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Abstract 

 

Today the continuous increase in archives' size and EO (Earth Observation) 

sensors' variety requires new methodologies and tools for information mining and 

management. With this growth, new approaches for image information mining, 

multi-domain information management, and knowledge management and sharing 

(in support of information mining) are necessary. An automatic chain reduces the 

human assistance in the data analysis, allows to gain time on the entire image 

processing and can be designed to retrieve information in Near Real Time (NRT). 

Such concepts find an important field of application in the monitoring of urban 

environments, where the knowledge of changes in either natural resources or man-

made structures is a valuable source of information for decision-making processes. 

These images opened new scenario in classification, considering the information 

deriving from the study of the context and pattern recognition in addition to the 

spectral characteristics. This information can be the used in visual interpretation, 

such as texture and shape, transposed to digital analysis. Besides, the availability of 

hyperspectral data with a spatial resolution around few meters joins the potentiality 
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of the VHR imagery with the use of the entire spectrum from visible to the thermal 

part. 

This work aims at proposing an innovative methodology to extract information 

automatically from urban areas with Very High Resolution images (multispectral 

and hyperspectral) considering the application of advanced neural networks 

techniques. Actually, a careful literature review work led to conclude that the 

research in this application domain is still at a initial step. 

After a pre-processing stage to retrieve reflectance values, allowing a comparison 

of the spectral response in all the images, an exhaustive analysis of the textural and 

spectral behaviour of the main land cover classes (vegetation, water, bare soil, 

buildings and bare soil) is performed with the objective of determining which 

characteristics are common in each cover class and which allow their distinction.  

Successively, the accuracy of the proposed methodology has been verified in all the 

tested images, showing satisfactory results of at least 88 % of the overall accuracy 

with a significant improvement respects to a standard automatic classification 

technique as K-means algorithm. 

Finally, the potentiality of the proposed method has been shown in the application 

of automatic classification to urban thermography. 
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Introduction  

 

The retrieval of information in urban areas: 

a challenging issue 

 

For the first time in human history, more people are living in towns and cities than 

in rural areas. Approximately 75 % of the world population lives in urban areas; by 

2020, this will be 80 %.
1
  These areas represent a small fraction of the land surface 

but they affect large areas due to the magnitude of the associated energy, food, 

water and raw material demands.  

Moreover, cities are dynamic environments, where urban sprawl is re-shaping 

landscapes and affecting people‘s quality of life and the environment. 

                                                 
1
 European Environment Agency 
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It is easy to understand that they are one of the most complex and intricate 

environments and they are also among the most rapidly expanding and changing 

elements of the landscape (Fig. 1). 

 

Figure 1:An urban areas in Colorado: it is possible to see changes in land cover from 1992, to 1996 

and 2002 (from [9], courtesy of Digital Globe) 

 

These preliminary considerations could explain the necessity to monitor urban 

areas with a certain accuracy and a high frequency. 

Reliable data in populated areas is essential for urban planning: knowledge of 

changes in either natural resources or man-made structures is a valuable source of 

information for decision-making processes [1]. Conversely, lack of information 

contributes to problem such as ineffective urban development programs and 

activities, unplanned investment projects, poor functioning land markets, and 

disregard of the environmental impact of developments [2]. 

 

 

 



Introduction            5 

 

Since the late ‗70s, with the first Landsat missions, satellite remote sensing is 

increasingly being used as a timely and cost-effective source of information in a 

urban planning [3], [4].  

During the last two decades, significant progress has been made in developing and 

launching satellites with instruments, in both optical/infrared and microwave 

regions of spectra, well suited for Earth Observation with an increasingly finer 

spatial, spectral and temporal resolution [5]. With the recent availability of 

commercial Very High Resolution (VHR) remote sensing multispectral imagery 

from sensors such as IKONOS and QuickBird, it is possible to identify small-scale 

features such as individual roads and buildings in the urban environment (roessner 

et. al, 2001) and have a specific potential for more detailed and accurate mapping 

of urban areas [6], [7]. Imagery from these sensors is an important source of timely 

data, which can be used for the creation and/or updating of GIS vector layer [8].  

However, VHR images analysis is one of the most challenging areas for the remote 

sensing community due to its high spatial and spectral diversity. From the physical 

composition point of view, several different materials can be used for the same 

built-up element (for example, building roofs can be made of clay tiles, metal, 

concrete, glass, plastic). On the other hand, the same material can be used for 

different built-up elements (for example, concrete can be found in paved roads or 

building roofs [9]. Fig. 2 shows how the same surface (two types of roads) can be 

made from different material and two different surfaces (a road and a building) can 

be made with the same material (concrete). Misclassification occur between 

buildings and streets, which are caused by spectral similarities between materials 

covering these surfaces and the influence of shadow. 

 

A different spectral behavior could be explained also from the effect of the 

atmosphere, which operates at different wavelengths. 
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Atmospheric correction provides estimates of the radiation emitted and reflected at 

the surface, and it is necessary for observing parameters that are intrinsic to the 

surface. accurate atmospheric correction removes the effects of changes in satellite-

sun geometry and atmospheric conditions due to aerosol scattering [10]. 

Atmospherically corrected surface reflectance images improve the accuracy of 

surface type classification [11], [12] and allow to compare the spectral signatures 

from different images. 

 

 

 

 

 

 

 

 

Figure 2:  a detail of roads and buildings from Quickbird images (Tor Vergata area) 

Therefore, the use of other information on top of spectral information for the urban 

land-cover classification is essential [13], [14]. 

This additional information can be the features used in visual interpretation, such as 

texture and shape (Fig. 3), transposed to digital analysis.  The features used in these 

interpretation keys are: shape, size, pattern, tone, texture, shadows, site and 

association [15], [16], [17]. This additional information may help to overcome 

spectral similarities between specific classes [18], [19], [20]. 
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(a) 

(b) 

(c) 

Figure 3: visualization of Quickbird image of Tor Vergata with spectral (a), texture (b) and shape 

(c) information 
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Ever since the first multispectral imagery became available from civilian remote 

sensing satellites in the early 1970s, considerable effort has been devoted to 

supervised classification of image data with the aim of producing high-quality 

thematic maps and establishing accurate inventories of spatial classes [21]. There 

have been advances under several aspects of supervised satellite image 

classification, developing components of the classification algorithm including the 

training or learning strategy and approaches to class separation based on statistical 

or other estimators and class separability indexes. 

 

But today, the continuous increase in archives' size and EO sensors' variety, 

requires new methodologies and tools for information mining and management. 

The manual process performed by experts to mine information from images is 

currently too complex and expensive to be applied systematically on even a small 

subset of the acquired scenes. The issue might become even more challenging in 

future since more missions - including constellations - are being planned, with 

broader sensor variety, higher data rates and increasing complexity. 

With this growth, new approaches for image information mining, multi-domain 

information management, and knowledge management and sharing (in support of 

information mining and training) are necessary, allowing the user demand for 

simultaneous access to multi-domain data. An automatic chain reduces the human 

assistance in the data analysis, allows to gain time on the entire image processing 

and can be designed to retrieve information in Near Real Time. 

Since from the late 60‘s, unsupervised methods have been developed [22]: they 

have assumed more importance with the above mentioned reasons and now they 

represents one of the focal point in feature identification in urban areas [14]. 
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The obtained classified maps of urban area can be used for several purposes, as 

urban planning [23], crisis management or in support to civil protection activities 

[24], human settlement damage [25] and urban thermography [26]. 

 

To summarize, the idea of this study is to show how to retrieve information on the 

land cover from VHR images (multispectral and hyperspectral), which is possible 

exploiting the spectral, textural and shape information from the starting images. 

After a preprocessing stage, these data constitute the input for an original automatic 

classification tool: the proposed processing chain is able to return as output a 

classified image, that is a valuable source of information for decision-making 

processes, urban planning and NRT monitoring. 
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Chapter 1  

 

Automatic classification of Very High 

Resolution optical images: state of the art 

 

 

This chapter aims at describing the recent progress in the classification of urban 

areas,  discussing the evolution from the first multispectral sensor from ‗70s until 

the recent Very High Resolution multispectral and hyperspectral satellites. 

The advantages derived by an improved spatial resolution opened new scenarios in 

the amount of information to retrieve from urban areas, with a detail of a narrow 

road and a single building. New image information mining techniques have been 

developed in these last years and appreciable results derived from the proposed 

methodology based on neural networks classification methods. 
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1.1 The evolution of optical sensors   

First multi-spectral Landsat sensor was launched in 1972, starting to collect 

information about Earth from space in several bands. Landsat satellites have taken 

specialized digital photographs of Earth‘s continents and surrounding coastal 

regions for over three decades, enabling people to study many aspects of our planet 

and to evaluate the dynamic changes caused by both natural processes and human 

practices
2
. Landsat sensors have a moderate spatial-resolution (30 meters): which 

means that it is possible to see large man-made objects such as highways and it is 

coarse enough for global coverage, yet detailed enough to characterize human-scale 

processes such as urban growth. Nowadays, optical satellite have increased their 

spatial resolution in order to produce Very High Resolution images. 

The first SPOT mission opened the epoch of very high resolution instruments, 

making available new images characterized by a reduced number of spectral bands 

(three for visible range and one for NIR range) with a spatial resolution less than 10 

meters
3
. Missions like SPOT5, Ikonos [101], Quickbird [102] and World View-II

4
 

are still providing multi-spectral acquisitions at few meters of spatial resolution and 

panchromatic data at less than one meter. New applications and products have been 

developed and made available for the users such as satellite cartography and land 

cover maps at very high resolution. 

With technological improvements, another type of sensors is acquiring more and 

more importance: they are called hyper-spectral sensors. 

A hyperspectral sensor owns several contiguous and narrow bands (Fig. 1.1), 

frequently reaching hundred of them. The hyperspectral measurements have 

demonstrated very high performances in several cases, allowing to distinguish the 

                                                 
2
 Landsat programme home page: http://landsat.gsfc.nasa.gov/ 

3
 SPOT image homepage: http://www.spotimage.com/ 

4
 World view II homepage: http://www.satimagingcorp.com/satellite-sensors/worldview-2.html 

 

http://landsat.gsfc.nasa.gov/
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response of a specific material. The development of this technology for the space 

satellites is more complicate and very expensive in terms of payload design, 

maintaining and calibration. For that reasons many of these sensors are airborne 

(i.e. MIVIS, AHS
5
, ROSIS

6
). 

By the way, there are few cases of spaceborne hyperspectral sensors like 

Hyperion
7
, developed by NASA, and CHRIS Proba-1

8
, developed by a European 

consortium founded by ESA. The upcoming EnMap
9
 mission from DLR, Prisma

10
 

from ASI and HySPIRI from NASA, shown an increasing interested from the Earth 

Observation community in the Hyperspectral sensor development. 

 

 

 

 

 

                                                 
5
AHS: http://bo.eufar.net/document/publi/124901161346543eefc58cf:SPIE_RS05_INTA_5978-

56.pdf 

6
 ROSIS: http://www.opairs.aero/media/download/pdf/rosis-description.pdf 

7
 Hyperion Instrument: http://eo1.gsfc.nasa.gov/Technology/Hyperion.html 

8
 ESA Chris Proba home page: http://earth.esa.int/missions/thirdpartymission/proba.html 

9
 EnMAP homepage: http://www.enmap.org/ 

10
 PRISMA homepage: http://www.asi.it/en/flash_en/observing/prisma 
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Fig. 1.1: an example of the hyperspectral cube (Moffet Field Airport –California-) 
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1.2 Classification methods 

In order to make use of the multitude of digital data available from satellite 

imagery, it must be processed in a manner that is suitable for the end user. For 

many projects this processing includes categorizing the land into its various use 

functions. There are two main categories that can be used to achieve this outcome 

and they are called supervised and unsupervised classification techniques. In a 

supervised learning, the training will benefit from the assistance of the teacher and 

desired output is already known: the user guides the image processing software to 

help it decide how to classify certain features (through some ROI, Regions of 

interest). For an unsupervised learning rule, the image is classified without benefit 

of any teacher and the software does most of the processing on its own.  

The state of the art of the classification techniques available is following presented 

with a focus on the unsupervised methods to extract information automatically 

from images. 

 

1.3 Unsupervised methods 

Unsupervised methods have a quite long history in remote sensing. 

The most well-known techniques for unsupervised classification are the K-means 

[103] and ISODATA [104]: these are the fastest from the computational point of 

view but, they do not provide accurate results in most of the cases.  

K-means is sensitive to the choice of the number of clusters, which usually is a 

critical issue. Different random initializations of the cluster centers result in 

significantly different clusters at the convergence. Thus, the algorithm is usually 

run many times with different initializations in an attempt to find a good solution. 
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Recently, in the machine learning community [105], the main difference is between 

methods based on:  

- Learning from experimental data (examples, samples, measurements, 

records, patterns, or observations) by neural networks (NNs) and support 

vector machines (SVMs); 

- Embedding existing structured human knowledge (experience, expertise, 

heuristics) into workable mathematics by fuzzy logic models (FLMs). 

This introduction is focused on the first category, considering the unsupervised 

approach to the problem. 

In this context, Transductive SVMs (TSVMs) [106], [107] and semisupervised 

SVMs (called also S
3
VMs) [108] proved particularly effective in several 

applications and they have been adapted in Remote Sensing. In [109], TSVMs have 

been applied to Landsat images classification, in [110] S
3
VMs  have been focused 

to classify Hyperion data set and in [111] SVMs detected man-made objects from 

SPOT5 images. About NNs, their advantages will be discussed in section 1.4.1. 

Another methodology is represented by the decision tree: a Decision Tree 

Classifier (DTC) is a hierarchical classifier that recursively partitions the 

classification problem in smaller sub-problems on the basis of given statistical or 

empirical criteria. At each node of the tree a simple decision rule with predefined 

threshold values is used. In [112] this method has been used to classify VHR 

images. 

Appreciable results in automatic classification seem to derive also from the 

application of Self Organizing Map (SOM) developed by Kohonen [113], [114] 

during his long studies dedicated to this topic. Even if these particular unsupervised 

neural networks have been used in image analysis in the second part of the 80‘s, 
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they begin to be used in remote sensing in [115] on Landsat images clusterization. 

Successively, these NN‘s helped for SPOT image characterization [116]. 

Another use of SOM can be found in Laaksonen [117] where a hierarchical SOM 

has been utilized in Content-Based-Image Retrieval (CBIR). Due to the tree 

structure, the number of map units increase when moving downwards the SOM 

levels of the TS (Tree Structured) SOM. This concept has been extended in [118] 

for building detection with spectral and textural parameters in a CBIR; which 

means that the methodology does not  provide a direct delineation of objects of 

interest but could point out locations in the image where there may be potentially 

interesting structures. 

So, nowadays, there are no developed methods to classify automatically VHR 

image with SOM. 

 

1.3.1 SOM 

A SOM can automatically form one- or multi-dimensional maps of intrinsic 

features of the input data. These data are presented in mixed random order to the 

network which is capable of learning complicated hierarchical relations within the 

considered high-dimensional spaces. In remote sensing, SOMs are used to identify 

measurements relationships which they can re-organize in several output 

cluster/classes. 

