar and hyperspectral dataset. In 

comparison to MPM, PLS produced improved accuracies in all models, except VIs alone. The 

AIC (Akaike’s Information Criteria) was also calculated to compare different PLS models (Chen 
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et al. 2007). In general, compared to the model with the lowest AIC value, the models with an 

AIC increase of 4-7 have considerable less support and the ones with an AIC increase of >10 

have no support (Burnham and Anderson, 2002). Among our PLS models, the combination of 

lidar metrics and hyperspectral bands has the lowest AIC value of 597 and thus the best 

performance. The PLS model based on lidar metrics has an AIC value of 606, which corresponds 

to an increment of 9 and indicates that such a model is at least considerably worse than the model 

using both lidar metrics and hyperspectral bands. Table 2 illustrates the test results. 

 

Table 2. Test results obtained with different combinations of lidar metrics and hyperspectral 

features and through two different statistical models. 

 

Inputs 

 

Multiplicative Power 

Model (MPM) 

 

Partial Least Square 

Regression (PLS) 

  

R2 

 

RMSE 

 

R2 

 

RMSE 

 

AIC 

 

Lidar metrics 

 

0.57  

 

72.7  

 

0.64  

 

67.8  

 

606 

 

Hyperspectral bands 

 

0.00  

 

111.0  

 

0.36  

 

91.2  

 

646 

 

VIs 

 

0.08  

 

106.2  

 

0.02  

 

116.8  

 

668 

 

Lidar metrics + Hyperspectral bands 

 

0.57  

 

72.7  

 

0.70  

 

61.7  

 

597 

 

Lidar metrics + VIs 

 

0.57  

 

72.7  

 

0.67  

 

64.3  

 

601 

 

The scatterplots of the predicted vs. field observed AGB for different input combinations are 

presented in Fig. 3.  

 

INSERT FIGURE 3 
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Among lidar metrics, the inputs obtaining VIP scores >1 included all percentiles (except the 10
th

 

and the 100
th

), some low range height bins, mean height and quadratic mean height. Highest 

scores were obtained, in descending order, by the 40
th

 height percentiles, 30
th

 height percentiles, 

mean height, 50
th

 and 60
th

 height percentiles. Among hyperspectral inputs, the higher scores 

were assigned to bands in the green, and red-edge region of the spectra, and in the near infrared 

region close to the end of the available spectra. When using the combined dataset, all lidar 

metrics received scores >1 and greater than the hyperspectral bands. Fig.4 illustrates the most 

relevant input features selected by VIP procedure for the models based on single lidar and 

hyperspectral datasets. 

 

INSERT FIGURE 4 

 

To help understand the selection of relevant input feature by VIP for the lidar-based AGB model 

with respect to the forest structure, we graphically explored the distribution of trees and biomass 

in 7 classes of height, at 10 m intervals each (Fig. 5).  

 

INSERT FIGURE 5 

 

4. Discussion  

 

4.1 Comparison to other studies of mapping tropical rainforest biomass 
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Our first aim was to test small footprint lidar for AGB estimation of an African tropical 

moist forest. The accuracy of our estimate is in within the range of those reported in other 

tropical studies that use small-footprint lidar (Asner et al. 2009; Asner et al. 2010; Asner et al. 

2012b; Clark et al. 2011; d’Oliveira et al. 2012; Kennaway et al. 2008; Kronseder et al. 2012; 

Mascaro et al. 2011a).  As far as we know, there are only two studies reporting usage of airborne 

lidar for mapping African tropical forests AGB (Asner et al. 2011, 2012a), both undertaken in 

Madagascar with a customized Optech 3100EA instrument (Carnegie Institution for Science, 

USA). The accuracy obtained in the current study is not far from that obtained in southeastern 

Madagascar (Asner et al. 2011), where 46 plots of 0.28 ha were used. After adopting improved 

allometric relationships to reflect regional variations in Madagascar, the authors reported a R
2 

= 

0.68 for their AGB estimate. However in the second study, Asner et al. (2012a) reported a higher 

result (R
2
 = 0.88) for three combined sites, including humid and dry forests and shrubland on the 

island, for which improved allometric relations and differential correction of GPS measures were 

used. Per site results were not reported, and it is not clear if the dataset from the 2011 study was 

incorporated into the 2012 one, for which the authors reported a lower mean AGB.  

We note that most tropical studies using small footprint lidar, which achieve high accuracy of 

the estimates, are based on plots more than double the area (0.28 ha) of our plots (Asner et al. 

2009, 2010, 2011, 2012a, 2012b; Mascaro et al. 2011b). Mascaro et al. (2011a and 2011b) 

demonstrated in a tropical moist forest that lidar prediction error, which is strongly related to the 

edge effect, scales with plot area with a RMSE decreasing from 63.2 to 11.1 Mg C ha
-1

 when 

increasing the plot size from 0.04 ha to one hectare. Similar conclusions are given by Kohler and 

Huth (2010) for another tropical site. Furthermore, the edge effect - responsible for disagreement 
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between remote sensing and field plot measures over which trees or parts of trees are inside the 

calibration plots - is more marked in small plots and in the presence of large tree crowns. In our 

study the plot size was less than the half of the size most commonly used in lidar calibration 

studies. Furthermore, since 25% of the measured trees had a DBH > 50 cm, the occurrence of 

edge effects was likely and indeed often observed, with plots frequently hosting very large 

crowns from neighboring mature trees (Fig. 2).  

In contrast to studies which report that the higher lidar height percentiles explain most of the 

biomass variance (Patenaude et al. 2004; Skowronski et al. 2007), in our case the maximum VIP 

scores were assigned to the height percentiles included in the 30-60
th

 range (Fig. 3a). This is an 

evidence of the multilayered structure of this mature forest, which possibly stores a large part of 

biomass in the subcanopy layer. This also indicates that the biomass within a plot is not primarily 

driven by the tallest trees, which despite having the individually largest biomass values are 

nonetheless far less abundant than the mid-size trees (Fig. 5). 

 

4.2 Sources of uncertainties 

 

The relatively low accuracy (the best R
2
 was 0.70) we obtained in this study could be 

associated with different sources of uncertainty including: field measurement errors, plot 

locations errors, and errors introduced by the allometric model. These errors, together with error 

caused by geometrical and radiometric correction of remotely sensed data, are well known 

sources of uncertainty in remote sensing analysis (Lu et al. 2012). 
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In our datasets, there was a 5-6 years time lag between field and remote sensing data 

acquisitions. Even if the growth of a mature forest in a 5-year period is limited, this temporal 

mismatch can still cause errors in estimates due to natural mortality and regeneration. We 

exclude plots located close to GRNP border to limit the probability of abrupt forest changes, 

such as those resulting from illegal clearance or tree harvesting. It is known that forest biomass 

grows at different rates according to its successional stages (Hudak et al. 2012) and even in 

mature forests areas of regeneration are present due to natural tree mortality. 

In our study site, plot locations were measured using a recreational Garmin GPS. Obtaining 

accurate GPS measures can be difficult in tall and dense forests; as well as in regions which lack 

base stations that allow for differential correction (Dominy and Duncan,2001), as was the case in 

our study area.  Chen et al. (2012) reported that the use of plot locations measured by 

uncorrected GPS decreased the R
2
 of the AGB estimates by 0.10–0.13 and increased the RMSE 

by about 21–31% in the mixed conifer forests of California. 