 

1.3.1.1 Net structure 

A neural network consists in a series of inputs and in a n-dimensional grid of 

neurons. Each input is connected to all neurons of the grid: the resulting matrix of 

weights is used to propagate the inputs of the network to the neuron on the map.  
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The mathematical formulation that describes a general net is: 

                                              

         

   

 

                                                                                                                        

                                                                         

Where     indicates the weight of the connection between the neuron    and the 

input   . 

An input is presented to all the neurons of the net: a winning one is generally 

selected select with the Euclidean Distance d: 

    

            

 

   

                                                                                                            

 

where i = 1, … n and n is the number of the components of the input, x is the input 

and y is the neuron weight. It means that the neuron with the lower value d is 

activated. 

The peculiarity of SOM is that the winning neuron has an area of influence, called 

bubble. The interaction that the winning neuron has with its neighbors is defined 

according to a neighborhood function λ, which normally takes value between 0 and 

1.  
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This interaction determines a modification of the weights dependent on 

neighborhood function and the response of the neuron. Gauss‘s function  can be 

used for this purpose: 

   

     
       

 

                                                                                                                           

           

where rc is the position vector of the winning neuron, rj is the position vector of the 

jth neuron of the map (Fig. 1.2) and σ is named proximity parameter.  

 

Fig. 1.2: radius of interaction         

 

When the process starts, σ  parameter has a high value, thus the area of bubble is 

wide. During the learning phase, the bubble decreases its dimension, until a certain 

user-defined value.  

The weights of the neurons in the bubble are, therefore, updated according to the 

following formula: 

 

                                                                                                            

where   is the learning rate and decreases gradually during the learning phase. 
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1.3.1.2 SOM Parameters Setting 

Different parameters must be defined in order to synthesize a SOM. The 

parameters are: dimension, learning rate, neighborhood function and training 

cycles. In the following subsection a description of these parameters is described. 

 

a) Dimension 

A bi-dimensional configuration is usually preferred. Three-dimensional 

configuration does not give a substantial advantage during the elaboration of 

information and usually causes a complication in the management of the map itself.  

The number of neurons is variable and it depends on the purposes of the analysis, 

the input structure and the internal relationships between neurons. 

 

b) Learning Rate 

In the early cycles,   value should be 1 and then decreased until it reaches its 

minimum value. A possible formulation is: 

 

        
    

    
 

 
    

                                                                                                        

 

where ηmin=0,  ηmax= 1, tmax = number of cycles and t is the current cycle. 

 

c)  Neighborhood Function 

This parameter defines the area of the bubble: if it is too small, the bubble does not 

contains an enough number of neurons inside it and the network could not be 

ordered after the training phase. It is possible to avoid this problem by assigning to 

that variable a value greater than the half of the diameter of the network. During the 

training cycle,  it can be reduced until 0.5, which means that only the winning 

neuron has a modification of its weight.  
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d) Training Cycles 

The training process is a stochastic process, so the number of cycles depends on the 

specific case: if it is too small, the result does not converge; on the other hand, too 

high value tends to incorporate many classes in a unique one 

 

In figure 1.3, it is possible to see a Kohonen‘s map with two dimensions where 

neuron ηkj is connected with its neighborhood.  

 

Fig. 1.3: Schematic representation of Kohonen SOM 

 

When an input from the layer w activates a neuron in the η layer, the interaction 

that the winning neuron (selected with a user-defined rule) establishes with its 

neighbors is defined according to a neighborhood function, which normally takes 

value between 0 and 1. This interaction determines a modification of the weights 

dependent on the neighborhood function and the response of the neuron. The ηj 

neuron activity is defined by: 

i 
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Where: 

ηj is the activity of j
th

 neuron; 

ξi is the i
th

 component of the input and n is the total number of inputs; 

wji is the weight of the connection between the j
th

 neuron and the i
th

 input 

(synapse); 

γi  is a term that considers the leaks of the process; 

ηkj is the connection between j
th

 and k
th

 neurons. 

 

In Kohonen map, neurons are influenced by the neighbors with a bubble model. 

With this model the information contained in the inputs are transferred to the 

synapses and their variation is defined by the following differential equation: 

 

    

  
                                                                                                                   

                              

where α controls the velocity of learning and β (ηj) the ―forgetfulness". It is 

possible to note that the temporal evolution of synapses depends on the activity of 

the neurons and relative connections. Two cases may be distinguished, which 

depends on the presence or absence of the neuron respect to the bubble: 

- Neuron inside the bubble. In this case the neuron is in the maximum of the 

activity (ηj≈1). If the other terms in the equation 1.8 are normalized in order 

to obtain αηj≈(βηj): 
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      –                                                                                                                                   

                            

- Neuron outside the bubble. This neurons have a negligible activity, for this 

reason ηj ≈ 0 and Eq. 1.8 become: 

             

    

  
                                                                                                                                  

 

In this case, synapses of this neuron are not modified. 

 

1.3.1.3 SOM Learning Process 

The learning process of a SOM is based on three basic steps: 

- Competition: every time that an input is sent to the net, only the winning 

neuron is activated; 

- Cooperation: the winning neuron is connected to its neighbors, and defines 

the center of an area where the input changes the weights of the surrounding 

neurons; 

- Upgrading of synapses: weight vectors of winner vector and of its 

neighbors will be updated according to learning algorithm. 
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The cycle that defines the learning process of the Kohonen neural networks can 

then schematized in this way: 

 

1. Selection of basic parameters 

2. Initialization of the weights of the map: starting values for neurons are randomly 

chosen from input values (avoiding the same value for different neurons) 

3. Selection of a random input from the training dataset; 

3. A winning neuron and its neighbors are activated; 

4. Upgrade of the map weights; 

5. Decreasing of σ and   parameters; 

6. Restarting from step 3, with other random input from the initial dataset. 

 

The algorithm ends when   becomes lower of a predetermined value or when the 

weights on the map have a stable value or after a defined number of training cycles.  

When the learning process ends, the synapses are frozen: a specific neuron is 

assigned for each input vector x. 

The most important property of Kohonen network is the ―Organization" (which 

gives the name to the net). It means that similar neurons occupy contiguous area of 

the final map. 
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1.4 Supervised methods 

Considerable effort has been devoted to classification of image data with the aim of 

producing high-quality thematic maps and establishing accurate inventories of 

spatial classes. The following techniques can be also combined between them for a 

multiple approach to image classification.  

The main classification algorithms are considered the supervised maximum-

likelihood method [119], [120], dimensional probability density function methods 

[121], artificial neural networks [122], [123], supervised decision trees [124], 

[125], discriminant analysis [126], [127], genetic algorithms [128], and spectral 

shape analysis [129], Spectral Angle Mapper [130], Support Vector Machine [131],  

[132]. 

Others approaches are based on ―soften‖ classifier as fuzzy [133] and decision 

fusion [134]. 

 

1.4.1 Neural Networks  

From the presented range of classifier, different studies have shown the 

effectiveness of NNs algorithms to extract information from remotely sensed 

imagery [135], [136]. Neural networks has the advantage of determining the input-

output relationship directly from the training data with no need to seek for an 

explicit model of the physical mechanisms, which were often nonlinear and poorly 

understood [137]. Moreover, it was shown that multi-layer feed-forward networks 

formed a class of universal approximators, capable of approximating any real-

valued continuous function provided a sufficient number of units in the hidden 

layer were considered. Image classification has probably been one of the most 

investigated fields in this context. 
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As far as the network topology is concerned, the feed-forward Multi-Layer 

Perceptron (MLP) is probably the most commonly used for remote sensing 

application between supervised methods. The extensive research activity confirmed 

that neural networks, besides representing a new and easy way of machine learning, 

possessed particularly interesting properties, such as the capability of capturing 

subtle dependencies among the data, an inherent fault tolerance due to their parallel 

and distributed structure, and a capability of positively merging pieces of 

information stemming from different sources [138]. Other neural network approach 

that is commonly used is related to the Radial Basin Functions [139] and the recent 

developed Pulse Coupled Neural Networks [140]. 

The main drawbacks of neural networks are referred to the conventional back-

propagation learning algorithm can be stuck in a local minimum. Moreover, the 

choice of the NN architecture (i.e. number of hidden layers and nodes in each layer, 

learning rate) weight initialization and number of iterations required for training 

may significantly affect the learning performance.  

 

1.5 The importance of spatial parameters in VHR images: texture 

and shape analysis 

As it was written in the introduction, information on the pixel context (e.g., 

structures, patterns, objects) can be significant in Very High Resolution (VHR) 

image analysis [141], [142] and [143]. 
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1.5.1 Texture 

Texture is the term used to characterize the tonal or gray-level variations in an 

image. Texture analysis has played an increasingly important role in digital image 

processing and interpretation, principally motivated by the fact that it can provide 

supplementary information about image properties. 

Many texture feature extraction methods exist. [144] identify four major categories 

of texture feature analysis methods: 

- statistical (such as those based on the computation of the gray-level co-

occurrence matrix—GLCM ([145], [146]); 

- geometrical (including structural); 

- model-based, such as Markov Random Fields (MRF); 

- signal processing (such as Gabor filters).  

It was pointed out [147] that textural features derived from GLCM are the most 

useful for analyzing the content of a variety of remote sensing imagery Recently, 

[148] demonstrated that the GLCM method has an improved discrimination ability 

relative to MRFs with decreasing window size. Six parameters (energy, contrast, 

variance, correlation, entropy and inverse different moment) are considered to be 

the most relevant, among the 14 originally proposed by Haralick, some of which 

are strongly correlated with each other [149].  

Texture increased the per-pixel classification accuracy, especially in urban areas 

where the images are more heterogeneous [150] stated that this increase in terms of 

classification accuracy is dependent on the geometrical resolution of the scene. In 

fact, the improvement is greater for higher resolution images. With the increase of 

the spatial resolution of satellites such as QuickBird and Ikonos, texture features 

turn out to be valuable for the identification of smaller object [151]. 
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1.5.1.1 GLCM 

Haralick in 1973 and 1979 described the definition of the Grey Level Co- 

Occurrence Matrix and the parameters which can be extracted.  

Suppose the area to be analyzed for texture is rectangular, and has Nc resolution 

cells in the horizontal direction, Nr resolution cells in the vertical direction, and that 

the gray tone appearing in each resolution cell is quantized to Ng levels. 

Let Lc = {1,2,…, Nc} be the horizontal spatial domain, Lr = {1, 2, … , Nr,} be the 

vertical spatial domain, and G = {1, 2, …, Ng} be the set of Ng quantized gray 

tones. The set Lr Х Lc is the set of resolution cells of the image ordered by their 

row-column designations. The image I can be represented as a function which 

assigns some gray tone in G to each resolution cell or pair of coordinates in Lr Х 

Lc; I: Lr  Х Lc → G. 

The gray tone co-occurrence can be specified in a matrix of relative frequencies Pij 

with which two neighboring resolution cells separated by distance d occur on the 

image, one with gray tone i and the other with gray tone j. Such matrices of spatial 

gray tone dependence frequencies are symmetric and a function of the angular 

relationship between the neighboring resolution cells as well as a function of the 

distance between them. 

The more relevant parameter used in this study in homogeneity: 
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where i, j are the gray tones in the windows, which are also the coordinates of the 

co-occurrence matrix space, while p (i,j) are the normalized frequencies with which 

two neighboring resolution cells separated by a fixed shift occur on the image, one 

with gray tone i and the other with gray tone j; N is the dimension of the co-

occurrence matrix, which has a gray value range of the original image.  

 

1.5.2 Shape analysis: segmentation 

One way to introduce this additional information is to segment the image before the 

classification [152]. The segmentation produces regions which are more 

homogeneous in themselves than with nearby regions and represent discrete objects 

or areas in the image. After segmentation, each image region becomes a unit 

analysis for which a number of features, on top of spectral features, can be 

measured and used during the classification [153], [154], [155]. A large variety of 

segmentation algorithms were developed in these last twenty years [156], [157]. 

Segmentation algorithms can conveniently be classified as boundary-based and 

region-based [156], [158], [159], [160]. Boundary-based algorithms detect object 

contours explicitly by using the discontinuity property; region-based algorithms 

locate object areas explicitly according to the similarity property [156]. 

The boundary approach gathers the edge detection techniques. These methods do 

not lead directly to a segmentation of the image because contours obtained are 

seldom closed; therefore, it is necessary to carry out closing edges algorithm if one 

wishes a complete segmentation of the image. Indeed, after contours closing, the 

duality contours/regions appears clearly. A region is defined as the inside of a 

closed line. On the other hand, the methods of the region approach lead directly to 

a segmentation of the image, each pixel being assigned to a single region [161].  
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In [152] the main segmentation algorithms have been compared: 

- ―optimal edge detector‖[161], [162] and ―watershed segmentation‖ [163], 

[164] for boundary-based algorithms; 

-  ―multilevel thresholding technique‖ [165] and a ―region-growing‖ 

technique for region based technique. 

It emerged that the miraculous segmentation method which segments in a correct 

way for all types of landscape does not exist. In each of the four used methods, the 

choice of the parameters (i.e. thresholds) is important and has a great influence on 

the segmentation results. 

The contour detection by ―watershed‖ is more effective than the optimal edge 

detector. These methods prove to be effective for the detection of homogeneous 

and contrasted objects within the images [159] as in the images of urban zones 

where these types of objects are very common (for example, buildings). and the  

―Region-growing‖ method works well with textured images and images with not 

high contrast objects like in rural and forest test images. 

Finally, all the objects in an image cannot be extracted with a single segmentation 

without over-segmentation, which means that there will be some pixels that cannot 

be directly assigned to a specific object. If the user decided to increase the 

threshold of the segmentation process to assign more pixels to the same object, 

other details could be lost. 

Considering the results of this work, a deeper description of watershed 

segmentation is shown in the following paragraph. 
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1.5.2.1 Watershed transformation 

In the ―watershed segmentation‖, the procedure first transforms the original data 

into a gradient image. The resulting grey tone image is considered as a topographic 

surface. This surface is flooded from its minima and the merging of the waters 

coming from different sources is prevented, thus the image is divided into a set of 

watershed lines. The catchment‘s basin should correspond to the homogeneous 

regions of the image (Fig. 1.4). Before transforming the original data into a 

gradient image, a median filter can be applied on the image to reduce the noise. 

The presence of noise in an image causes an over-detection of edges by the 

morphological gradient. The median filter locally homogenizes the image and 

avoids extreme gradients, and thus disturbing contours. It is also a good means not 

to take into account object texture during contours detection. The image gradient 

can also be threshold to limit the contour sensitivity; e.g., if the threshold is 10, 

pixels with a gradient higher than 10 are kept, and the others are put at 0 as if there 

are no edges.  

 

 

 

 

 

 

 

Fig.1.4: consider that the bright areas in the left image are ―high‖ and dark areas are ―low‖. Then it 

might look like the surface (right image). With surfaces, it is natural to think in terms of catchment 

basins and watershed lines. 
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Chapter 2  

 

Used dataset 

 

 

 

 

Considering the improvement of spatial and spectral resolution during these years 

for VHR images, it has been chosen to design the entire process on Quickbird 

images (very high spatial resolution and multispectral sensor) and airborne 

hyperspectral images (very high spatial resolution and hyperspectral sensor). In this 

chapter, the technical specifications of Quickbird satellite, Airborne Hyperspectral 

Scanner (AHS) and Multispectral Infrared and Visible Imaging Spectrometer 

(MIVIS) will be provided, as well as the acquired image details. 
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2.1 QuickBird 

QuickBird (Fig. 2.1) was the first satellite in a constellation of spacecraft that 

Digital Globe is still developing for commercial high-resolution imagery of Earth 

[201]. QuickBird‘s global collection of panchromatic and multispectral imagery is 

designed to support applications ranging from map publishing to land and asset 

management to insurance risk assessment. 