Biomass mapping in Africa suffers from a major lack of regional specific allometric 

equations. According to studies conducted in the region (Henry et al. 2010; Djomo et al. 2010) 

the best available option is to use the Chave et al. (2005) general equations. Nevertheless, these 

equations were obtained without including African tree samples and the issue of their validity in 

Africa is still debated due to limited data for comparative research. The generic allometric 

equation that we used could be a major uncertainty. For example Henry et al. (2010) estimated a 

difference of approximately 40% in AGB values using site-specific versus generalized allometric 

equations in West Africa.  
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The control of uncertainty sources, such as those here mentioned, can be a bigger challenge 

in African forests than in other areas. Most of the African countries lack the technical and 

financial capacities for field measures extensive collection, and very limited infrastructure to 

support scientific research is available (Avitabile et al. 2001; Baccini et al. 2009).  The 

establishment of a field network to collect quality ground truth for calibration of remote sensing 

data, and the development of regional allometric equations, are two major issues to which 

international programs should direct their support. 

 

4.3 Lidar and hyperspectral data fusion 

 

The addition of hyperspectral features to lidar resulted in an increase of R
2
 values from 0.64 

to 0.70 (Table 2), which is a slightly greater improvement than has been found in previous 

studies (Chen 2013). In northern biomes, Anderson et al. (2008) and Swatantran et al. (2011) 

obtained respectively modest and insignificant improvement using the Laser Vegetation Imaging 

Sensor (LVIS) and Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) fused datasets. 

Their results are difficult to compare with ours, due to the coarser resolution of those sensors and 

the difference in forests types. Swatantran et al. (2011) suggested that the predictive power of 

hyperspectral could be higher when lidar relationships with biomass are weaker, as observed by 

Anderson et al. (2008) and Roth (2009). This hypothesis is in part confirmed by our results, in 

which the lidar-AGB relationship is not as high as elsewhere and an increase in accuracy was 

brought by inclusion of hyperspectral data. Latifi et al. (2012) used very high spatial resolution 

sensors, namely a full waveform lidar and HyMap. They also reported minimal improvement in 
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AGB estimates from fused datasets, using PCR. The PLS regression used in this study is 

preferable to PCR, which might account for the difference. The only AGB estimation for a 

tropical area, carried out using a FLI MAP lidar and the hyperspectral HYDICE sensor, reported 

no improvement by the addition of hyperspectral VIs and spectral mixture fractions to lidar 

metrics (Clark et al. 2012), similar to the very small improvement we observed using our VIs. 

The increase in accuracy observed with hyperspectral original bands in our study can be 

explained by the ability of PLS to exploit information from the whole spectrum. The use of VIs, 

based on a limited subset of spectral bands, possibly excludes important bands for biomass 

estimation. 

 Our visual assessment indicates that there is ~1- 4 meters co-registration mismatching 

between hyperspectral and lidar data, which complicates our evaluation of hyperspectral data for 

biomass estimation. Given the geometric accuracy of airborne small-footprint lidar usually being 

sub-meter horizontally, it would be ideal if the georeferencing accuracy of hyperspectral is at the 

sub-meter level as well, to maximize the use of information from both sensors. This requires 

precise orthorectification of hyperspectral imagery, preferably based on a Digital Surface Model 

(DSM) instead of a Digital Terrain Model (DTM) because of the relief displacement caused by 

trees. This georeferencing accuracy issue has to be taken into account for prospective use of 

hyperspectral data in AGB estimation, for which the mismatch with reference or other data can 

be higher. 

Latifi et al. (2012) and Papes et al. (2010) found that the most useful spectral ranges for 

estimating vegetation biomass are green and the NIR plateau, while Zhang et al. (2009) assumed 

that the greenness indices might have a positive potential toward predicting AGB. The VIP 
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scores in our study confirmed that the green and NIR portion of the spectra were useful for 

biomass estimation, but higher scores were obtained for bands in the red-edge (Fig 2b). It is 

widely recognized that the red-edge position relates to the health status of photosynthetic 

material in the vegetation (Horler et al. 1983) but it is unclear how this correlates with biomass 

variation, which calls for more future research along this line.  The AISA Eagle sensor used in 

this study has a wavelength range of 400 - 900 nm, which can be a limitation considering that 

other studies in literature have proved the significance of longer wavelengths (SWIR) for 

vegetation (Brown et al. 2000; Psomas et al. 2011); in particular Gong et al. (2003) proved that 

SWIR and NIR bands are most important for LAI estimation.  

AGB-lidar modeling can be improved by stratifying the vegetation types using optical 

imagery or ancillary data (Clark et al. 2011; Garcia et al. 2010). Chen et al. (2012) illustrated the 

positive effect of integrating vegetation type maps derived by aerial photography in Sierra 

Nevada, using a mixed effects model. In temperate or boreal forests, dominated by few species 

and where vegetation type maps are often available, this approach can be feasible. However, it is 

less clear how hyperspectral-based stratification could be carried out in a tropical forest as our 

site, having very high diversity of tree species, often without marked dominance, and where 

detailed information on vegetation type is usually not present. The high number of tree species 

and thus variations in tree morphology, beside variations in spectral responses, can be a reason 

for explaining the fact that biomass estimation cannot be based on hyperspectral data alone. As a 

matter of fact literature shows that it is more useful in low-biomass scenarios like grasslands 

where some studies show that up to 61% of variation can be explained by VIs from hyperspectral 

data only (Clevers et al. 2007). 
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5. Conclusions 

 

REDD+ advocates better documentation of performances of remote sensing data across 

ranges of biomes, vegetation cover, topography/ land forms, seasons, and land use patterns that 

occur across developing countries (Holmgren, 2008). Recently, the 17th Conference of the 

Parties (COP) to the United Nation Convention on Climate Change (UNFCCC) adopted the 

commitment that national REDD+ monitoring and reporting systems shall be based on a 

combination of field measurements and remote sensing data. Even if clear standards have not yet 

been established ,the Global Climate Observing System (GCOS, 2011) suggested some accuracy 

levels, driven by the need to quantify carbon stocks to initialize and test the carbon cycle and for 

national reporting, which are: <20% error for biomass values over 50Mg/ha, and 10Mg/ha for 

biomass values < 50t/ha. Houghton et al. (2009) also suggested a maximum of 18% AGB 

uncertainty. In the case of mature tropical forests, with mean AGB often over 200 Mg/ha, this 

translates to an error below 40 Mg/ha which is often difficult to achieve even with very advanced 

tools such as lidar systems. For large area AGB estimation in tropical environments, direct AGB 

retrieval based on radar sensors, which have full mapping and all weather capabilities, could thus 

be a cost-effective alternative to lidar sampling followed by further upscaling, especially if new 

dedicated missions will be launched, such as the European Space Agency Biomass.  

Our research evidences that high quality ground truth data, especially in terms of 

geolocation accuracy and larger plot size, is needed when planning lidar-based AGB estimates in 
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tropical African forests. , Our results suggest that the quality of ground truth data can be even 

more important if airborne lidar is used as an intermediate step of upscaling field-measured AGB 

to a larger area or region, a procedure with associated additional uncertainty.  

The methodology here presented includes an advanced retrieval algorithm (PLS), significant 

preprocessing with innovative techniques applied to hyperspectral data (MNF) and a method for 

testing different features from data fusion. Such a straightforward workflow can provide a robust 

method for evaluating the importance of spectral contributions and lidar metrics.  

The findings related to hyperspectral and lidar data fusion presented in this research are 

encouraging, but call for additional research.  The possible role of hyperspectral data in direct 

AGB estimation or stratification has to be clarified in different environments, and new VIs that 

can incorporate relevant biomass information could be developed. As vegetation characteristics 

strongly influence the sensors ability to retrieve information, additional research in various 

ecosystems is needed to be able to generalize conclusions about the usefulness of joint sensors 

use. Overall this study contributes to enlarge research on lidar and hyperspectral fused datasets 

applicability and provide interesting insight which could orient future sensors development and 

missions. 
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"List of Figure Captions" 

 

Figure 1. The study area located along the border between Sierra Leone and Liberia, and 

included in the GRNP. The flight lines, realized during an airborne survey, cover part of the 

permanent field plots established in the Park. 

 

Figure 2. In (A) and (B) false-color composite of hyperspectral data at 807.5(R), 597.3 (G) 

and 467.3 (B) nm. In (A): strip of data where large crowns are visible. In (B): example of edge-

effect for a specific plot. In (C): the same edge effect in (B) is visualized in the aerial 

photograph. Plot edges are represented as black circles. In (D): the same plot in (B) and (C) is 

visualized as a lidar point cloud. 

 

Figure 3. Scatterplots of predicted vs. field observed AGB for the following inputs: (a) lidar 

metrics, (b) hyperspectral bands, (c) lidar metrics and VIs, (d) lidar metrics and hyperspectral 

bands. 

 

Figure 4. VIP scores for individual lidar (a) and hyperspectral (b) datasets.  

 

Figure 5. AGB and number of trees in the 70 plots (total area = 87500 m
2
) according to different 

ranges of field-observed height. 
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Abstract 

 Tropical forests are a major repository of biodiversity. Spatial information about tropical forest 

biodiversity is scarce but it is fundamental for conservation decision making, especially at fine scales. 

Remote sensing is increasingly contributing to biodiversity mapping and monitoring. Airborne hyperspectral 

data have been successfully used for tree species classification and retrieval of species richness, but studies 

linking airborne hyperspectral data with the Shannon-Wiener biodiversity index are not available, and no 

previous investigation has been done with hyperspectral sensors in African forests. We retrieved the 

Shannon-Wiener biodiversity index in a moist tropical forest in Sierra Leone with Random Forests  (Pseudo 

R
2
 = 84.91% and Out-of-bag RMSE = 0.30), and using as inputs reflectance values from 186 bands in the 

VIS-NIR spectral range, collected by an AISA Eagle airborne sensor. Lower accuracy was obtained when 

using 1
st
 derivative of reflectance (R

2
 = 71.42%, OOB RMSE= 0.35), while the use of vegetation indices 

derived from reflectance was unsuccessful in predicting the index. The inputs ranking procedure embedded 

in Random Forests allowed evaluating the contribution of different regions of the spectra to models. The 

present research demonstrates for the first time in Africa and, to our knowledge in tropical forests, the ability 

of airborne hyperspectral sensor to predict the canopy Shannon-Wiener index. These results, together with 

those obtained by similar using a spaceborne hyperspectral sensor, support the overall use of hyperspectral 

data for biodiversity mapping and the integrated use of platforms, especially in view of forthcoming 

hyperspectral satellite missions. Areas with high biodiversity or vulnerability to change could be monitored 

with airborne sensors, while regional monitoring can be instead done by means of satellite-borne 

hyperspectral systems, further allowing multi-temporal studies.  

 

1. Introduction 

Mapping biological diversity is a major conservation priority (Gaston 2000), due to increasing threat 

from anthropogenic pressure, habitat loss and fragmentation, and climate change effects (Thomas et al. 

2004). Mapping biodiversity is also a main activity in international agreements promoting biodiversity 

conservation, i.e. the Aichi Biodiversity Targets and the Millennium Development Goals.  



Tropical forests are a major repository of biodiversity (Chapin et al. 2000) hosting over half of the 

world’s plant species (Foody 2003; Thomas et al. 2004). Spatial information about tropical forest 

biodiversity is scarce but it is also fundamental for conservation decision making (Balmford and Whitten 

2003), and in view of long-term carbon storage (Diaz et al. 2009) and co-benefits of the Reduction of 

Emission from Deforestation and Degradation (REDD+) program (Diaz et al. 2009; Paoli et al. 2010).  

Remote sensing is critical for biodiversity mapping and monitoring, allowing the extrapolation of 

local field measures, especially difficult to collect in inaccessible tropical regions, to larger areas (Tuner et 

al. 2003; Oldeland et al. 2010). Palmer et al. (2002) proposed the ‘spectral variation hypothesis’ to explain 

why electromagnetic measures are related to biological diversity: the spectral variation of reflectance values 

is correlated with spatial variation in the environment by means of landscape structure and complexity. 

Habitat heterogeneity is further linked to niche complexity which is known to enhance species diversity 

(Simonson et al. 2012). Considering tree diversity in forests, the remote sensing measures are in relationship 

with the chemical and structural properties of the vascular species. 

Multispectral imagery has been already employed to map biodiversity: relationships have been found 

between Normalized Difference Vegetation Index (NDVI) derived from satellite imagery and diversity of 

different ecosystems (Gould 2000; Kerr and Ostrovsky; Leyequien et al. 2007; Nagendra 2001). Foody and 

Cutler (2003, 2006) used neural networks to correlate tropical tree species richness and evenness in Borneo 

with Landsat Thematic Mapper (TM) reflectance, obtaining a correlation coefficient of 0.54 in the first study 

and of 0.69 in the second one. At a slightly higher spatial resolution, Feilhauer and Schmidtlein (2009) 

predicted species richness and diversity of a German walnut-fruit forest using the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) reflectance, obtaining respectively a coefficient of 

determination of 0.51 and 0.61. Rocchini et al. (2004) used very high spatial resolution Quickbird reflectance 

to predict species richness of an Italian wetland, finding that at the plot scale (1100 m
2
) the measure of 

spectral heterogeneity was able to predict only 20% of the variance in species richness while using 

aggregated data (1 ha), the coefficient of determination reached 0.48. In tropical forests, arboreal diversity 

can be considered a proxy measure of overall biodiversity (Gentry 1988) but, as emerged from different 

studies, the variability in vegetation biodiversity can only be partially captured with medium spatial 

resolutions and multispectral data (Carlson et al. 2007; Foody and Cutler 2003; Gould 2000; Rocchini et al. 



2004, 2007). Furthermore, indirect mapping methods, such those coupling land cover maps with remote 

sensing data to evaluate diversity of species, cannot be used where land cover information is lacking or 

where the cover is homogeneous, such as in tropical forests (Nagendra 2001).  