 

 

Figure 2.1: quickbird satellite 

 

The QuickBird satellite provides images consisting of four multi-spectral (MS) 

channels with 2.4 m resolution and a single panchromatic (PAN) band with a 0.62 

m resolution (Table 2.1). The four MS bands collect data at red, green, blue, and 

near-infrared wavelengths, and the data in each band is stored with an 11-bit 

quantization. As previously discussed, the spatial resolution plays a key role in 

urban monitoring related to the ability to detect fine-scale objects present in urban 

scenes. 
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Quickbird specifications 

Launch date October 18, 2001 

Altitude 450 km, 98 degree, sun-synchronous inclination 

Swath Areas of interest. 

- Single Area: 16.5 km x 16.5 km 

- Strip: 16.5 km x 115 km 

Spectral resolution - Blue: 450 - 520 nanometers 

- Green: 520 - 600 nanometers 

- Red: 630 - 690 nanometers 

- Near-IR: 760 - 900 nanometers 

- PAN: 445 -  900 nanometers 

Spatial resolution - Multi: 244 centimeter  at nadir  

- PAN: 62 centimeter at nadir 

Revisiting time 2-3 days, depending on latitude 

Table 2.1: Quickbird satellite specifications 

 

2.1.1 Quickbird image 1: Nettuno (Rome, Italy) 

The first analysed image has been acquired above Nettuno area -Rome, Italy- (Fig 

2.3, Table 2.2). This area was chosen for the presence of all the five main cover 

classes to spot. Being Nettuno a coastal urban area, it has been decide to use the 

automatic classification procedure to highlight water, vegetation, bare soil, 

buildings and roads.  

Image characteristics 

Image name Nettuno (Italy) 

Satellite Quickbird 

Date: July, 22
nd

  2003 

N° rows  5383 

N° columns  4846 

N° pixels 26086018 

Table 2.2: Quickbird image Nettuno specifications 
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Figure 2.2: A QB image taken over Nettuno, located in Italy, South-West of Rome, on July 22, 

2003. 



Chapter 2          37 

 

2.1.2 Quickbird image 2: Tor Vergata area (Rome, Italy) 

The second analysed image has been acquired above Tor Vergata area -Rome, 

Italy- (Fig 2.2, Table 2.1). This image covers the site where Tor Vergata campus is 

located, which means that the ground truth can be easily observed considering that 

this work has been developed physically in this area. Moreover, several 

publications on the application of Neural Networks for classification have been  

produced on this site, allowing to compare the accuracy of the innovative proposed 

methodology with the existing one [202], [203], [204], [205]. 

 

Image characteristics 

Image name Tor Vergata area (Italy) 

Satellite Quickbird 

Date: March, 13
th

  2003 

N° rows  2416 

N° columns  1651 

N° pixels  3988816 

Table 2.3: Quickbird image Tor Vergata specifications 
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Figure 2.3: A QB image taken over the Tor Vergata University campus, located in Italy, South-East 

of Rome, on March 13, 2003. 
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2.1.3 Quickbird image 3: Denver (CO, USA) 

The third analysed image (courtesy of Digital Globe) has been acquired above 

Denver urban area -Colorado, USA- (Fig 2.4, Table 2.3). This area was chosen to 

test the methodology with a different type of urbanization (more regular and dense) 

respects to previous Quickbird images. 

 

Image characteristics 

Image name Denver (USA) 

Satellite Quickbird 

Date: March, 10
th

  2007 

N° rows  4096 

N° columns  4096 

N° pixels  16777216 

Table 2.4: Quickbird image Denver specifications 
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Figure 2.4: A QB image taken over Denver (Colorado, USA), on March 10, 2007 (courtesy of 

Digital Globe) 
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2.2 Hyperspectral sensors 

Nowadays, hyperspectral sensors are increasing their importance in remote sensing 

studies. ESA Chris-Proba
11

 and Hyperion
12

 were the first satellite missions 

dedicated to this sensor. However, their spatial resolution (30 meters for Hyperion, 

from 18 to 30 for Chris-Proba) cannot be considered as ―Very High Resolution‖, 

therefore no useful for the purposes of the study. 

For this reason, it has been decided to use airborne hyperspectral sensors, which 

combines very high spatial resolution with several contiguous bands. 

 

2.2.1 AHS 

The Airborne Hyperspectral Scanner (AHS) is an imaging line-scanner radiometer, 

installed on a CASA-212 200 series aircraft owned by Spain's National Institute for 

Aerospace Technology (INTA)
13

.  

The AHS instrument (Fig. 2.5), with a whiskbroom linescanner, acquires images in 

80 spectral bands covering the visible and near infrared (VNIR), short wave 

infrared (SWIR), mid-infrared (MIR), and thermal infrared (TIR) spectral ranges 

(Table 1), having a digitisation accuracy of 12 bits. 

With its wide spectra, AHS has been used for several earth observation topics, as 

thermography [206] and agriculture [207]. 

 

                                                 
11

 ESA Chris Proba home page: http://earth.esa.int/missions/thirdpartymission/proba.html 
12

 Nasa Hyperion Instrument: http://eo1.gsfc.nasa.gov/Technology/Hyperion.html 
13

 The INTA AHS system 
http://bo.eufar.net/document/publi/124901161346543eefc58cf:SPIE_RS05_INTA_5978-56.pdf 
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Figure 2.5: AHS system 

 

The image belongs to the collection of measurements carried out during the 

DESIREX 2008
14

 (Dual-use European Security IR Experiment 2008) campaign 

(Table 2.4) which involved taking airborne and ground measurements with infrared 

sensors above the Madrid city -Spain- (Fig. 2.6) during the period June-July 2008 

(desirex final report). 

 

 

 

 

 

 

 

                                                 
14

 Desirex campaign homepage http://www.uv.es/desirex/ 
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Table 2.5: AHS Madrid image specifications 

 

AHS flight specifications 
Date June, the 28

th
 of 2008 

Acquisition time 11:53 am 

flight height 
2497 m above sea level 

Pixel resolution 
≈  4 meters 

N° Rows 
9113  

N° Columns 
1473 

N° Pixels 
13423449 

Spectral 

characteristics 

Wavelength Range 

(μm) 

Spectral 

Region Bands 

Band width 

(μm) 

0.441-1.018 VIS-NIR 1-20 0.03 

1.491-1.650 NIR 21 0.2 

2.019-2.448 NIR 22-63 0.013 

3.03-5.41 MIR 64-70 0.3 

7.95-13.17 TIR 71-80 0.4-0.5 
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Figure 2.6: AHS image taken over Madrid (Spain), on June 28, 2008 (courtesy of Planetek) 
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2.2.2 MIVIS 

MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) is a modular 

hyper-spectral scanner (Fig. 2.7) composed of 4 spectrometers, which 

simultaneously measure the electromagnetic radiation of the Earth‘s surface 

recorded by 102 spectral bands. It covers the visible and near infrared (VNIR), 

short wave infrared (SWIR), mid-infrared (MIR), and thermal infrared (TIR) 

spectral ranges (Table 2.5), having a digitisation accuracy of 12 bits. The 

instrument enables advanced applications in environmental remote sensing, like 

Agronomy, Archaeology, Botanic, Geology, Hydrology, Oceanography, Pedology, 

Urban Planning, Atmospheric Sciences, and so on. 

 

Figure 2.7: MIVIS system 
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The image belongs to the collection of measurements carried out during the a 

campaign for the project TIZIANO (Table 2.5) which involved taking airborne and 

ground measurements with infrared sensors above Bari city -Italy- (Fig. 2.8) during 

the period May 2009 [208]. 

 

 

 

 

 

 

 

 Table 2.6: MIVIS Bari image specifications 

 

 

MIVIS flight specifications 
Date May, the 23

rd
  of 2009 

Acquisition time 8.30 am 

flight height 
1500 m above sea level 

Pixel resolution 
≈  3 meters 

N° Rows 
9251 

N° Columns 
3827 

N° Pixels 
35366573 

Spectral 

characteristics 

Wavelength Range 

(μm) 

Spectral 

Region Bands 

Bandwidth 

(μm) 

0.43-0.83 VIS-NIR 1-20 0.03 

1.15-1.55 NIR 21-28 0.2 

2.0-2.5 MIR 29-92 0.008 

8.2-12.7 TIR 92-102 0.4-0.5 
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Figure 2.8: MIVIS image taken over Bari (Italy), on May 23, 2009 (courtesy of Planetek) 
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Chapter 3 

 

Methodology 

 

 

As it has been prefaced in the first chapter, this work is based on the application of 

neural networks to classify automatically VHR optical images. 

The following chapter will shown the developed methodology to classify the tested 

image (multispectral and hyperspectral). The processing chains for the two kind of 

remote sensing data aimed at defining some parameters (spectral, textural and 

shape) to highlight the common characteristics in a land cover class, allowing the 

discrimination between different classes. 

The methodology have been applied to classify five land cover classes: vegetation, 

water, bare soil, buildings and roads. 
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3.1 First tests and the choice of a hierarchical classifier 

To classify automatically an image, this work has been based on the application of 

Kohonen SOM. Appreciable results in automatic classification with the application 

of this methodology have been introduced in the first chapter; besides, encouraging 

results to classify VHR SAR satellite [301], [302] confirmed the potentiality of this 

technology on VHR images. 

The first attempts were based on the idea of extracting all the land cover classes  in 

a single step, starting from DN values. Four spectral bands from Quickbird image 

of Tor Vergata have been sent to a Kohonen SOM with four neurons (which should 

be related to vegetation, bare soil, buildings and roads). In the output image, even if 

vegetation was clearly distinguishable, the other classes did not correspond to the 

request outputs. 

That was due to the spectral response of vegetation, which is completely different 

from the others: roughly speaking, it could be said that it is more homogeneous 

respects to the others. The automatic classification algorithm, which was able to 

discriminate the classes considering only the pixels spectral response, could not 

return appreciable results to distinguish man-made classes spectrally.  

Therefore, it appeared clear that it was not possible to classify an image in a single 

step and it was necessary to implement a hierarchical tree methodology as the 

following step.  

The idea of representing the data analysis process with a hierarchical tree has been 

under study in many pattern recognition application areas. Tree-based classifiers 

have represented an interesting and effective way to structure and solve complex 

classification problems [303], [304], [305], [306], [307]. The organization of 

information into a hierarchical tree allows to achieve a faster processing capability 

and, at times, a higher accuracy of analysis. This is mainly explained by the fact 
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that the nodes of the tree carry out very focused tasks, meaningless when taken 

individually but meaningful when taken as a whole. 

Using a hierarchical tree, the first node was set to distinguish vegetation and not 

vegetation (with two neurons in the Kohonen SOM). The second node tried to 

distinguished the non vegetation class in the remained three classes (buildings, 

asphalt, and bare soil).  

Even if the quality of the final classified image was improved, the mutual 

discrimination of the three man made classes was not satisfactory. This could be 

explained by the different spectral response in the same class and by the  

Regarding the subjectivity of the classification criteria, figure 3.1 shows how the 

same image can be classified in different ways considering the purposes of the 

analysis.  

If the goal is the distinction between water and land (i.e. for Land Surface 

Temperature retrieval, Coastal Mapping, etc.), a classification as the one in the left 

part of the image satisfies the request of the study.  

On the other hand, if the aim of the study is the classification of sealed soils, a 

classification as the one shown in the center can be considered valid. 

Therefore, even if the number of the classes is fixed (2 in the above example), the 

outputs of the classification can be different.  
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Fig.3.1: MIVIS RGB 20-12-7 (above) and different types of classification output (below) 
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Following these considerations, it has been decided to increase the number of 

neurons Kohonen map. This allowed to define an higher number of classes, with 

higher possibilities to match the requested output. Generally, the optimal 

architecture of a neural network is not known a priori for most real-world 

problems: in the first Kohonen map, the best results have been obtained with a map 

of 3 x 3 neurons, which seems the optimal set up. It means that each input signal 

has been compared with all the 9 neurons/weights of the map (where the initial 

weights of these neurons were set with random values). The winning neuron has 

been chosen with a minimum distance algorithm based on the Euclidean distance 

between input and the weight of neurons.  

Some of the final clusters have to be assigned to a semantic land cover class (which 

depends on the aim of the study, as shown in figure 3.1): this procedure is called 

labeling procedure. The labeling procedure can be done automatically, through the 

comparison of the final weights of the neurons with some class values from 

spectral libraries [308]. The cluster which has the minimum distance with the 

library signature is assigned to the specific land cover.   

The necessity of matching spectral signatures from the analyzed images to 

reference spectral signatures implied the atmospheric correction of the images.  

This operation allowed to convert the original DN values to radiance and, 

eventually, to reflectance values. The atmospheric correction will be treated in a 

exhaustive way in chapter four. 

The labeling procedure can be done interactively from the clusterized image: in 

some cases, the semantics of a class [309] is too complex to be performed by a 

simple comparison. In other cases, the presence of two clusters in a image (as it 

will be shown later, red brick buildings and concrete buildings are both belonging 

to building class) that can be assigned to a specific class, do not allow the 

automatic labelling with appreciable results. 
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3.2 The mixed approach with Kohonen SOM and Neural Network 

MLP 

Increasing the neurons in the Kohonen SOM, some uncertain pixels remained 

unclassified: some unlabelled neurons represented some mixed pixels which had to 

be assigned to a specific class. 

This meant that the Kohonen SOM turned into a clusterizer from a classifier. To 

reassign these pixels, a second classification was necessary. 

This latter classification is based on the Multi-Layer Perceptron MLP Neural 

Network, already proved as an effective classification algorithm for remote sensing 

images. 

The mixed methodology has already been used in classification [310], [311], but 

the combined use of Kohonen map with MLP is original and it will be discussed in 

this work. 

Reassuming, the complete processing chain is a mixed approach between 

unsupervised and supervised methods based on NNs.  The concept idea is based 

on: 

- the extraction of clusters of pixels representing land cover classes with 

Kohonen‘s SOM (unsupervised approach);  

- the use of the pixels belonging to the extracted clusters to train a MLP 

supervised neural network (supervised approach).  

In fact, the training sets (also called Area Of Interest or Region Of Interest) for the 

MLP have been extracted automatically from the image. 
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Fig. 3.2 shows the general scheme for classification, highlighting the mixed 

approach of unsupervised and supervised methods.  

Results of the classification chains will be exhaustive discussed in chapter six. 

On this general scheme of classification, other steps have been added considering 

the general characteristics of VHR image. To spot some land cover classes, the 

exclusive use of spectral signatures could be enough. Essentially, natural surfaces 

like vegetation, water and bare soil, can be easily extracted with their distinctive 

spectral signatures (chapter five). 