Fine scale biodiversity maps (< 0.5 km resolution) are needed by land managers and scientists, 

because they can provide an understanding of species distributions on a scale commensurate with 

conservation, management and policy development activities (Carlson et al. 2007). The increased availability 

of very high spectral resolution sensors has provided the opportunity to conduct detailed ecological studies 

on terrestrial ecosystems characteristics (Kumar et al. 2001; Thenkabail et al. 2004a), but few previous 

researches related hyperspectral data to biodiversity. Hyperspectral data may provide information on how 

chemical and structural properties of vascular plants vary within and across ecosystems (Martin and Aber 

1997; Ustin et al. 2004) and have mainly been applied in ecological research to temperate areas. The tropics, 

hosting a greater variety of landscapes, habitats, and species, and with more complex canopy structures, have 

received so far less attention with few published studies and none for Africa  (Levin et al. 2007; Nagendra 

and Rocchini 2008; Rocchini 2007; Townsend et al. 2008). In tropical forests, spaceborne hyperspectral data 

has been proved useful to estimate plant species richness (Kalacksa et al. 2007), while airborne hyperspectral 

data have been successfully used for tree species classification (Clark et al. 2005; Zhang et al. 2006) and 

retrieval of species richness (Carlson et al 2007).  

The objective of the present study is to assess the usefulness of airborne hyperspectral data to predict 

the arboreal biodiversity of a West African moist forest. As a biodiversity measure we used the Shannon-

Wiener Index (Shannon 1948) which is possibly the most used index allowing comparison with similar 

studies, while as modeling tool we selected Random Forests (Breiman 2001), a machine learning algorithm 

able to deal with high number of inputs, solving nonlinear problems. According to our knowledge, this is the 

first research illustrating that airborne very high resolution data are useful in predicting the Shannon-Wiener 

index of a tropical forest. 

 

2. Material and methods 

2.1 Study area and field data  



 The study area is located at the westernmost end of the West African Upper Guinean Forest Belt, in 

Sierra Leone, covering the central portion of the Gola Rainforest National Park (GRNP) and for a smaller 

extent the southern portion (Fig. 1). The region is characterized by lowland moist evergreen forests, with 

some drier types in place, dominated by Fabaceae, Euphorbiaceae and Sterculiaceae families (Cole 1993). 

The GRNP area has been protected through conservation programs since 1989 but commercial logging, most 

intensively in the southern block, was carried out in 1963–1965 and 1975–1989. Recent land cover mapping 

highlighted the importance of the GRNP in conserving this forest from anthropogenic pressure in the 

surrounding areas (Vaglio Laurin et al. 2013). The climate is moist tropical, with annual rainfall around 

2500–3000 mm, a dry season from November to April coincident with leaf-off condition of some semi-

deciduous tree species, and an altitude of 70–410 m. Floristic information has been derived from a field 

survey carried out in 2006-2007 (Lindsell and Klop 2013). During that survey all trees with Diameter at 

Breast Height (DBH) > 30 cm were recorded in circular plots sized 0.125 ha. We selected the plots surveyed 

by an hyperspectral airborne campaign, excluding those located less than 1 km from the park boundary and 

those affected by cloud shadow in the hyperspectral data, retaining a total of 64 ground truth plots.   

 The biodiversity of a particular group of organisms in a location can be quantified in terms of 

richness and evenness (Magurran, 2004). An abundance-based measure of plant diversity, like the Shannon-

Wiener Index, should reflect the structural variability of a landscape much better than species richness, 

because it captures differences in composition and dominance structure of a given plant community (Foody 

and Cutler 2003). We calculated the Shannon-Wiener index for each plot, according to the formula:  

 

 

where, is the proportion of individuals belonging to the ith species in the plot data. 

 

2.2 Remote sensing data 

 In March 2012 an airborne survey collected hyperspectral data over parts of the Gola GRNP, using   

an AISA Eagle sensor with FOV equal to 39.7°, set to record 244 bands with 2.3 nm spectral resolution in 



the 400-1000 nm range and spatial resolution of 1 m after radiometric correction and orthorectification (Fig. 

2). Atmospheric correction of the hyperspectral image strips was performed using the Fast Line-of-Sight 

Atmospheric Analysis of Spectral Hypercubes (FLAASH) algorithm (Felde et al. 2003). Due to high noise 

levels, all the bands out of the 450-900 nm range and four bands in the 759-766 nm range were removed, 

reducing the total number of bands to 186. Minimum Noise Fraction (MNF) transformation (Green et al. 

1988) was used to further reduce noise in the dataset. For each image strip, 9 to 15 MNF components were 

selected by visual screening and used to compute the inverse MNF to transform back the bands in the 

original data space. For each plot, we then calculated different statistical metrics for the 186 hyperspectral 

bands after MNF inversion, including minimum, maximum, mean, and standard deviation.   

 Derivatives can be useful for data analysis as small variations of spectral curve can be enhanced and 

background noise suppressed (Tsai and Philpot 1998, Gong et al. 1997). First order derivatives were 

generated dividing the difference between successive reflectivity values by the wavelength interval 

separating them. Then a seven-point moving filter was applied for smoothing (Han and Rundquist, 1997, 

Demetriades-Shah et al., 1990) and statistical metrics where calculated. We also calculated Photochemical 

Reflectance Index (Gamon et al. 1992), Red Edge Normalized Difference Vegetation Index (Sims and 

Gamon 2002), Atmospherically Resistant Vegetation Index (Kaufman and Tanre 1996), Vogelmann Red 

Edge Index  (Vogelmann et al. 1993), Red Green Ratio (Gamon and Surfus 1999), Simple Ratio (Sellers 

1985), Anthocyanin Reflectance Index (Gitelson et al. 2001). 

 

2.3 Retrieval method 

 Random Forests (RF) is an ensemble learning method for regression and classification, which creates 

multiple decision trees and provides in output the regression model that is the mode of the regression output 

by individual trees. The method combines bagging (Breiman 1996), which is a bootstrap aggregating 

method, and the random selection of features in order to build a collection of decision trees with controlled 

variation. Bagging improves the stability and accuracy of machine learning algorithms, reducing variance 

and avoiding overfitting. The RF algorithm estimates the importance of a variable by looking at how much 

prediction error increases when out-of-bag data for that variable is permuted while all others are left 

http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Overfitting


unchanged; the necessary calculations are carried out tree by tree as the RF is constructed (Liaw and Wiener 

2002). Out-of-bag samples can be used to calculate an unbiased error rate and variable importance, 

eliminating the need for a test set or cross-validation; because a large number of trees are grown, there is 

limited generalization error (that is, the true error of the population as opposed to the training error only). 

 In previous studies using hyperspectral data, RF has been used by Clark and Roberts (2012) to 

discriminate tropical tree species and by Leutner et al. (2012) to analyze the species richness of a temperate 

montane forest in Germany. Using coarse resolution satellite-derived and climate data, Parmentier et al. 

(2011) predicted the species richness in African rain forests.  