From the physical composition point of view, several different materials can be 

used for the same built-up element (for example, building roofs can be made of 

clay tiles, metal, concrete, glass, plastic), On the other hand, the same material can 

be used for different built-up elements (for example, concrete can be found in 

paved roads or building roofs) and the information on the pixel context (e.g., 

structures, patterns, objects) can be significant in Very High Resolution (VHR) 

image analysis. 
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Fig 3.2: example of the mixed procedure. The input bands, after atmospheric correction, activate 

several neurons/clusters in the bubble (with a specific winning one) of the Kohonen SOM. After the 

clustering with SOM(s), neurons are labelled and they constitute the input to train the MLP Neural 

Network: some random pixels from these winning neurons train the supervised NN. Finally the final 

weights have been set and all the image is classified to define the output classes. 
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3.3 The pixel context: texture 

Texture is the term used to characterize the tonal or gray-level variations in an 

image. Texture analysis has played an increasingly important role in digital image 

processing and interpretation, principally motivated by the fact that it can provide 

supplementary information about image properties. 

From the available techniques to calculate textural parameters, the Grey Level Co- 

Occurrence Matrix from Haralick has been chosen for the previously mentioned 

advantages (chapter one).   

A preliminary analysis have been made to test which texture parameters were more 

suitable to detect human features. The most relevant feature in this tests was 

homogeneity (Eq. 3.1), also called the "Inverse Difference Moment", as its 

utilization in urban feature extraction has been already proven effective [312].  

               
      

        

   

   

   

   

                                                                          

where i, j are the gray tones in the windows, which are also the coordinates of the 

co-occurrence matrix space, while p (i,j) are the normalized frequencies with which 

two neighboring resolution cells separated by a fixed shift occur on the image, one 

with gray tone i and the other with gray tone j; N is the dimension of the co-

occurrence matrix, which has a gray value range of the original image.  

Homogeneity weights values by the inverse of the Contrast weight. To exploit a 

multi-scale approach, which better deals with objects having different spatial 

coverage in an area, homogeneity features have been computed with two different 

window sizes of 3 × 3 and 5 × 5 only on AHS green band. These two window sizes 

have been chosen considering the average building size and the spatial resolution of 

multi- and hyperspectral images. Indeed this latter band gave appreciable visual 
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results and it was preferred to avoid using a redundant number of features to feed 

the following supervised neural network. The first window (3 × 3) corresponded to 

nine pixels, which means a dimension on the ground of 81 m
2
 (3 m × 3 m × 9), the 

second one (5 × 5) was equal to 135 m
2
 (3 m × 3 m × 15). These sizes can be 

related to the building plant on the ground which have at least these measures: 

Therefore, these windows allows to spot buildings with these footprints and 

increasing the window size, some small buildings cannot be detected. The values of 

the input for this Kohonen SOM (derived from the pixel values in these spectral 

and textural bands) were normalized to the range of (−1; +1): this step was 

necessary considering the different units as input for Neural Networks. 

Even if a reasonable number of buildings were detected with the combined use of 

spectral and textural parameters, this methodology could not be always suitable to 

highlight some other man made features. For instance, if: 

- the material of building roof and street is the same (i.e. concrete), therefore 

the spectral signature is similar; 

- even if the spectral signature is different, the magnitude of the value 

difference could not be enough to allow the discrimination between asphalt 

and buildings (too similar); 

- the texture is the same, especially for wide streets; therefore homogeneity 

parameter is similar. 

For these reasons, it has been decided to introduce additional information 

segmenting the image before the classification. 
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3.4 The pixel context: segmentation 

Segmentation produces regions which are more homogeneous in themselves than 

with nearby regions and represent discrete objects or areas in the image. After 

segmentation, each image region becomes a unit analysis for which a number of 

features, on top of spectral features, can be measured and used during the 

classification. 

From the available techniques to segment an image, the ―watershed segmentation‖ 

has been chosen for the previously mentioned advantages (chapter one).   

 

The entire methodology consisted in the following procedure [313]: 

 

1. an image smoothing (edge preserving) filter has been applied (the filter was a 

median filter applied on a kernel 3 x 3); 

2. normalization of each band with Eq. 3.2 

        
         

   
    

    
                                                                            

where Datanew is the rescaled pixel value, Dataold is the original pixel value, 

and µold and  σold are the mean and variance value of the original dataset. 

3. Principal Component Analysis PCA [314] was applied to get a new set of 

feature bands: this was the first step to reduce the original bands in a grey-

level (gradient) image to apply the watershed transformation;  

4. some bands from PCA are selected and added to each other, to reach the 

90% of the variability of the entire dataset; 

5. after the gradient map was calculated, a density function over the whole 

image was computed (i.e., the cumulative relative histogram): each bar of 

the histogram considered an interval qquant_levels described with Eq. 3.3: 
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where quant_levels represents the total number of bars (generally, 256) and 

vmin and vmax are the limits of the data distribution; 

6. once the cumulative relative histogram has been calculated, it can be used 

along with the gradient map to calculate the gradient space scale. By 

choosing a relative level threshold on the cumulative relative histogram, the 

corresponding gradient magnitude GT can be determined. The gradient map 

was then modified so that the pixels with gradient magnitude less than GT 

were set to assume the value GT. By changing the threshold from 0 to 100, a 

continuous gradient scale space is built. Obviously, lower is the scale level, 

higher is the over-segmentation (large number of objects) resulting from 

Watershed Transformation on the original gradient map. For detect objects 

like streets, a scale value of 50 is recommended; 

7. after determining GT value, the watershed transformation is performed; 

8. a unique level is given to each region and the watershed lines pixels were 

merged to the most similar neighbor regions (with Euclidean Distance). 

Generally, these pixels have 0 values but, considering the purposes of the 

object analysis in a raster environment, these pixels had to be re-assigned to 

a specific object; 

9. the region can be merged with the full lambda-Schedule algorithm [315]. 

Such algorithm iteratively merges adjacent segments based on a 

combination of spectral and spatial information. Merging proceeds if the 

algorithm finds a pair of adjacent regions, i and j, such that the merging cost 

ti,j  is less than a defined threshold lambda value set as (Eq. 3.4): 
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where Oi and Oj are the regions i and j of the image,             are the 

areas of region i and j, µi is the average value in region i, µj is the average 

value in region j,        
 
is the Euclidean distance between the spectral 

values of regions i and j, and                   is the length of the 

common boundary of Oi and Oj; 

10. from the final objects, it was possible to calculate several parameters 

describing the objects. These parameters regards the spectral, textural and 

shape characteristics of them.  

 

Considering that spectral and textural parameters of the image were already been 

analysed with the methods described in the previous paragraph, it has been decided 

to focus the analysis on the shape parameters which could help, in some cases,  to 

distinguish roads. 

From these objects, a parameter like elongation [316], [317] has been calculated to 

highlight roads.  

Elongation (Eq. 3.5) is a shape measure that indicates the ratio of the major axis of 

the polygon to the minor axis of the polygon. The major and minor axes are 

derived from an oriented bounding box containing the polygon. (i. e. elongation 

value for a square is 1.0, and the value for a rectangle is greater than 1.0). 

                                                                                                               

From several tests, an object which its elongation is greater than 3 can be assigned 

to roads [318] Therefore, with a simple threshold, pixels from these objects have 

been assigned to roads.  

Considering that the output of the segmentation are objects, described as polygons 

in a vector layer, a following conversion to raster (with a pixel size equal to the 
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starting one from the original image) is necessary to insert an information layer to 

the MLP Neural Network. 

 

3.5 The final classification chain 

Once all rhe pixels related to the predefined land cover class (vegetation, bare soil, 

water, buildings and roads) have been selected from the clusters deriving from 

these Kohonen SOM, the inputs for the MLP have been set. The details of this 

supervised neural network will be discussed in chapter 6. The general scheme for 

the unsupervised clustering is shown in figure 3.3. 

A deeper analysis of the two classification chains shows that roads class can be 

indentified from spectral signature but, if this input parameters do not give 

satisfactory risults in the interactive labeling, the use of segmentation to define 

which pixels belong to this class is preferable.  
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Fig. 3.3: unsupervised clustering and labelling chain 
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Chapter 4  

 

Pre-processing 

 

Before applying the developed methodology to classify hyperspectral and 

multispectral data, it has been decided to preprocess the images. This operation had 

the aim to improve the image qualities, to allow the comparison of the same surface 

in different images and verify if it is possible to improve the classification results 

modifying the input data of the Neural Networks. 

The preprocessing consisted in: 

- an atmospheric correction of the multispectral and hyperspectral images, to 

obtain reflectance values from radiance values (or Digital Numbers); 

- buildings shadow removal in hyperspectral images, exploiting the thermal 

information. 
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4.1 Atmospheric correction 

As it was written in the introduction, a different spectral behavior could be 

explained from the effect of the atmosphere, which operates at different 

wavelengths. Atmospheric correction provides an estimation of the radiation 

emitted and reflected at the surface, and it is necessary for observing parameters 

that are intrinsic to the surface. Accurate atmospheric correction removes the 

effects of changes in satellite-sun geometry and atmospheric conditions due to 

aerosol scattering [401]. Atmospherically corrected surface reflectance images 

improve the accuracy of surface type classification [402], [403] and allows to 

compare the spectral signatures from different images.  

Atmospheric correction typically consists of the retrieval of atmospheric 

parameters and the solution of the Radiative Transfer (RT) equation. Generally, 

atmospheric parameters involves aerosol (their description, the optical depth and, if 

possible, the aerosol ―type‖) and the column water amount. Successively, the 

solution of the RT equation for the given aerosol and column water vapor allows to 

transform radiance in reflectance.  

A variety of methods and algorithms for atmospheric correction are available. The 

―empirical line method,‖ consisting of a linear transformation derived from ground-

truth spectra, remains a popular and accurate method where truth data exist. In 

other situations, a first-principles method is needed. ATREM, developed by Gao et 

al. [404] using the 5S and, later, 6S radiation transport models [405], was for many 

years the industry-standard algorithm. Recently, more sophisticated algorithms 

have been developed, focusing primarily on land imagery. These algorithms, which 

incorporate more accurate radiative transport models and improved methods for 

retrieving the atmospheric properties needed for the correction, include ATCOR 

[406], ACORN [407], FLAASH [408] and HATCH [409]. 



Chapter 4          67 

 

 

For this work, it has been decided to use  the latest version of FLAASH (Fast Line-

of-sight Atmospheric Analysis of Spectral Hypercubes). FLAASH is an efficient 

correction code based on MODTRAN4 [410] that has been developed 

collaboratively by Spectral Sciences, Inc. and the Air Force Research Laboratory, 

with assistance from the Spectral Information Technical Applications Center 

(SITAC). 

FLAASH is the state-of-the-art of the atmospheric correction algorithm [411]: is 

capable of generating accurate surface reflectance spectra from multi- and 

hyperspectral imagery, at least under conditions of clear to moderate aerosol/haze, 

low to moderate water vapor, and nadir viewing from any altitude between the 

ground and the top of the atmosphere. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



68  Pre-processing 

 

4.1.1 The FLAASH-MODTRAN algorithm 

FLAASH uses the standard equation for spectral radiance at a sensor pixel, L, in 

the solar wavelength range (neglecting thermal emission) from a flat Lambertian 

surface or its equivalent [405]. Collecting constants, the equation is reduced to the 

form: 

 

   
  

     
   

   

     
                                                                                       

 

- L is the measured radiance (mWm
-2

sr
-1

µm)  

- ρ is the pixel surface reflectance  

- ρe is an average surface reflectance for the pixel and a surrounding region  

- S is the spherical albedo of the atmosphere  

- La is the radiance back scattered by the atmosphere (mWm
-2

sr
-1

µm)  

- A and B are coefficients ((mWm
-2

sr
-1

µm) that depend on atmospheric and 

geometric conditions but not on the surface. 

 

Each of these variables depends on the spectral channel; the wavelength index has 

been omitted for simplicity. The first term in Eq. (4.1) corresponds to radiance that 

is reflected from the surface and travels directly into the sensor. The second term 

corresponds to radiance from the surface that is scattered by the atmosphere into 

the sensor, resulting in a spatial blending, or adjacency effect. The third term 

corresponds to the radiance back scattered by the atmosphere. 
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Fig. 4.1: Component of apparent reflectance [412] 

 

In the Fig. 4.1, it is possible to observe these three components: the spectral 

atmospheric reflectance (in the formula 4.1 is inserted in the term La), the direct 

reflectance (which includes Tr↑ the sensor-to-ground direct transmittances, Tr↓ the 

sun to-ground direct transmittance and ρ/(1- ρe-S)) and the diffuse reflectance 

(which includes Tf↑ the sensor-to-ground diffuse transmittances, Tf↓ the sun to-

ground diffuse transmittance and ρe /(1- ρe-S)). 

The spectral atmospheric reflectance ρa, the sensor-to-ground direct and diffuse 

transmittances Tr↑ and Tf↑, the sun to-ground direct and diffuse transmittance Tr↓ 

and Tf↓ and the spherical albedo from the ground S, are all solely atmospheric 

parameters, independent of the ground. On the other hand, the spectral imaged-

pixel reflectance ρ and the effective, spatially averaged Reflectance ρe are ground 

optical properties and thereby independent of the atmosphere. 
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4.1.1.1. Atmospheric correction in FLAASH 

These calculations usually represent the single most computationally intensive part 

of the atmospheric correction. A look-up table (LUT) of A, B, S and La has been  

pre-calculated in MODTRAN and it is interpolated as needed for the specific 

viewing geometry, atmospheric condition, and sensor channels of interest. 

The water retrieval is performed rapidly with a 2-dimensional look-up table (LUT) 

constructed from the MODTRAN4 outputs using a-Delaunay triangulation 

procedure. The water band typically used is at 1.13 µm, with the LUT for this 

spectral region generated on-the-fly. 

For aerosol, a adjacency-corrected algorithm is implemented [413] of the 0.660 µm 

to 2.200 µm reflectance ratio constraint for dark land pixels (2.200 µm reflectance 

< ~0.1) found by [414]. 

Once the atmosphere is adequately characterized and the Eq. 4.1 constants are 

derived, calculation of the image reflectance is straightforward using a method 

described in [405] in which a spatially averaged radiance image is used to generate 

a good approximation to the averaged reflectance ρe. The averaging is performed 

using a point-spread function that describes the relative contributions to the pixel 

radiance from points on the ground at different distances from the direct line of 

sight. Presently this function is taken as a wavelength-independent radial 

exponential; its width is determined from a single-scattering calculation that 

accounts for the sensor altitude, the aerosol scale height and a nominal aerosol 

phase function. 
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4.1.2 Atmospheric correction of the used dataset with FLAASH 

 

4.1.2.1 DN to radiance conversion 

Considering that FLAASH requires data in radiance unit, Quickbird products must 

be converted to spectral radiance before radiometric/spectral analysis or 

comparision with imagery from other sensors in a radiometric/spectral manner 

[415]. 

 

1 - Band integrated Radiance  [ (W-m
-2

-sr
-1

] 

                                                                                                       

 

where Lpixel, Band  are Top-Of-Atmosphere band-integrated radiance image pixels 

[W-m
-2

-sr
-1

], K (revised)band is the revised absolute radiometric calibration factor 

[W-m
-2

-sr
-1

-DN
-1

] for a given band and qpixel, band are radiometrically corrected 

image pixels values [DN]. 