 In our study, we created three different datasets, one including all the metrics (minimum, maximum, 

mean, standard deviation) derived from hyperspectral bands reflectance (n = 744; 186 bands by four metrics 

each), the other including the same metrics derived from first derivatives of reflectance (n = 716; 179 bands 

by four metrics each) and the third from vegetation indices derived by reflectance (n = 7; seven vegetation 

indices calculated). We used the three data sets as input to predict the Shannon diversity index. Two 

assessment criteria are provided by RF using Out-of-bag (OOB) strategy, an unbiased internal estimate of 

RF: Pseudo R
2
 and OOB-MSE. Pseudo R

2
 is equal to 1- (MSE/variability explained). MSE is the OOB mean 

squared error of residuals. We have used Pseudo R
2
 and OOB-RMSE, corresponding to the squared root of 

OOB-MSE, to assess the performance of the model. The OOB strategy also enables two methods of feature 

ranking. The first is the increase in MSE if a particular feature is being removed. The second is the increase 

of purity among the splitting groups in the process of building a decision tree if a particular feature is used. 

We have chosen the first strategy ‘increase in MSE’ to understand the importance of spectral regions. 

 

3. Results 

3.1 Field data 

 The field data analysis showed that the 64 plots contained a total of 133 species. In the cumulated 

sampled area (8.125 ha) the total number of recorded trees was 676. The most common species and families, 

considered as those having a minimum of 10 individuals per species, composed more than 50% of the 

samples with Caesalpinioideae as the most represented family, and are illustrated in Table 1, which shows 



that only 15 species are represented by 10 or more individuals. The species-area curve (Connon and McCoy 

1979) shows that the sampled area was enough to capture most of the diversity of the site (Fig. 3). The 

Shannon-Wiener index ranged between 0 and 2.63, with a mean value of 1.68 and a standard deviation of 

0.48.  

 

3.2 Regression results 

 The results obtained from the RF OOB estimation indicates that Shannon-Wiener index can be 

accurately predicted using the plot-level statistics derived by hyperspectral bands, which were used as inputs 

in the best model, resulting in a Pseudo R
2
 = 84.91% and a OOB-RMSE = 0.30. The results obtained with 

statistics from first derivatives were lower, with a Pseudo R
2
 = 71.42% and OOB-RMSE = 0.35. Figure 4 

shows the plot between RF predictions and Shannon Index using metrics and 1
st
 order derivatives. The model 

based on vegetation indices was unsuccessful, with a negative Pseudo R
2
 that means lack of ability to explain 

more variability than those expressed by the average of Shannon values for the plots. All results are 

presented in Table 2.  

  Fig. 5 and 6 were generated to illustrate the differences in inputs ranking for the two models: Fig. 5 

for the ranking of hyperspectral metrics (maximum, minimum, mean, standard deviation of band reflectance) 

and Fig. 6 for the same metrics derived from the 1
st 

order derivative of reflectance. The y-axis represents the 

‘percentage of increase in MSE’ and the x-axis is the band region. When derivatives are used, standard 

deviations from the near infrared region provides by far the highest ranking inputs, possibly due to the ability 

of the derivatives to suppress background signals making this region more useful.  When hyperspectral band 

metrics are used, the most important inputs come from the standard deviations from the green region, but 

contributions come from all the available spectra and other metrics too. In both models the most ranked 

statistical metric has been the standard deviation, which indicates that is the spectral variation which 

provides most information on diversity variation. However, unreported tests run with standard deviation 

metrics only  produced slightly lower results in accuracy. 

4. Discussion  

 



 Our results indicate that is possible to obtain important biodiversity information at very fine spatial 

resolution over tropical forests. To our knowledge, this is the first study which demonstrates the usefulness 

of airborne hyperspectral data to predict the Shannon-Wiener index in a tropical forest.  

Few previous researches related hyperspectral data to biodiversity. At very high spatial resolution, 

Carlson et al. (2007) mapped the vascular plants species richness in lowland forest in Hawaii using the 

NASA Airborne Visible and Infrared Imaging Spectrometer (AVIRIS), covering the Visible (VIS) to Short 

Wave Infrared (SWIR) range and with a pixel size of 3.6 m. They found that the derivative reflectance in 

those wavelengths regions associated with upper-canopy pigments, water and nitrogen content, was well 

correlated with species richness across field sites. A linear regression based on the most useful wavelengths, 

centered at 530, 720, 1201 and 1523 nm, was used to predict species richness, obtaining a coefficient of 

determination equal to 0.85. A much weaker correlation was instead obtained using the Shannon-Wiener 

index. In a temperate montane forest, Leutner et al. (2012) used HyMap VIS-SWIR hyperspectral and lidar 

full waveform airborne data to model species richness and community composition using data at 7 m spatial 

resolution, finding with the addition of lidar data a coefficient of determination equal to 0.29, and obtaining 

lower result for the Shannon index (R
2
 < 0.17). The same sensor, with 5 m pixel size, was also used by 

Oldeland et al. (2010) in a savanna ecosystem, who reported a moderate relationship, with a R
2
 of 0.41 for 

Shannon-Wiener index. To our knowledge, the only other study conducted in a tropical forest with 

hyperspectral data was realized by Kalacska et al. (2007) using the satellite Hyperion sensor in Costa Rica 

with 30m pixel size. Using wavelet decomposition followed by a stepwise regression they found that the 

Shannon index could be predicted with a R
2
 of 0.84; vegetation indices were not as good predictors as 

wavelet features. The selected bands were those from the shortwave infrared region and one from the visible 

region of the spectra (621 nm). Among the studies conducted without hyperspectral data, one successful 

result has been obtained by Feilhauer and Schmidtlein (2009) who retrieved the Shannon index with a 

coefficient of determination of 0.61 in a temperate forest using ASTER data. 

Our results are very similar to those obtained by Kalacska et al. (2007) with respect to the ecosystem 

under analysis, the ability to retrieve the Shannon-Wiener index, and the poor results obtained with 

vegetation indices. Our results are also in accordance to the Grime’s (1998) mass ratio hypothesis, which 

states that immediate control over ecosystem processes, such as water balance and nutrient cycles, depends 



primarily on the functional characteristics of the most abundant species, which are generally better suited to 

the abiotic environment of the study site. By contrast, rare species are a relatively incidental set of species 

that are more variable in their functional characteristics compared with common species. Hence, the 

ecological implications of the most abundant species make the Shannon index a powerful tool for relating 

spectral and species diversity at a local scale, taking species abundance into account instead of relying solely 

on local richness (from Kalacska et al 2007). A key open question in biodiversity studies is whether 

information on canopy biodiversity can be a surrogate for sub-canopy biodiversity; Luetner et al. (2012) 

suggested that hyperspectral data reflects environmental conditions acting upon plants, such as soil pH, water 

availability, nitrogen availability and others, which are known to influence species distributions and 

community composition; Asner et al. (2008) estimated the diversity of foliar chemicals within the canopy as 

a whole using hyperspectral data, relating this to faunal and floral distributions.   

Similarly to what has been found by Zhang et al. (2006) in a tropical tree classification study, our 

results suggest that derivative analysis it might not be optimal for our aims and data, resulting in a lower R
2 

(Fig. 4; Table 2). A possible explanation can be attributed to the fact that derivative is very sensitive to noise 

in the original spectrum. The residual noise is emphasized in the derivative spectra and this may vary 

according to the pixel location on the tree crown. In addition, environmental or stress factors such as 

moisture content and leaf age introduce subtle variations in crown reflectance that are enhanced by 

differentiation. Consequently, spectral variation within crowns can be greatly enlarged in the derivative 

domain, interfering with identification of differences among crowns (Zhang et al. 2006). 