 

2 - Band-Averaged Spectral radiance [W-m
-2

-sr
-1

-μm
-1

]  

              
            

             
                                                                                                                                                                               

                                                          

The Top-Of-Atmosphere band-integrated radiance has to be divided into the 

effective bandwidth (Δλ).  

 

For hyperspectral data, this conversion was not necessary because the data had 

already been provided in radiance values. 
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4.1.2.2 Input parameters 

FLAASH requires a consistent amount of input parameters to perform the 

atmospheric constants calculation. It is necessary to point out that many of them 

are quite often unknown (i.e. CO2 mixing ratio) and, especially with Quickbird 

images, there are some limitations due to the restricted number of bands. With 

these bands, is not possible to retrieve Water Vapour with a certain precision, due 

to the absence of water absorption channel (1.13 µm), and aerosol, due to the 

absence of channel 2.200 µm to apply Kaufman-Tanre Aerosol Retrieval [414]. 

The required parameters are: 

a) scene and sensor information 

- latitude and longitude of the scene center 

- sensor type (i.e. Quickbird) 

- FWHM (Full View at Half Maximum) and bandwidth  

- satellite altitude 

- ground elevation 

- pixel size 

- flight date 

- flight Time GMT 

b) atmospheric and model settings 

- atmospheric model (between the a list of them in table 4.1) 

- water vapour retrieval option (only for Hyperspectral) 

- aerosol type, between rural, urban, maritime, and tropospheric [416] 

- aerosol retrieval option (only for Hyperspectral) 

- initial visibility between clear sky, moderate haze and thick haze 

- aerosol Scale Height (km) 

- CO2 Mixing Ratio (ppm) 

- adjacency correction option 

- Modtran resolution 

- Modtran multiscatter Model 
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All the parameters from section a) are available in the header file and from the 

satellite technical specification. 

For atmospheric and model settings, the choice of the atmosphere model is very 

important especially if there is no possibility to retrieve the water vapour directly 

from the respective bands. If no water vapor information is available, an 

atmosphere should be selected according to the known or expected surface air 

temperature, which tends to be correlated with water vapor. For the used images, a 

Mid-Latitude Summer model was chosen for Tor Vergata, Nettuno and Madrid, a 

U.S. Standard (US) for Denver.  

Model 

Atmosphere 

Water Vapor 

(std atm-cm) 

Water Vapor 

(g/cm
2
) 

Surface Air 

Temperature 
Sub-Arctic Winter 

(SAW) 
518 0.42 -16 °C 

Mid-Latitude Winter 

(MLW) 
1060 0.85 -1 °C 

U.S. Standard (US) 1762 1.42 15 °C 

Sub-Arctic Summer 

(SAS) 
2589 2.08 14 °C 

Mid-Latitude 

Summer (MLS) 
3636 2.92 21 °C 

Tropical (T) 5119 4.11 27 °C 

Table 4.1: Column Water Vapor Amounts and Surface Temperatures for the MODTRAN Model 

Atmospheres 

 

About the aerosol, the choice of model is not critical if the visibility is high (for 

example, greater than 40 km), and that is the condition of the analysed images 

(clear sky, which is the option set up in the initial visibility field). 

The aerosol height defines the effective 1/e height of the aerosol vertical profile in 

km. Typical values are 1 to 2 km and the default value is 1.5 km. Having no 

information about it, it has been decided to select the default value. 

 

For carbon dioxide (CO2), in mixing ratio in parts per million by volume, the 

suggested value was 390 ppm.  
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With the option adjacency correction, the parameter ρe (average surface reflectance 

for the pixel and a surrounding region) is retrieved. If this option is not set, ρe = ρ. 

The command Modtran resolution specifies the spectral resolution of the model: 

for multispectral sensor, 15 cm-1 is suggested. 

 

In the Modtran multiscatter model, the user could select a multiple-scattering 

algorithm to be used between Isaacs [417], Scaled DISORT, and DISORT [418]. It 

has been chosen a scaled DISORT with eight streams (the number of streams is 

related to the number of scattering directions evaluated by the model). Calculations 

with two or four dramatically increase computation time with little or no 

improvement. Increasing the number of streams for the Scaled DISORT model 

should not significantly increase processing time. The DISORT model provides the 

most accurate short-wave (less than ~ 1000 nm) corrections, however it is very 

computationally intensive. The Isaacs 2-stream method is fast but oversimplified. 

The Scaled DISORT method provides near-DISORT accuracy with almost the 

same speed as Isaacs. In the Scaled DISORT model, DISORT and Isaacs 

calculations are performed at a small number of atmospheric window wavelengths. 

The multiple scattering contributions in each method are identified and ratios of the 

DISORT and Isaacs methods are computed. This ratio is interpolated over the full 

wavelength range, and finally, applied as a multiple scattering scale factor in a 

spectral radiance calculation performed with the Isaacs method. This procedure 

yields near-DISORT accuracy at window wavelengths, and also improves the 

accuracy in absorbing regions.  

 

 

 

 

 



Chapter 4          75 

 

Use of the DISORT multiscatter model dramatically increases FLAASH processing 

time, and is rarely necessary for accurate atmospheric corrections. The magnitude 

of multiple scattering in any scene is dependent on the amount of haze (water vapor 

and aerosols) that are present. Moreover, scattering preferentially affects the shorter 

(visible) wavelengths; longer (near infrared) wavelengths are minimally affected. 

The DISORT model has to be considered only when haze is very strong and critical 

correction of the shortest wavelengths is required.  
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4.1.3 Atmospheric correction results 

In the next images, the results of the atmospheric correction for Quickbird images 

(Tor Vergata, Nettuno and Denver), and AHS image (Madrid) for vegetation (Fig. 

4.2) and asphalt (Fig. 4.3) land cover are presented.  

 

 

 

Fig. 4.2: Vegetation spectral signature in four VIS-NIR bands before (above) and after (below) 

atmospheric correction. 
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Fig. 4.3: Vegetation spectral signature in four VIS-NIR bands before (above) and after (below) 

atmospheric correction. 
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The signatures images compare the spectral response in four bands (1 = 0.42 – 0. 

52 µm (Blue), 2 = 0.52 – 0.60 µm (Green), 3 = 0.63 – 0.69 µm (Red) and 4 = 0.76 

– 0.89 µm (NIR)): these bands corresponds to the Quickbird bands and, 

consequently, the same bands have been selected from the hyperspectral image 

AHS in order to compare the different responses in the same interval. 

Observing the radiance images, the most prominent atmospheric feature in these 

spectra is the consistent upward trend in blue (for the Rayleigh scattering effect). 

This is likely caused by atmospheric aerosol scattering, or what is often referred to 

as ‗skylight‘. An accurate atmospheric correction should compensate for the 

skylight to produce spectra that more truly depict surface reflectance. 

In the Madrid case, this effect is not so evident like in the Quickbird images: this is 

due to the airborne flight which is less affected by the atmosphere Rayleigh 

scattering respects to the satellite sensors. 

In the reflectance comparisons, standard spectral signatures from the USGS library 

[419] have been added. Comparing the signature from images with signatures from 

a spectral library allows to observe the trend of the land cover signatures with the 

laboratory observations, even if the type of plants and the type of asphalts could be 

different between images and in a single image itself. 

In both of the cases, the trend has been respected: the vegetation reflectance curves 

now display a more characteristic shape, with a peak in the green, a chlorophyll 

absorption in the red, and a sharp red edge leading to higher near infrared 

reflectance (which varies according the plant characteristics); the asphalt 

signatures, where the trend was decreasing in the radiance image, now are showing 

an increasing trend, has it was expected from the signature from USGS library.  

Other advantages of this correction will be shown in the next chapters on 

classification. 

 



Chapter 4          79 

 

4.2 Building shadows removal 

For remote sensing observation of urban areas, an inherent issue of high spatial 

resolution remote sensing images is building shadows (Fig. 4.4). A frequent 

problem in urban environment is measuring the real spectral property of pixels in 

building shadows for which shadow detection is the first step. 

 

 

Fig. 4.4: buildings shadows in urban area, 1 meter resolution [420] 
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4.2.1 Simulated reflectance algorithm 

In this paragraph, a method to reduce the effect of building shadows on urban 

environment, starting from the Simulated Reflectance algorithm developed for 

Airborne Thematic Mapper (ATM) images [421], is presented. The simulated 

reflectance can be derived from the relation between irradiance, thermal emittance, 

spectral reflectance and albedo based on a simplified energy conservation model of 

solar radiation incident on a land surface. Among the wide range of applications, 

the methodology has already been applied to Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) multi thermal images in which 

different lithologies were detected and better defined [422]. This technique 

highlighted sparse vegetation on shaded slopes and it permits to discriminate rocks 

that look uniform with a normal colour composite. Moreover, it allows to suppress 

topographic effect and it has the advantage of conserving surface albedo 

information. 

However, the method carries the disadvantage of a reduction of the spatial 

resolution in the thermal band (90 meters). 

With the increasing hyperspectral flights, where thermal bands have the same 

spatial resolution of the VIS-NIR bands, this technique can be very effective to 

detect features under building shadows and to highlight the surface that is shaded 

by these building in urban areas.  
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The solar radiation balance on the Earth can be described as: 

                                                                                                                                 

 

where B is the radiation balance, Ma is the absorbed energy (Ma= αE which 

depends on α, the absorptance and E, the irradiance) and Me is the radiation emitted 

(thermal emission) from the land surface [423]. To satisfy conservation of energy, 

the following formula has to be respected: 

 

                                                                                                                                   

 

where ρ is the reflectance (described by Mr=ρE, the reflected solar radiation) [424]. 

Therefore, the Energy irradiance on a pixel is equal to: 

 

                                                                                       

 

This algorithm considers an imaging sensor system with two broad spectral bands: 

one is a panchromatic spectral band (visible to near-infrared) recording the 

reflected solar radiation Mr, which depends on the reflectance ρ) and the other one 

a broad thermal band recording the band thermal emission Me. The sum image of 

the two bands should be equivalent to the incident irradiance on land surface E 

reduced by the radiation balance B, the general formula is: 
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where the first term on the right side of equations considers a weighted sum of the 

n reflective bands of a specific sensors (it is called simulated panchromatic band) 

and the second term is generated by the weighted sum of the m thermal bands 

(called wide thermal band). The sum of these two terms is called simulated 

irradiance band. All the spectral bands are expressed in radiance values. 

The simulated spectral reflectance of band λ is defined by: 

 

                    
     

     
     

 
            

   
 
                             

 
   

                             

 

where           is the spectral radiance of the reflective bands refereed to a 

specific wavelength.  
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4.2.2 Application of Simulated reflectance to hyperspectral image 

The above proposed methodology has been tested on the AHS image acquired 

above Madrid [425]. The general formulas have been adapted considering this 

airborne sensor characteristics: 

 

             

  

   

                                

  

   

          

        
              

   
  
                                   

  
   

                       

 

Likewise, the simulated emittance εsim for thermal bands (from 64 to 80) can be 

retrieved with the following formula: 

 

        
                  

   
  
                                   

  
   

                        

 

Weights may be calculated using the solar radiation curve; it means that, for a 

specific pixel, the weight of a single band is equal to: 

1) band irradiance by bandwidth (area of each column); 

2) Sum of all the columns (total area); 

3) Divide each column per the total area.  
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Fig. 4.5: solar radiation spectrum from 250 nm to 2500 nm 

Calculating the weights, is appropriate to consider that some bands in the MIR part 

of the spectrum have not been used (they were affected by stripes) and the 

simulated irradiance band has been linearly stretched with a proper cut-off at both 

high and low ends of the histogram before calculating ρsim(λ). With all the image 

bands having the same DN range after the stretch, the weights calculated from the 

solar radiation curve can thus be applied on all the bands. 

By the way, several attempts have  confirmed that simulated panchromatic band 

and wide thermal band can be obtained with a sum of the respective bands without 

considering their weight: that is probably due to the fact that the processed bands 

have the same bandwidth (for hyperspectral image) in the VIS-NIR part of the 

spectrum. The contribute of these band is the most conspicuous in the simulated 

panchromatic band.  
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4.2.3 Results 

As shown in figure 4.6, the first test on an AHS testing image above Madrid 

showed the enhancement of the image after the simulated reflectance processing: 

the topographic effects of buildings have been suppressed (the entire image appears 

flatter) with spectral properties of various ground objects enhanced.  

In the following image (4.7), where some details of the image are presented, the 

simulated reflectance image shows some interesting results: 

- the shaded perimeter around the stadium is now visible and it can be 

observed that it is made of asphalt, with the same spectral properties of the 

lower part of the perimeter already visible before correction; 

- the stand of the stadium, which was saturated and not clearly 

distinguishable in the left image, is now highlight due to its different 

response  in the other bands (reflective and thermal); 

- in the image below, some areas, which were shaded from buildings, show 

the presence of vegetation (with red) after simulated reflectance application. 
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Fig. 4.6: AHS false colour composite 14-8-5 RGB obtained with the original image (left, above) and 

simulated reflectance image (left,  below) 
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Fig. 4.7: Details of AHS false colour composite 14-8-5 RGB obtained with the original image (left) 

and simulated reflectance image (right). A detail of the stadium. (right, above) and shaded 

vegetation on the street (right, below) enhanced by the simulated reflectance is highlighted  

 

Another useful application it can be observed to spot shadows as a class itself in a 

classification image. In figure 4.8, a mixed color composite with original and 

simulated reflectance bands allows to spot shadows (shown in red in the lower 

image) which can be classified in a ―shadow‖ class with a simple threshold rule. 
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Fig 4.8: AHS real colour composite 8-5-2 RGB obtained with the original image (above) and colour 

composite (below) obtained with 8(sim)-8(real)-8(real). Using a simulated reflectance band, which 

has higher values of shaded pixels, allows to highlights shadows (with red). 
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This section can be concluded noting that the application of simulated reflectance 

algorithm in urban environments showed satisfactory results to remove building 

shadows, especially considering the use of hyperspectral sensors, where the spatial 

resolution of their thermal bands is the same of the other visible and near infrared 

bands. This methodology allowed to suppress topographic effect and it had the 

advantage of conserving surface albedo information. Moreover, the technique 

highlighted some details which cannot be observed with the only use of original 

spectral bands (due to the saturation of channels and the presence of shadows). The 

method does not require the use of external data and it is completely automatic 

starting from the radiance values. The initial dataset could be converted in 

simulated reflectance and simulated emittance bands, allowing the user to process 

the data with any other image processing techniques. 
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Chapter 5  

 

Spectral, textural and shape characteristics 

of urban main land cover classes 

 

This chapter aims at analyzing the characteristics of the land cover classes 

previously mentioned as objects of interest  for this study: vegetation, water, bare 

soil, buildings and roads. These classes present some properties deriving from their 

electromagnetic spectrum and the pixel-context, which define each class. Some 

features can be easily recognized only considering their spectral signature, for some 

others the addition of the context of the pixel is necessary to better define the 

membership class. 

Regarding the multispectral images, the registered radiance was assumed to be the 

response at the central wavelength of each band and they have been compared with 

reference signatures extracted from spectral libraries at the same wavelength. 
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5.1 Vegetation 

Since early instruments of Earth Observation, such as NASA's ERTS  and NOAA's 

AVHRR [501] acquired data in the red and near-infrared, it was natural to exploit 

the strong differences in plant reflectance to determine their spatial distribution in 

these satellite images. Leaf cells reflect solar radiation in the near infrared spectral 

region and absorb in the photosynthetically active radiation (PAR) spectral region, 

especially in red band. From these two quantities is easy to retrieve information 

about vegetation: many indices have been developed on this spectral relationship 

and the most used is called Normalized Difference Vegetation Index (NDVI). 