The selection as most important variables of a majority of standard deviation metrics, for both 

models, indicates that is the amount of spectral variability among plots the valuable input for predicting 

biodiversity. Spectral variation can be determined by variation within individual tree crowns, between tree 

crowns of the same species, and among spectra of different species, and the overall picture is complicated by 

reflectance, absorption, and transmission properties of the leaves and wood, viewing geometry and other 

environmental variables such as microclimates, soil characteristics, precipitation, topography and soil 

moisture, foliage age, position in the canopy, chlorophyll content, forest vigor and the presence of liana 

(Zhang et al. 2006). Within canopy variation, even within the same tree, is commonplace as leaves may be of 

varying age and suffer from different levels of necrosis, herbivory and epiphyll cover (Lucas et al. 2008). At 



the crown level, contribution from non-foliar surfaces and variations in shading and anisotropic multiple 

scattering relative to illumination and view geometry may led to further confusion (Clark et al., 2005). The 

selected scale of analysis can also have an influence on accuracy of results: when pixel dimensions shrink 

below the size of the object studied (for instance individual tree crowns), then a sudden increase in the 

variability of reflectance values from pixels that cover the same individual tree may happen, due to some 

pixels covering leaves in sunshine and others located over dark gaps between leaves, or on the tree bark 

(Nagendra and Rocchini 2008; Rocchini and Vannini 2008). In this research the obtained results are similar 

to those recorded for another tropical area with a hyperspectral satellite sensor having larger spatial 

resolution (Kalacska et al. 2007), indicating that our processing successfully removed noise, and that 

airborne hyperspectral data are an optimal tool to predict forest biodiversity.  

There are specific limitations affecting the present study, including: the time lag between field data 

collection and airborne survey; the quality of field plots geo-location, obtained without the differential 

Global Positioning System correction and thus prone to errors; the limited spectra collected by the sensor, 

which does not include the SWIR region. Considering that these most of these limitations can be easily 

overcome in other studies, we evaluate the presented results as very encouraging for future biodiversity 

studies at local scale. 

 

5. Conclusions 

 The present research demonstrates for the first time in Africa and, to our knowledge in tropical 

forests, the ability of an airborne hyperspectral sensor to predict the canopy Shannon-Wiener index. 

  The use of airborne hyperspectral sensors can specifically target areas with high biodiversity or 

vulnerability to change (e.g., occurring on deforestation fronts) and/or tree species that are of particular 

importance (Lucas et al. 2008). Regional monitoring can be instead done by means of satellite-borne 

hyperspectral systems, further allowing multi-temporal studies.  



 With different forthcoming satellite hyperspectral missions, there is a clear need to increase research 

on hyperspectral applications, as well as to increase the collection and dissemination of quality biodiversity 

field information, and to incorporate these remote sensing data into mapping and monitoring activities, as a 

way to improve our understanding of the distribution of life on earth.   

 The use of hyperspectral imagery can be preferred in inaccessible landscapes and, with a proper 

sampling strategy, airborne data can provide transects useful as ground truth surrogates to estimate the 

biodiversity of larger areas.  

 Studies using hyperspectral and lidar data for species distribution mapping mostly report increased 

accuracy when using both sensors with respect to their single use (Dalponte et al. 2008; Feret and Asner 

2012; Jones et al. 2010), but this integration has yet not been proven to be equally effective for estimation of 

biodiversity; the inclusion of lidar derived geomorphological predictors, which have been shown to influence 

species distribution patterns at various scales (Hofer et al. 2008), can be a way to successfully integrate these 

two sensors. It is also important to explore the extent of generalization of the hyperspectral-biodiversity 

relationship, at least at regional biome level, as this could further reduce the need of site-specific ground 

truth. All these topics will be the addressed by further research of our group. 
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Tables: 

 

Table 1: list of most common trees (by individuals’ number and % over all trees) found in the study area 

Species name # of trees  % of trees  Family name 

Heritiera utilis 61 9.0 Malvaceae 

Protomegabaria stapfiana 57 8.4 Phyllanthaceae 

Cynometra leonensis 50 7.4 Caesalpinioideae 

Brachystegia leonensis 28 4.1 Caesalpinioideae 

Gilbertiodendron bilineatum 28 4.1 Caesalpinioideae 

Stachyothyrsus stapfiana 24 3.6 Caesalpinioideae 

Phyllocosmus africanus 20 3.0 Ixonanthaceae 

Xylopia quintasii 18 2.7 Annonaceae 

Parinari excelsa 18 2.7 Chrysobalanaceae 

Calpocalyx brevibracteatus 16 2.4 Mimosoideae 

Sacoglottis gabonensis 14 2.1 Humiriaceae 

Octoknema borealis 13 1.9 Olacaceae 

Uapaca guineensis 13 1.9 Euphorbiaceae 

Berlinia confusa 10 1.5 Caesalpinioideae 

Bussea occidentalis 10 1.5 Caesalpinioideae 

Total 380 56.2  

 

Table 2: Random Forests models results using the three input sets. 

 

Random Forests Out-of-bag estimates 

 Shannon index 

Hyperspectral band reflectance metrics Pseudo R
2
 = 84.91%, OOB-RMSE = 0.30 

First derivatives reflectance metrics Pseudo R
2
 = 71.42%, OOB-RMSE = 0.35 

Vegetation indices Pseudo R
2
: -15.97%, OOB-RMSE = 0.51 



 

Figure legends: 

 

Figure 1: the Gola Rainforest National Park, the study area in Sierra Leone. Strips of hyperspectral data 

collected over the area are shown, as well as location of field plots. 

 

Figure 2: example of one of the strips of hyperspectral data (in false-color composite at 807.5 (R), 597.3 (G) 

and 467.3 (B) nm) with overlapped field plots in yellow. 

 

Figure 3: species-area curve. 

 

Figure 4: scatterplots of predicted versus expected values obtained by model based on hyperspectral 

reflectance band metrics (left side) and first derivatives reflectance metrics (right side). 

Fig. 5: ranking of hyperspectral metrics, with maximum, minimum, mean, standard deviation of band 

reflectance in the four different frames of the figure. The y-axis represents the percentage in increase in MSE 

and the x-axis is the band region (in nm). 

 

Fig. 6: ranking of derivative metrics, with maximum, minimum, mean, standard deviation of first derivatives 

of band reflectance in the four different frames of the figure. The y-axis represents the percentage in increase 

in MSE and the x-axis is the band region (in nm). 
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Chapter 8 

 

Research summary 

 
This thesis focuses on two main topics in forest research: classification and modeling of 

forest parameters applying remote sensing data. Information provided by reliable land 

cover map is fundamental for sustainable management of forest resources. The 

statistical modeling of forest parameters (e.g. biomass and biodiversity), on the other 

hand, is required to assess the forest resources more efficiently, and coupled with 

remote sensing data it allows to gather information over large areas. 

The main contributions of the present work include: 

1. The application of innovative techniques and data to improve land cover 

mapping, above ground biomass estimation, and biodiversity estimation. 