Often NDVI is calculated using radiance, even if it is generally accepted that 

reflectance values give more precise results [502], [503]. By design, the NDVI 

itself varies between -1 and +1 [504]. 

 

Therefore, vegetation presents a distinguishable spectrum in the four main spectral 

bands (Blue, Green, Red and Infrared of Quickbird and Hyperspectral images). Due 

to this intrinsic properties, Kohonen SOM is able to distinguish this class with only 

spectral parameters. 

The following image (Fig. 5.1) shows the vegetation reflectance values in the 

testing images (therefore, after the atmospheric correction from radiance values) 

and the reference signature from the spectral library [505] considering blue, green, 

red and NIR bands. It is worthwhile to observe that even without atmospheric 

correction, the vegetation can be easily spotted due to its different spectral 

characteristics respects to the other land cover classes.  

On the other hand, in a multi-image context, the atmospheric correction allowed to 

standardize the signatures and a comparison between themselves. 
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Fig. 5.1: Vegetation reflectance values  (VIS-NIR bands)  in Quickbird images (Tor Vergata, 

Nettuno and Denver), AHS image (Madrid) and spectral library. 
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5.2 Water 

The reflectance values of water bodies (sea for Nettuno and Bari images, a small 

lake in Madrid image) show (Fig. 5.2) the typical spectrum of water with some 

local variation due to the material in the water (organic and/or inorganic material). 

The spectral reflectance of sea water depends on the combined effect of scattering 

and absorption by water itself, by the suspended particles both of organic 

(phytoplankton) and inorganic (sediments) nature.  

The infrared intense vibrational bands make water essentially opaque at 

wavelengths beyond about 0.8 µm, thus reducing its reflectivity, which differs 

appreciably from zero only in the visible, where it exhibits a decreasing trend with 

wavelength. Phytoplankton modifies the trend by decreasing reflectivity at 

wavelength lengths below about 0.54 µm and slightly increasing it at larger 

wavelengths. Note that at the higher concentration of phytoplankton the spectral 

features of chlorophyll appear, with the evident reflectance minimum around 0.44 

µm and the one just hinted about 0.66 µm. The effect of suspended inorganic 

sediments is different, given their large scattering section which causes the 

reflectance to increase with increasing concentration (this is the case of the lake in 

Madrid), except that at the lower wavelengths, where the chlorophyll absorption is 

generally present [506]. 
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Fig. 5.2: Water reflectance values  (VIS-NIR bands)  in Quickbird images (Nettuno, sea), MIVIS 

(Bari, sea), AHS image (Madrid, lake) and spectral library [507]. 
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5.3 Bare Soil 

The interaction characteristics depend on the properties of the soil surface. The 

absorption mechanisms primarily involve vibrational (infrared) and electronic 

transitions (visible). Note that the more commonly encountered mineral substances, 

formed primarily by silicon, aluminum and oxygen atoms, do not present energy 

levels allowing transitions involving visible and near infrared photons. Instead of 

them, iron ions strongly absorb the shorter visible wavelengths. Organic matter, 

even if present in moderate quantity, has a strong influence on reflectance (high 

organic matter means high reflectance), given its water retentivity.  

However, given the soil formation process, its reflectance may contain various 

spectral components of the underlying minerals: the spectra of pure rocky materials 

are usually less complex than those of the soil, since they depend on lattice-

radiation interaction [506].  

Soil spectra (Fig. 5.3) have a clear increasing values in all the images, with low 

reflectance values. The variation between images can be brought back to the 

different soil materials. Bare soil signature can be confused in some cases with the 

signature of roads (as it will be shown in figure 5.6). For this reason, bare soil is 

one the most difficult classes to identify and spot. By the way, if more bands are 

available, as in the hyperspectral images, this problem can be overtaken analyzing a 

wider spectrum. 
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Fig. 5.3: Bare Soil reflectance values  (VIS-NIR bands)  in Quickbird images (Tor Vergata, 

Denver), MIVIS (Bari) and AHS image (Madrid). 
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5.4 Buildings 

As it was written in the first considerations on urban areas, buildings are made of 

different material and it is difficult to determine a general spectral signature which 

allows to spot buildings with VHR images. Figure 5.4.  shows the different spectral 

signature from buildings in radiance values. This image is also useful to 

demonstrate the difficulties to compare the spectral responses without the 

standardization that can be obtained  through atmospheric correction. In chapter 

four it has been introduced how the use of Homogeneity could help to distinguish 

the buildings in some images. Homogeneity features have been computed with two 

different window sizes of 3 × 3 and 5 × 5 only on AHS green band (the band which 

gave the best appreciable results in buildings identification). 

After the atmospheric correction, it is possible to compare the spectral signatures 

belonging to the building from different images and a spectral signature form 

USGS library. The spectral response appears more similar, with a increasing trend 

from blue to near infrared band. By the way, this trend can be observed in other 

man made features as well (i.e. asphalt) and a clear identification is not always 

possible. For instance, the red bricks of the roof of Madrid buildings (which will 

shown also in figure 7.2) can be associated clearly to the spectral signature from 

United States Geological Survey (USGS), but for the others, a significant 

difference (probably due to the different material) is still present. Therefore, the 

addition of textural information, especially in Very High Resolution (VHR) image 

analysis can be helpful.  A reference building signature which combines not only 

spectral parameters but also textural parameters has been then considered as 

standard building signature [508]. Considering the window sizes, an high value of 

homogeneity can be observed in window 3 x 3 (in relation of the measure of a 

small building) and it tends to decrease in a window 5 x 5. This trend is respected 

in all the images.  
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Fig. 5.4: buildings radiance values  (VIS-NIR bands)  in Quickbird images (Tor Vergata, Nettuno 

and Denver) and AHS image (Madrid).. 

 

Fig. 5.5: buildings reflectance values (VIS-NIR bands)  in Quickbird images (Tor Vergata, Nettuno 

and Denver), AHS image (Madrid) and spectral library. Hogeneity parameter from green band with 

two window size has been added. 
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5.5 Roads 

Roads correspond to man-made surfaces: their identification in Very High 

Resolution imagery is a difficult task because of the complexity and variability 

within the road network. Roads can exhibit a variety of spectral responses due to 

the differences in age and material and vary widely in physical dimensions. Road 

networks in dense urban areas typically have different geometric characteristics 

than those in suburban and rural areas [509]. Extraction of roads directly from 

digital images typically may involve the use of spectral characteristics and/or the 

use of object detection and/or shape parameters.  

As mentioned in chapter 3, in some cases roads can be confused with buildings if 

the material is similar (i.e. concrete) and bare soil (even if the spectral signature is 

different, the magnitude of the different could not be enough to allow the 

discrimination between them).   

These considerations were confirmed after the signatures extraction from the tested 

image (Fig. 5.6): a general trend with increasing values from visible to infrared 

parts was observed. Comparing them to the standard spectral signature, the roads 

from the Nettuno image seemed the most similar to the library response.  

In figure 5.7, spectral signatures from bare soil and asphalt are inserted in the same 

graph to show their similarity. In some cases, a reference spectral signature of 

roads for labeling can label the bare soil asphalt or vice versa, depending of the 

image range of values. 

This limitation of the labeling technique affects the multispectral images with four 

bands (i.e. Quickbird): with hyperspectral images (as shown in figure 5.8) and in 

World View 2 satellite
15

, the higher number of bands defines a more complex 

spectral signature where the intrinsic properties of the material are highlighted. 

                                                 
15

 World view II homepage: http://www.satimagingcorp.com/satellite-sensors/worldview-2.html 
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Fig. 5.6: roads reflectance values (VIS-NIR bands)  in Quickbird images (Tor Vergata, Nettuno and 

Denver), AHS image (Madrid), MIVIS image (Bari) and spectral library (Clark). 

 

Fig. 5.7: comparison between roads signatures and bare soil signatures in all the images (Tor 

Vergata, Nettuno and Denver, Madrid and Bari) and asphalt from library (Clark). 
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Fig. 5.8: comparison between roads and bare soil in hyperspectral image (MIVIS, Bari). The 

hyperspectral interval is not continuous (it has been calculated on 58 bands). The four bands 

available in multispectral are highlighted. 
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For these reasons, it has been decided to introduce additional information 

segmenting the image before the classification and calculating elongation as a 

shape measure that indicates the ratio of the major axis of the polygon to the minor 

axis of the polygon. The major and minor axes are derived from an oriented 

bounding box containing the polygon. (i. e. elongation value for a square is 1.0, and 

the value for a rectangle is greater than 1.0). In figure 5.9 a portion of the 

segmented image of Tor Vergata (I) is presented: after segmentation, some details 

of the image are lost and a generalized representation of objects allows to retrieve 

information about the belonging land cover class. The elongation of each polygon, 

setting a threshold equal to 3, could help to define roads if they have been clearly 

set from the segmentation process (Fig. 5.10). 

 

Fig. 5.9: a detail of Tor Vergata (left) and its segmentation (right). The major and the minor axis of 

a polygon corresponding to roads are highlighted. 
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Fig. 5.10: extraction of roads from segmented image through object with elongation value greater 

than 3 (above) and original Nettuno image (below). 
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Chapter 6  

 

Pixel based classification of VHR images: 

results on multispectral and hyperspectral 

images 

 

In this chapter, the developed chain to classify VHR multispectral and 

hyperspectral images will be shown with the results on the classification accuracies 

in the different test images. 

The classification chains will be described following the methodology described in 

chapter three, with a focus on the ability of the classifier to spot a specific class and 

the overall accuracy of the final process. 
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6.1 Natural features 

The classes included in the natural features are vegetation, water and bare soil. 

Their particular spectral characteristics allow their discrimination using only the 

spectral signature which can be compared with the library spectra. 

 

6.1.1 Vegetation class 

As it has been written, vegetation can be easily extracted with the only use of 

spectral values and it can be assigned to its own semantic class through an 

automatic labelling. 

After an automatic clusterization with Kohonen map using several SOM 

configurations, the mean signature of the extracted cluster have been compared 

with the signature from spectral library (Clark). Successively, the accuracy 

matrices, based on a ground truth of 1000 pixels, verified the quality of the 

vegetation extraction. A SOM with a different number of neurons has been trained 

with 50 epochs and the results have been compared.  

The table 6.1 summarizes the results of vegetation extraction in Nettuno image, 

where the similar approach has been used to highlight the same class on the other 

images. The results have been compared with the classic k-means clusterization 

technique on the same number of classes. Considering that the process aimed at 

extracting and identifying vegetated areas, which will be sent to the MLP as ground 

truth for the vegetation class, the first parameter to check is the percentage of 

pixels in the training set which have been described as vegetation class.. If there are 

some other land cover classes within it (which means a value lower than 100 %), 

the ROI is not valid for the successive step, the supervised Neural Network.  

The second parameter is the number of pixels which have been included in this 

class. Low values of this parameter means that the intrinsic variability of vegetation 

have not been highlighted: this lead to an higher value of the unclassified pixels. In 



                                                                                                     Chapter 6      107  

 

the following clusterization steps, these unclassified pixels may be assigned to 

other classes. 

Conversely, a significant number of pixels already assigned at this level, means 

that a wide typology of vegetation cover have been detected and a lower number of 

pixel will be reassigned in the next steps and in the final MLP NNs. 

 

 Clusterisation processes 

Kohonen K means 

5 x 5 4 x 4 3 x 3 2 x 2 25 16 9 4  

Accuracy in 

vegetation 

identification 

100 % 100 % 100 % 85 % 100 % 97 % 93  % 100 % 

Pixel 

identified 

(on 1000 

pixel dataset) 

681 686 727 875 556 612 693 704 

Table 6.1: comparison between Kohonen and K-means classifier with different size. 

 

Except with Kohonen SOM 2 x 2 neurons, all the pixels belonging to vegetation, 

are effectively vegetated (as confirmed by the ground truth): the 2 x 2 SOM, even if 

it spotted an higher number of vegetated pixels, has to be avoided because it stated 

that 15 % of the non-vegetated pixels are vegetated. 

The best method from these two parameters analysis is the one with a SOM 

structure of 3 x 3 neurons. It can be observed that, increasing the number of 

neurons, the number of pixel slightly change in not significant way. 

Each neuron, after a training phase, has a final weight: the values of the weights 

depends on the training dataset (which should be at least the 10 % of the entire 

dataset) and they correspond to reflectance values. Each pixel which is sent to the 

Kohonen is compared with these values and the neuron with a lower Euclidean 

distance with the input is considered the winning one. 
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Fig. 6.1 shows the final weights of the nine neurons of the selected SOM: the 

vegetation signature, due to its high response in NIR band, varies substantially 

from the others. The winning neuron (number 6) corresponds exactly to the one 

with the higher response in the NIR part of the spectrum. 

 

 

Fig. 6.1: spectral signatures of Kohonen neurons and reference signature for vegetation (Nettuno 

image) 
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Fig. 6.2: Nettuno false color composite 432 (above) and vegetation extraction -in green- (below). 

 

 



110  Pixel based classification of VHR images: results on multispectral and hyperspectral 

images 

 

6.1.2 Water class  

To test the capacity of Kohonen neural map to highlight water class, some tests 

have been performed on the image of Nettuno using the same configuration as  

previously adopted (3 x 3 neurons, 50 epochs), adding the water signature from 

library for automatic labelling. 

As it can be observed in figure 6.3, the two classes have been spotted easily 

considering their typical spectral signature: moreover, the labelling is still 

automatic, due to difference between water spectrum and the other classes. 

Fig. 6. 4 shows Nettuno image with the two identified classes (vegetation and 

water) highlighted. 

 

 

Fig. 6.3: spectral signatures of Kohonen neurons and reference signatures for vegetation and water 

(Nettuno image). 
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Fig. 6.4: Nettuno false color composite 432 (above) and vegetation -in green- and water –in blue- 

extraction (below). 
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For Bari image from MIVIS sensor, water is the predominant part of the image: 

therefore, the algorithm is able to discriminate different clusters inside this class 

(possibly for the different bathymetry and suspended sediments). 

It is worthwhile to observe the difference in clusterization, using all the available 

VIS-NIR spectrum from MIVIS (58 bands, excluding the bands affected by 

stripes), and the clusterization using only the four spectral bands homologues to 

Quickbird (20-12-7-2). The image 6.5 center use 58 bands for the classification and 

allowed to extract two clusters related to water (pink and sea green), but the pink is 

also presented in some land pixels, which means that only the cluster coloured with 

sea green can be considered as ground truth for the following MLP network. 

The image 6.5. bottom presents three clusters related to water (pink, sea green and 

blue), but this cluster can be assigned only to sea class (no presence of them on 

land). This consideration does not necessary means that four bands allows a better 

classification respects to hyperspectral images but, for just macro-class distinction 

as land/water, the use of a limited number of bands can give satisfactory results. 
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Fig. 6.5: Bari false color composite 20-12-7 (above), clusterization with 58 bands (center) and 

clusterization with 4 bands RGB + NIR (below). 
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6.1.3 Bare soil class 

Adding the bare soil signature, the corresponding class has been identified in 

Nettuno image. As it is possible to observe from figure 6.7, the neuron values can 

be associated to the library spectra due to their low spectral distance. The labeling 

of this class has been performed in automatic way. 

 

 

Fig. 6.6: spectral signatures of Kohonen neurons and reference signatures for vegetation, water and 

bare soil (Nettuno image). 
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Fig. 6.7: Nettuno false color composite 432 (above) and vegetation -in green-, water –in blue- and 

bare soil –in yellow- extraction (below). 
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However, bare soil identification has been performed on different images giving 

different results. As it has been introduced in the study on chapter five on class 

characteristics, bare soil cover in VHR images presents some intrinsic difficulties 

for its identification: 

- with the use of four spectral bands, in some cases the spectrum of bare soil 

can be confused with the spectrum of roads; 

- the automatic labelling can be performed in not all the cases, due to the 

variability of the different bare soil in the same image (internal) and 

between a set of them (external). 

Following, the example of the extraction of bare soil in Tor Vergata image is 

presented. With the above mentioned procedure with automatic labelling, the 

cluster assigned to bare soil corresponds in fact to the roads class (Fig. 6.8). 

This can be explained through the analysis of spectral signatures of neurons from 

Kohonen map (Fig. 6.9). 

In this area, bare soil signature has very low level of reflectance: as it is possible to 

see in the neurons comparison, these values have a higher distance respects to roads 

with the standard bare soil signature. Therefore, the automatic labelling assigned 

the pixel belonging to the wrong class to bare soil. Moreover, observing the real 

spectral signature of roads and bare soil in the image (extracted manually from 

image, not from SOM neurons), the small difference between roads value and bare 

soil values (Fig. 6.10), brought to a not clear distinction between them and the 

consequence is a mixed neuron with  roads and bare soil. 

In this area, the bare soil identification has been made with an interactive process 

after clusterisation. As shown from the classified image from the Kohonen map 

(6.11), one class contains pure bare soil pixel (in yellow) and another one contains 

mixed pixel (in orange). The cluster to consider for the next MLP is the one which 

contains pure bare soil pixels. 
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Fig. 6.8: Tor Vergata false color composite 432 (above) and vegetation -in green- and 

misclassification of bare soil in roads –in blue- extraction (below). 
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Fig. 6.9: spectral signatures of Kohonen neurons with a focus on the misclassified and mixed 

neurons (Tor Vergata image). 

 

Fig. 6.10: detail of the spectral signature of roads and bare soil on Tor Vergata image. 
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Fig. 6.11: Tor Vergata false color composite 432 (above) and vegetation -in green-, bare soil –in 

yellow-, roads –in orange- and mixed class extraction –in brown-. 
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6.2 Man-made features 

The procedure to spot the following classes very often considers not only spectral 

characteristics but, with regard to their internal material variability and the use of 

the same material for the different semantic class, required the use of textural and 

shape parameters. 

 

6.2.1 Buildings class 

From the physical composition point of view, several different materials can be 

used for the building roofs (they can be made of clay tiles, metal, concrete, glass, 

plastic). Therefore, different buildings types in the same image carry a different 

spectral signatures. As it has been shown in chapter five, homogeneity is a value 

which tends to be constant in buildings class in small windows size. It means that 

spectral signature and textural signature allows to extract buildings from images 

with a certain accuracy.  

For the labelling procedure, the interactive procedure is preferred: the automatic 

algorithm cannot know how many different typologies are included in the image 

(i.e. industrial/concrete buildings and residential/red brick buildings). From the 

clusterised image, a interactive selection of the buildings clusters performed their 

assignation to the semantic building class. 

Therefore, after the application of a mask to not include the already classified 

pixels (vegetation, water and bare soil), another Kohonen map has been trained 

with 3 x 3 neurons (even if increasing the number of neurons, the results were not 

substantially changed), adding the homogeneity parameters (from green band with 

a window 3 x 3 and 5 x 5). 

The results of the cluster analysis are shown in figure 6.12: as it can be expected, 

the clusters signatures after the masking procedure present increasing value in the 

spectrum, due to the intrinsic characteristics of the remained land covers (buildings 

and roads).  
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From the interactive cluster labelling (due to the high difference between the 

reference signature and the one from cluster), a neuron with a homogeneity value 

of 0.65 has been chosen as ground truth for the MLP. The building class is also 

highlighted in figure 6.13. 

 

Fig. 6.12: detail of the spectral and textural signature of buildings in Nettuno image and its 

reference signature. 
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Fig. 6.13: Nettuno false color composite 432 (above) and buildings extraction -in cyan- and already 

classified/masked pixels –in white- (below). 
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In other cases, if the urban area is more complex, more cluster can be assigned to 

the building class (as it happened with Madrid and Denver images, where the 

residential areas have a different structure respects to the industrial site). 

Here there is an example from the second Kohonen map for Denver which shows 

the two different types of buildings (Fig. 6.14 and 6.15). 

 

 

Fig. 6.14: detail of the spectral and textural signature of buildings in Denver image and its reference 

signature. 
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Fig. 6.15: Denver false color composite 432 (above) and residential buildings -in red-, industrial 

buildings –in orange- extraction and already classified/masked pixels –in white- (below). 
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6.2.2 Roads class 

The last unsupervised step consist in the extraction of pixels related to roads. 

As it was written in chapter five, roads can be spotted with the use of spectral 

characteristics and, it this method do not highlight the possible different type of 

roads, the use of shape parameters as elongation (after segmentation) can help to 

the discrimination).  

Using only spectral features, the methodology is simpler but some misclassification 

errors with building roofs made of concrete and bare soil with similar spectral 

characteristics can get worse the accuracy of classification. 

On the other hand, the segmentation process is more complicate and, as it was 

written in the segmentation description, there is no a miraculous method which 

segment all the imagery in a perfect way. What is here suggested, is to verify the 

classification accuracy after the first Kohonen SOM and if it is possible to assign a 

specific cluster to roads class. For instance, for the Denver image, the use of only 

spectral features allowed to obtained a final accuracy of roads extraction of 85 % 

(fig. 6.16). 

In image 6.17, the two methods have been applied for the Nettuno image, showing 

that both can used to detect roads. It was astonishing that, with the only use of 

spectral signature, the proposed methodology was able to classify and label 

automatically (Fig. 6.18) four on five classes (except buildings, which the use of 

texture is often unavoidable).  

In Tor Vergata image, the use of segmentation was necessary to extract roads, due 

to the different material which defined roads (Fig. 6.11). 
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Fig. 6.16: Denver false color composite 432 (above) and roads extraction -in red- (below). 

 



                                                                                                     Chapter 6      127  

 

 

 

 

Fig. 6.17: Nettuno false color composite 432 (above), roads extraction -in blue- from spectral 

signature (middle) and roads extraction –in red- after segmentation through elongation (below). 
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Fig. 6.18: spectral signatures of Kohonen neurons and reference signature for vegetation, water bare 

soil and roads (Nettuno image). 

 

For Tor Vergata image, two different type of roads (motorway and local roads) and 

the misclassification with bare soil, make necessary the use of spatial information 

(elongation) to detect which pixels corresponds to roads (Fig. 6.19). 

In particular, the segmentation contributed to extract the contribution of motorway, 

which joined to the roads class extract with signature, allowed to define the ROI for 

roads. 
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Fig. 6.19: Tor Vergata false color composite 432 (above), roads extraction -in blue- from spectral 

signature (middle) and roads extraction –in cyan- after segmentation through elongation (below). 
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6.3 MLP Neural Networks 

Now that all the ROI for the predefined classes have been spotted, the pixels which 

belong to each class can be sent to the MLP for the final classification. This step 

allows to assign the uncertain pixels (those were not yet classified/clusterised) to 

the final land cover classes. 

Some random pixels (their number depends of the dimension of the starting image 

but it generally corresponds to the 10 % of the entire number of pixels) for each of 

the five cluster (vegetation, water, bare soil, buildings and roads) have been 

extracted to feed the supervised network.  

A network topology with 6 inputs (defined by the four spectral classes and the two 

homogeneity parameters), two hidden layers with sixteen neurons each one and 

five outputs have been chosen (Fig. 6.20): from the output weights of this neural 

training, the images were been classified in five classes: vegetation, water, bare 

soil, buildings and roads. 

 

Regarding the hyperspectral images, two different ways can be chosen:  

- the use of the corresponding four bands;  

- the use of the entire available spectrum (removing the noisy and corrupted 

band).  

The first hypothesis allows to perform an automatic labeling for the predefined 

class in the presence of a single cluster for a semantic class, the second one needs a 

further process to select the valuable bands and the labeling has to be carry out in a 

interactive way for all the classes (unless a reference signature for each 

hyperspectral sensors has been inserted to perform this activity in a automatic 

manner). Besides, tests on the accuracy after the insertion of all the available bands 

did not show an effective improvement (Lazzarini and Del Frate), at least in this 
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level of class discrimination (which means that deeper analysis inside each class 

could be helped from an higher number of bands).  

 

Fig. 6.20: Multi Layer Perceptron Neural Network for supervised classification with six inputs, two 

hidden layers with sixteen neurons each one and five outputs 

 

Input layer Hidden layers Output layer 
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6.4 Final accuracy of the tested images 

Following, the final results of the classification processes are presented with a 

comparison with a standard unsupervised method as K-means. The final accuracy 

have been obtained comparing the classification output with ground truth pixels, 

obtaining at least 88 % in all the images, showing a increment respect to the K-

means methods. 

As general considerations, classes like vegetation and water can be generally 

spotted and labeled in automatic way. Bare soil can be highlighted with Kohonen 

map: the labelling is often interactive, due to with its variability in composition. 

The addition of homogeneity allowed to distinguish buildings: this class can be 

made of different buildings clusters, therefore the labeling depends on the number 

of buildings typology. Roads can be spotted with spectral characteristics and, if this 

parameter is not enough, the use of an additional segmentation step could help in 

its retrieve. 
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6.4.1 Nettuno (I) 

For this image, the process has been performed in a almost totally automatic way: it 

means that the clusters extraction and the labelling of vegetation, water, bare soil 

and asphalt have been done autonomously (6.21). The extraction of building have 

been done with a second Kohonen SOM adding the homogeneity parameters. After 

the unsupervised step, 59 % of the entire pixels have been defined as ROIs. 

A comparison with five ROIs from the respective classes of 2000 pixels each one 

has been performed. 

The final accuracy, as shown in table 6.1a, was around 90.8 % with an increment of 

13 % respect to the K-means method (table 6.1b): vegetation and water have been 

perfectly detected, the accuracy decreased with some misclassification of roads and 

bare soil classes, and the detection of some roads made of gravel (confused with 

buildings material).  
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Overall accuracy  90.80 % (SOM+MLP) 

 
vegetation bare soil buildings roads water Total 

vegetation 100 0 0 0 0 20 

bare soil 0 78.5 0 0 0 15.7 

buildings 0 9.5 97.5 22 0 25.8 

roads 0 12 2.5 78 0 18.5 

water 0 0 0 0 100 20 

Total 100 100 100 100 100 100 

Table 6.1a: Nettuno accuracy matrix with the proposed method 

 

 

Overall accuracy  77.5 % (k-means) 

 
vegetation bare soil buildings roads water Total 

vegetation   100.00 0 0 0 0 20.00 

bare soil 0 70.50 2.50 37.00 0 22.00 

buildings 0 0 60.00 6.00 0 13.20 

roads 0 29.50 37.50 57.00 0 24.80 

water 0 0 0 0   100.00 20.00 

Total 100 100 100 100 100 100 

Table 6.1b: Nettuno accuracy matrix with K-means method 
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Fig. 6.21: Nettuno false color composite 432 (above) and final classified map  
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6.4.2 Tor Vergata (I) 

This image is one of the most complicated from its structure and the lack of an 

urbanization plan. Vegetation have been spotted and labeled automatically; bare 

soil has an intrinsic variability and, in some pixels, a similar response to roads (as 

previously discussed); two types of roads have been recognized, one with spectral 

signature, the other one with the help of elongation parameter. The extraction of 

building have been done with a second Kohonen SOM adding the homogeneity 

parameter. After the unsupervised step, 54 % of the entire pixels have been defined 

as ROIs. 

A comparison with four ROIs from the respective classes of 2000 pixels each one 

has been performed. 

The final accuracy can be considered satisfactory with the proposed method (table 

6.2a) with a value of 88.125 %, conversely a very poor accuracy has been obtained 

with the standard method: the highest accuracy have been obtained with buildings, 

it tends than to decreases with the other classes but the values were over 84 % in all 

the classes. 
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Overall accuracy  88.125 % (SOM+MLP) 

  vegetation  bare soil  buildings  roads  Total  

vegetation  84 0 4 0 22 

bare soil  16 88 0.5 18.8 28.88 

buildings  0 5 95 3.5 25.88 

roads  0 11 0.5 85.5 23.25 

Total  100 100 100 100 100 

Table 6.2a: Tor Vergata accuracy matrix with the proposed method 

 

 

Overall accuracy  50.225% (K-means) 

  vegetation  bare soil  buildings  roads  Total  

vegetation  40.40 0 64.40 0.10 26.23 

bare soil  10.50 66.50 1.30 17.90 24.05 

buildings  34.70 6.20 16.40 4.40 15.43 

roads  14.40 27.30 17.90 77.60 34.30 

Total  100 100 100 100 100 

Table 6.2b: Tor Vergata accuracy matrix with k-means 
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Fig. 6.22: Tor Vergata false color composite 432 (above) and final classified map  
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6.4.3 Denver (US) 

The final accuracy of Denver was the higher of the entire tested dataset: the 

homogeneous urban structure allowed to obtained the higher value in buildings 

recognition and road extraction (Fig. 6.23). Water and vegetation have labeled 

automatically, roads and buildings (two clusters) interactively.  

After the unsupervised step, 65 % of the entire pixels have been defined as ROIs. 

A comparison with four ROIs from the respective classes of 2000 pixels for 

vegetation, buildings and roads and 500 pixels for water (due to its limited 

presence in the image) has been performed. 

As general observation, all the classes have an accuracy higher of 90 % (Table 

6.3a). With k-means, the accuracy value decreased drastically due to the fact that 

water class has not be spotted at all but it has been confused with roads (table 

6.3b). 

With the proposed method, bare soil class has not be detected considering the 

dense urban area which not contains this kind of cover. In the lower right part of 

the image there is a constructive site: even its conceptual classification in bare soil 

or buildings is difficult to determine. Vegetation has some misclassification errors 

due to its shadows: in some cases, the spectral responses of tree shadowed has been 

confused with asphalt response and water response.  
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Overall accuracy  95.55 % 

 
water vegetation buildings roads Total 

water 91.4 0 0 0 22.85 

vegetation 0 93 0 0 23.25 

buildings 0 0 99.4 1.6 25.25 

roads 8.6 7 0.6 98.4 28.65 

Total 100 100 100 100 100 

Table 6.3a: Denver accuracy matrix with the proposed method 

 

Overall accuracy  62.05 % 

 
water vegetation buildings roads Total 

water 0 0 43.00 0 10.75 

vegetation 0 94.60 0 3 23.65 

buildings 0 0.80 56.60 0 15.10 

roads 100 4.60 0.4 97 50.50 

Total 100 100 100 100 100 

Table 6.3b: Denver accuracy matrix with k-means 

 

 

 

 

 



                                                                                                     Chapter 6      141  

 

 

 

  

Fig. 6.23: Denver false color composite 432 (above) and final classified map  

 

 



142  Pixel based classification of VHR images: results on multispectral and hyperspectral 

images 

 

6.4.4 Bari (I) 

For Bari image, vegetation has been extracted and labeled automatically. Water 

have been detected automatically and labeled interactively for the presence of 

different clusters belonging to the same class. Roads have been highlighted with 

the only use of spectral features, due to the presence of very narrow streets, most of 

the time with the presence of vegetation, not allowing the use of segmentation. A 

single cluster of buildings have been extracted with the Kohonen second SOM and 

the use of homogeneity parameter (6.24).  