2. The adoption of advanced statistical modeling tools and classification algorithms 

to deal with complex retrieval and classification problems. 

In the first case, the integration of data from active and passive sensors has proven to 

increase the accuracies in the different case studies, in which multispectral, 

hyperspectral, SAR and LiDAR datasets were used. This integration confirmed that data 

fusion is probably the best approach to capture the variability of complex forest 

environments. In the second case, the use of advanced algorithms not only improved the 

tests results, but allowed the joint use of different sensors, from which a large amount of 

information was extracted; it also allowed ranking the features extracted from remote 

sensing data with respect to their usefulness in solving classification and estimation 

problems.  

 
 
 
 
 
 
 



8. Summary 

 
 

159 
 

8.1 Challenges addressed 
 
According to the results obtained from this study the research challenges listed in 

Chapter 2 are addressed as follows: 

 

1. Ancillary data usefulness in AGB LiDAR-based estimations 

 

The case study illustrated in Chapter 5 investigates the estimation of AGB in a 

temperate forest in Sierra Nevada, California, in a biome in which LiDAR already 

proved to be a very accurate instrument for this task (Lefsky et al. 2002). In such 

studied areas, many different vegetation information layers are available thanks to 

government efforts devoted to improve the conservation and management of these 

forests.  The challenge in this specific study was therefore to examine innovative 

strategies to further improve the ability to estimate biomass with remote sensing tools. 

An accurate literature review showed that the relationship between LiDAR height 

metrics and AGB is influenced by vegetation type (Drake et al. 2003; Naesset and 

Gobakken 2008) and this information, at the fine scale needed considering the extent of 

the area under examination, is often available in protected or managed areas of 

developed countries. Specifically, in the area of interest aerial photographs were 

collected and used to generate a State detailed vegetation map. Orthophotos are often 

available in the European areas too, as well as in other non tropical countries, and 

detailed land cover maps can also be found over specific areas such as reserves or where 

key natural resources are found. However, this potentially useful information has never 

been used as ancillary data for generating biomass estimations. The following step was 

then identify the best way to integrate categorical information, in the case study a 

vegetation map, into a retrieval algorithms, avoiding the development of distinct 

biomass models for each vegetation type. In fact, in forestry research the field validation 

dataset is always limited due to the huge resources needed for its collection. Splitting 

the field data into subsets belonging to each vegetation type is to be avoided, as a 

reduced number of samples negatively affect the robustness of the statistics behind the 

models. A solution to this issue was found by means of MEM, which attribute random 

effects to vegetation types while developing unique biomass estimation for the area of 
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interest. The case study demonstrated that the incorporation of ancillary information in 

MEM, compared to the use of LiDAR data alone in multiplicative models, resulted in 

an increase of the R
2
 of the biomass estimation from 0.77 to 0.83 with RMSE (root 

mean square error) reduced by 10% (from 80.8 to 72.2 Mg/ha). 

 

2. Ancillary data (LiDAR-derived) usefulness in discriminating vegetation types 

 

Ancillary data are known to be useful in land cover mapping at medium resolution 

scale, as exemplified by the use of terrain elevation data in the CORINE program of the 

EU (Buttner et al. 2002). Vegetation type mapping can be a challenging task due to 

spectral similarities among vegetation, and has to be conducted at a spatial resolution 

compatible with the size of observed objects. For the peculiar case of land cover 

mapping of Chapter 4, involving the detection of fine differences in vegetation, the 

ancillary information generated from traditional remote sensing tools has been rarely 

used.  The case study illustrated in Chapter 3 introduces an innovative way to exploit 

LiDAR information together with SAR data, therefore two unconventional tools for 

vegetation resources mapping. With respect to more traditional multispectral sensors, 

both instruments present advantages. LiDAR by-products, in this case the Canopy 

Height Model, provide height data which can be important in the detection of specific 

vegetation types. LiDAR-derived products are often available from government data 

collection efforts, as exemplified in Italy, in which all the coastal strip and some inland 

areas have been surveyed with LiDAR, with datasets and by-products made available 

through the Italian Ministry of Environment Geoportal website 

(http://www.pcn.minambiente.it/GN/index.php?lan=en, accessed on November 11, 

2013). SAR data offer the advantage of being insensitive to cloud cover and can provide 

information on volumetric scattering which is in relationship to the above ground 

biomass content of vegetation (Imhoff 1995). In this case study, the integration of 

multiple data not only provides a mapping accuracy superior to the one obtained by 

means of high resolution multispectral data (SPOT 5), but allows to better distinguish 

vegetation types which are less accurately identified by the optical dataset. In fact, the 

overall accuracy obtained by joint datasets reached 97.7%, against 93.0% obtained with 

http://www.pcn.minambiente.it/GN/index.php?lan=en
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SPOT 5 data; separability analysis indicated a better performance of joint datasets in the 

distinction of conifer forests from dwarf pines. Neural networks, an advanced machine 

learning tool, allow the successful integration of the two different datasets providing 

classification accuracy significantly superior to the widespread Maximum Likelihood 

classification algorithm. Therefore, this study identifies an innovative way to solve a 

complex vegetation classification problem, making full usage of the most advanced 

remote sensing dataset and data exploitation techniques. 

 

3. Data fusion: evaluating the benefits of optical and RADAR sensors integration for 

tropical land cover classification 

 

Tropical forested landscapes present different challenges with respect to their 

classification, including the presence of numerous vegetation classes characterized by 

spectral similarities, the similarities between natural vegetation and tree plantations, the 

high fragmentation of land cover types creating a mosaic of classes, the remoteness of 

the areas and related constraints for field data collection, and the atmospheric adverse 

conditions which negatively affect the acquisition of quality optical remote sensing 

data. On the other hand, detailed land cover maps of tropical regions are needed to 

support local management, international efforts such as REDD+, and to better 

understand the role of tropical forests for climate change science (Valentini et al. 2013). 

While optical data have been for decades the primary data source for land cover 

mapping activities, in recent years SAR sensors have emerged as important tools in 

vegetation studies (Rahman and Sumantyo 2010). Not only SAR data are insensitive to 

persistent cloud cover affecting tropical regions (Lu et al. 2007), but they also provide 

volumetric scattering information which is complementary to the canopy reflectance 

data provided by optical sensors. For instance two distinct vegetation type can have 

similar reflectance response but very different volumes, as shown in the case of Alpine 

vegetation in previous paragraph. Therefore, the joint use of these two sensors is highly 

recommended in challenging land cover tasks (Lefsky and Cohen, 2003). The tropical 

land cover mapping activity illustrated in Chapter 5 is an example of successful 

integration of two different optical data (Landsat TM and ALOS AVNIR), characterized 



8. Summary 

 
 

162 
 

by different spatial resolutions, with the ALOS PALSAR L-band data. In this area cloud 

cover is so persistent that, over approximately a 10-year period, only two scenes were 

found in archive, and both presented regions of isolated clouds that prevent full 

coverage of the area of interest. The SAR-optical data fusion significantly improved the 

classification accuracy of the area with respect to single data use, reaching the highest 

overall accuracy (97.5% with AVNIR as optical data and 92.7% with Landsat TM as 

input) allowing the detection of different successional forest stages and the distinction 

of semi-deciduous from moist forest type. The use of texture analysis, a well-known 

technique in image processing (Berberoglu et al. 2007; Chica-Olmo and Abarca-

Hernandez 2000), confirmed this as an important technique to improve classification 

accuracy, especially with respect to the identification of tree plantations having a 

regular geometry.  A semi-automatic method for the selection of the numerous features 

derived from optical and SAR data processing was also identified. The use of Neural 

Networks algorithm optimized the integration of the two sensors and brought a 

significant increase in classification accuracy with respect to the traditional Maximum 

Likelihood classification approach. Finally, the SAR data single use, even if it did not 

allow resolving ambiguities among closely related forest types, was also successful in 

indentifying main land cover classes. The obtained overall accuracy equal to 78.1% 

confirms the importance of this data type in case of optical data unavailability, also in 

view of the biomass-related information that SAR can provide.  

 

4. Data fusion: evaluating the integration of LiDAR and hyperspectral sensors for 

AGB estimation 

 

While LiDAR sensor proved to be very useful in estimating AGB in certain regions and 

ecosystems, its application in African environments has been very limited and mainly 

confined to the satellite GLAS instrument (Baccini et al. 2008; Mitchard et al. 2012). A 

recent meta-analysis on LiDAR-based biomass estimation revealed a broad range of 

accuracy values for tropical forests studies (Zolkos et al. 2013). Therefore, assessing 

LiDAR small footprint ability to retrieve biomass in African tropical forests is a 

priority, also in view of carbon mitigation strategies on-going in the continent. While 
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LiDAR provides structural forest information, hyperspectral data record canopy spectral 

information that is potentially related to AGB, by means of functional plant differences 

which in turn affect species parameters, such as wood density and biomass content 

(Baker et al. 2004). Hyperspectral data are also a powerful tool to stratify vegetation 

types prior to the estimation of its biophysical parameters. New satellite missions, 

which are planned for the very next few years, will provide innovative data to foster 

ecological monitoring, and additional efforts to fully understand the role hyperspectral 

data can have in environmental applications are therefore requested. The case study 

illustrated in Chapter 6 is an example of innovative data fusion, involving small 

footprint LiDAR and very high spatial resolution hyperspectral imagery from an 

airborne survey conducted over a West African moist tropical forest. The limited 

improvement in estimation accuracy obtained with hyperspectral data addition to 

LiDAR metrics (0.7 R
2
 versus 0.64 obtained with LiDAR only) is discussed in the 

context of the scarce available research regarding the joint use of these two datasets for 

AGB estimation. Sources of uncertainty are also identified, and innovative approaches 

to preprocess and extract data from the vast amount of available information are also 

used. Specifically, the use of Partial Least Squares Regression allowed the simultaneous 

use of approximately 766 collinear features as regression inputs, generated from 

statistics calculated out of the 186 hyperspectral bands and LiDAR point cloud. PLSR 

results outperformed those obtained by a traditional multiplicative power model (0.7 R
2
 

versus 0.57 obtained with power model) and demonstrated its usefulness in integrating 

very complex datasets. The scores calculated by means of the Variable Importance in 

the Projection, a tool available for PLSR results and applied in Chapter 6, identified the 

LiDAR and hyperspectral most important features for the biomass model. This helped 

in better understanding the biomass-height relationship for this African forest and to 

relate the hyperspectral information to foliar biochemistry.  

 

5. Evaluating the impact of field data geolocation in LiDAR-based AGB estimates 

 

One of the main problems and uncertainty causes encountered in the modeling of forest 

parameters by means of remote sensing is related to the availability and quality of field 

data, which are used to train, validate and test the models. In the different case studies 
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here presented the importance of quality field data is stressed, especially with respect to 

geolocation. The adoption of a fine scale of analysis, made possible by airborne data, 

further sharpens the geolocation accuracy problem. The delay of GPS signal due to tree 

cover is a problem which can partially be mitigated by the use of differential GPS 

technique. But sometimes, as in the case of our African area, the network of GPS bases 

needed for differential correction is not available, and surrogate base stations have to be 

set up using two GPS units, causing additional operational problems. The dimension of 

field plots is also an important factor in view of increasing geolocation accuracy, as 

larger plots better accommodate positional errors, besides reducing field biomass 

variability. The establishment of plots near features recognizable from aerial ortho-

photographs is another option, which can help in the co-registration of remote sensing 

and field data. Use of professional GPS units is also recommended. 

This research discusses the geolocation accuracy problem in the context of three 

different cases of estimation of forest parameters: for the AGB and biodiversity 

modeling in Gola Rainforest National Park (Chapters 6 and 7), and for biomass 

estimation in Sierra Nevada (Chapter 5). In the first two cases, a precise quantification 

of the error introduced in the estimates by geolocation poor accuracy was not possible, 

but evidences such as those visible in aerial photographs indicated this as a primary 

source of uncertainty. In Sierra Nevada the simultaneous presence of two GPS 

measurements, one taken with a recreational unit and the other obtained by means of 

differential correction technique, allowed the exact quantification of the error 

introduced by poor field plot geolocation, which caused a decrease of R
2
 by 0.1-0.13 

and an increase in RMSE of 21-31%.  Finally, as evidenced in the hyperspectral and 

LiDAR fusion case study in Chapter 6, geolocation accuracy problems can interest not 

only field data, but also remote sensing data itself: a mismatch in the order of 1-4m was 

observed between LiDAR and hyperspectral, thus being another source of error and an 

area of possible improvement in data collection planning.  
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8.2 Conclusions  

 

Overall, spanning over different ecosystems and research problems, this study offered to 

me the opportunity of appreciating the difficulties, challenges and future directions in 

forest and vegetation monitoring and research based on remote sensing data. A number 

of recommendations emerged from single case studies, which could be potentially 

useful in other forest researches: 

 

1. Maximize the use of ancillary information, which is sometimes available 

through other research or monitoring activities, also as a way to foster 

collaboration and data sharing.   

 

2. Use advanced algorithms, which are demonstrated to improve results and which 

may better deal with new generation remote sensing data, characterized by 

increased spatial and spectral resolutions or polarizations. 

 

3. Combine multi‐source remote sensing data by means of data fusion, as different 

sensors can contribute to bring valuable and complementary information over 

the target. 

 

4. Apply advanced image processing techniques to remote sensing data, thus 

improving preprocessing steps such as noise reduction in SAR and hyperspectral 

data, or feature extraction, such as in the case of texture analysis in classification 

studies. 

 

5. Improve field data collection in quality and quantity, to better represent the 

vegetation variability and improve modeling, taking into account the spatial 

resolution of the remote sensing data being used. 

 

6. Increase the use of SAR satellite data, which are an invaluable tool in tropical 

areas affected by persistent cloud cover. 
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While the collection of proper field data remains a difficult point to address, especially 

in remote regions, my future research will keep on focusing on data fusion and the 

application of innovative techniques and algorithms to deal with complex and multiple 

datasets. Datasets from forthcoming missions (i.e. ALOS2, Sentinel-1, Sentinel-2) will 

soon provide new data to exploit and evaluate, hopefully having improved capability to 

provide information for forestry research.  
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