After the unsupervised step, 75 % of the entire pixels have been defined as ROIs. 

A comparison with four ROIs from the respective classes of 2000 pixels each one 

has been performed. 

Following the accuracy results, using the four bands corresponding to Quickbird 

(Table 6.4a) and fifty-eight bands on the entire VIS+NIR spectrum (Table 6.5b). 

Both of the final results were verified with the same ground truth data. 

The accuracy with the two input data are very similar (with a slight higher value 

with the use of hyperspectral data). A significant difference can be viewed in the 

detection of buildings, higher with the use of multispectral input and roads, 

conversely higher with the use of hyperspectral input. 

Also with this image, the results from a simple K-means classifier have been 

significantly improved (Table 6.4b and 6.5b). 
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Overall accuracy  92.15 % (SOM + MLP) 

 
vegetation water buildings roads Total 

vegetation 97.20 0 0 0 24.30 

water 0 99.20 0 0 24.80 

buildings 0 0.20 82.60 10.40 23.30 

roads 2.80 0.60 17.40 89.60 27.60 

Total 100 100 100 100 100 

Table 6.4a: Bari accuracy matrix obtained with the RGB+NIR bands (SOM + MLP) 

 

Overall Accuracy 70.35 % (k-means) 

 
vegetation water buildings roads total 

vegetation 99.40 0.30 27.00 0.90 49.16 

water 0 90.12 0.10 70.00 22.81 

building 0 0 72.40 9.70 20.51 

roads 0.60 9.58 0.50 19.40 7.52 

Total 100 100 100 100 100 

Table 6.4b: Bari accuracy matrix obtained with k-means 
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Overall Accuracy  93 % (SOM + MLP) 

 
vegetation water buildings roads total 

vegetation 98.20 0.00 0.00 0.00 24.55 

water 0.00 99.40 0.00 0.00 24.85 

building 1.20 0.00 74.80 0.40 19.10 

roads 0.60 0.60 25.20 99.60 31.50 

Total 100.00 100.00 100.00 100.00 100.00 

Table 6.5a: Bari accuracy matrix obtained with the 58 available bands (MLP + SOM) 

 

 

Overall accuracy  69.60 % (k-means) 

 
vegetation water buildings roads Total 

vegetation 93.01 0 26.9 73.80 24.91 

water 0 96.71 0 2.80 48.41 

buildings 0 0 72.10 6.90 19.74 

roads 6.99 3.29 1 16.50 6.94 

Total 100 100 100 100 100 

Table 6.5b: Bari accuracy matrix obtained with the 58 available bands (k-means) 
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Fig. 6.24: Bari false color composite 20-12-7 (above) and final classified map with the use of the 

four RGB+NIR band and the entire available spectrum 
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6.4.4 Madrid (E) 

The AHS image from Madrid has been classified using the analogous four bands 

from Quickbird (14-8-5-2) in four classes (6.25). The methodology considers the 

extraction and labeling of vegetation automatically, the extraction of bare soil and 

roads with the use of spectral information (interactive labelling) and the extraction 

of buildings with the second Kohonen map and homogeneity (two clusters of 

residential/red brick and industrial/concrete). After the unsupervised step, 64 % of 

the entire pixels have been defined as ROIs. 

A comparison with four ROIs from the respective classes of 2000 pixels each one 

has been performed. The accuracy value was above 88 % (table 6.6a) with some 

misclassification errors belonging to buildings and bare soil.  
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Overall accuracy  89.62% (MLP + SOM) 

  vegetation  bare soil  buildings  roads  Total  

vegetation  99.22 0 0 0 24.80 

bare soil  0.40 94.60 17.40 10.93 30.83 

buildings  0.29 4.33 78.33 2.73 21.42 

roads  0.09 1.07 4.27 86.33 22.93 

Total  100 100 100 100 100 

Table 6.6a: Madrid accuracy matrix with the proposed method 

 

Overall accuracy  55.9 % (k-means) 

  vegetation  bare soil  buildings  roads  Total  

vegetation  99.07 41.07 1.87 11.00 38.25 

bare soil  0.13 0 34.00 0 8.50 

buildings  0 0.20 39.40 3.87 10.90 

roads  0.80 58.73 24.73 85.13 42.35 

Total  100 100 100 100 100 

Table 6.6b: Madrid accuracy matrix with k-means 
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Fig. 6.25:  Madrid false color composite 14-8-5 (above) and final classified map  
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Chapter 7  

 

Application of automatic classification in 

urban thermography 

 

 

In this application, it has been designed a novel and automatic scheme for the 

estimation of the temperature associated to buildings: this approach relies on a 

cascade of neural networks (NN) and retrieval procedures and can represent an 

important technique to improve cities energy balance models. The entire process 

has been tested on an Airborne Hyperspectral Scanner (AHS) image acquired 

above Madrid in summer 2008 and the results assessed by comparison with the 

state of the art on LST retrieval [701]. 
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7.1 Urban Heat Island and Land Surface Temperature 

It has been written that one of most important application of automatic processing 

techniques is represented by the environmental parameters retrieval in Near Real 

Time (NRT): in the monitoring of urban environments, where the knowledge of 

changes in either natural resources or man-made structures is a valuable source of 

information for decision-making processes [702], it may be necessary to obtain 

data in the fastest possible way. Of particular interest in this context is the 

occurrence of Urban Heat Islands (UHI) phenomenon and the retrieval of Land 

Surface Temperature.  

Regarding UHIs, high densely built-up areas trap the heat causing city centers be 

up to 10º C warmer than surrounding rural areas and this is often manifested 

particularly at night [703], [704]. For energy balance and urban planning aiming at 

reducing the number of casualties when temperatures soar, the UHI information 

can be also updated on monthly basis. However, the retrieval of temperature should 

be in NRT to support civil protection in monitoring health impact over the weakest 

population  with a daily frequency
16

. Remotely sensed observations of UHI are 

possible using satellite and aircraft platforms and they could open new avenues for 

their analysis [705]. 

In 2008, ESA has launched a set of activities to aid decision and policy makers in 

mitigating the effects of UHIs through appropriate alert systems and, in terms of 

reducing risk, through improved urban planning. Within this framework, ESA is 

funding the Urban Heat Island and Urban Thermography (UHI) project under the 

DUE - Data User Element - program. The main purpose of this project is 

developing, validating and demonstrating a set of services that assimilate satellite 

remote sensing observations - mainly Thermal InfraRed (TIR) channels - with 

urban weather stations measurements (temperature, relative humidity and wind 

                                                 
16

 16http://dup.esrin.esa.int/Files/News/summary_DESIRE.pdf, final draft of “DESIRE workshop” 

http://dup.esrin.esa.int/Files/News/summary_DESIRE.pdf
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speed) into urban meteorological and climate modelling to help decision and policy 

makers in better preventing the impact of Urban Heat Island (UHI) during heat 

waves, through appropriate alert systems, and in reducing the risk, through 

dedicated urban land planning. A second objective of the project is to measure the 

energy balance of the cities for a better response to the energy efficiency policies. 

The third and last goal of the project is to study the optimum mission requirements 

for a dedicated TIR satellite sensor with higher spatial resolution and revisiting 

time for an adequate provision of Land Surface Temperature retrievals in the 

metropolitan areas of European cities. 

The project, started on 1
st
 November 2008, is analyzing the UHI trends over 10 

European cities (Athens, Bari, Brussels, Budapest, Lisbon, London, Madrid, Paris, 

Seville, Thessaloniki) over the last 10 years, using a multi-sensor approach.  

 

In Urban Thermography studies, Land Surface Temperature is one of the key 

parameters which can be retrieved from thermal infrared (TIR) remotely sensed 

data. Most of the energy detected by the sensor in this spectral region is directly 

emitted by the land surface: hence, except for solar irradiance components, most of 

the fluxes at the surface/atmosphere interface can only be parameterized by means 

of surface temperature. 

Several techniques have been proposed to retrieved LST from thermal infrared 

data: these methods are generally classified in single-channel methods (which used 

only one thermal band [706], two-channel or split-window methods (which use a 

combination between two thermal bands [707]), two-angle methods (which use one 

thermal band and two view angles [708]), multispectral method (which use several 

thermal bands, like TES method [709] and hybrid methods (which use a 

combination of other methodologies [710]). 
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7.2 How classification techniques can help urban thermography 

Image automatic classification represents an important issue in Land Surface 

Temperature and Surface Energy Budget (SEB) retrieval (Fig. 7.1). First of all, a 

specific class adds information to a temperature map, considering the surface where 

thermal differences are measured: thermal anomalies could be determined by 

different material with different emissivity properties (i. e,. metal and concrete).  

Moreover, classification map contributes to improve the management of the urban 

heat island phenomenon through other surface parameters products (i.e. roughness 

map). [711] studied the UHI effect with formula 7.1 to estimate z0: 

 

     

                                                                                   

 

where z0i is the roughness length for the corresponding surface coverage type 

(defined in a look-up table) and n is the number of pixels for a selected window 

Therefore, to apply this method, a land cover map is necessary. 

Roughness map, as well as LST map, constitute some of the input in the city 

energy balance model: with other input parameters, they help to obtain energy 

efficiency maps, using a model of surface energy budget estimation [712]. 

In these energy budget models, classification maps bind the parameters of the 

Energy balance model for the specific reference surface (i.e., building heat transfer 

model parameters to be apply on building cover class). 
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Figure 7.1: role of classification in urban thermography 
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7.3  Building extraction 

Buildings have been extracted with the mixed approach described in chapters three 

and five: Kohonen‘s map has been used to clusterize the AHS image and to extract 

the building signatures considering both spectral and textural characteristics 

(CLUSTERING procedure). Classes ―Buildings‖ has been recognized comparing 

their value to standard building signatures (LABELING procedure). The extracted 

building pixels have been used as training set of a supervised neural network 

performing the ultimate building detection. The standard building signature 

includes AHS bands 2 (blue, 0.4836 μm), 5 (green, 0.5717 μm), 8 (red, 0.6586 μm) 

and 14 (NIR, 0.8334 μm) and the Grey Level Co-Occurrence Matrix (GLCM)  

parameters homogeneity (also called the "Inverse Difference Moment")  as its 

utilization in urban feature extraction has been already proven effective [713]. To 

exploit a multi-scale approach, which better deals with objects having different 

spatial coverage in an area, homogeneity features have been computed with two 

different window sizes of 3 × 3 and 5 x 5 only on AHS green band. Indeed this 

latter band gave appreciable visual results and it was preferred to avoid using a 

redundant number of features to feed the following supervised neural network. The 

dataset that constituted the input for the unsupervised learning was formed by 6 

bands: blue, green, red, near infrared, homogeneity of band 2 (from a window 3 x 

3) and homogeneity-bis of band 2 (from a window 5 x 5). The values of the input 

vector were normalized to the range of (−1; +1): this step was necessary 

considering that different measure units (radiance and homogeneity) were used. 

The extracted building pixels have been then used as training set of a supervised 

neural network performing the ultimate building detection. The mixed approach 

has been made to improve the classification accuracy observed using only 

unsupervised methodologies. 
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The optimal NN architecture have been obtained with a map of 5 x 5 neurons, 

which seems the optimal architecture to detect buildings. It means that each input 

signal has been compared with all the 25 neurons/weights of the map (where the 

initial weights of these neurons were set with random values). The winning neuron 

has been chosen with a minimum distance algorithm based on the Euclidean 

distance between input and neuron. After 100 epochs, the unsupervised training 

was completed and the final weights of the 25 clusters were fixed: between these 

25 clusters, two of them could be distinguished as buildings (Fig. 7.2).  

 

Fig 7.2: building typology highlighted by the unsupervised neural networks. A (left) represents red 

brick roof building, B (right) represents industrial (concrete) building 

6000 pixels from each clusters have been randomly chosen and they have been sent 

to the supervised neural networks. Once the training sets have been defined, they 

have been joint together as input to the supervised neural network. A very simple 

network topology has been chosen, with six inputs, a single hidden layer with eight 

neurons and two outputs: after the training of the new network, the entire image has 

been classified in two classes: buildings and no buildings (fig. 7.3 and fig. 7.4). To 

verify the accuracy of the building extraction method, 2500 pixels for each class 

have been chosen to represent the ground truth: the overall accuracy of the 

classification reached a satisfactory level, with a value of 83.7 % (Table 7.1). In 
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table 7.2 the improvement with the used method, adding different texture windows 

and the supervised step, is shown. The method picked up some pixels which are not 

covered by buildings (in figure 7.4, right) it could be observed some 

misclassification error between roads and bare soil).  

 

 

 

 

 

 

 

Classification Accuracy 83.7 % 

Class Buildings No buildings Total 

Buildings 86.96 19.48 53.22 

No buildings 13.04 80.52 46.78 

 100.00 100.00 100.00 

Classification Method 

Accuracy in 

building 

detection 
4 Spectral bands 

-Unsupervised- 
60. 2 % 

4 Spectral bands + Homogenity 3 x 

3 

-Unsupervised- 

70.65 % 

4 Spectral bands, Homogenity 3 x 3 

and 5 x 5 

-Unsupervised- 

74. 825 % 

4 Spectral bands, Homogenity 3 x 3 

and 5 x 5 

-Unsupervised + Supervised- 
83.7 % 

Table 7.1: classification accuracy in building extraction 

Table 7.2: improvment in classification accuracy with 

the proposed method 

Figure 7.3: AHS swath above 

Madrid. RGB 8-5-4 real colour 

composite (left), extracted building 

mask (center) and Building 

Temperature map (right, legend 

figure 3). 
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Fig 7.4: details of RGB 14-8-5 standard false colour composite (up) and the final classification 

(below), where buildings are highlighted (in white).  
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7.4 LST retrieval 

In this work, LST has been obtained considering a split window (SW) technique: 

the basis of the technique is that the radiance attenuation for atmospheric 

absorption is proportional to the radiance difference of simultaneous measurements 

at two different wavelengths, each subject to different amounts of atmospheric 

absorption. The SW technique uses two thermal bands typically located in the 

atmospheric window between 10 and 12 μm. In [714] a general formula to retrieve 

LST for AHS high flights has been defined and coefficients have been readapted in 

[715]. It is based on a combination between AHS bands 75 (10.07 μm) and 79 

(12.35 μm): 

 

Ts = T75 + 0.723 (T75- T79) + 0.04275 (T75- T79)
2
-0.08463+  

(45.49-5.17W) (1- ε)+(-60.81+16.93W) Δε                                                                                                            

 

where T75 and T79  are the at-sensor brightness temperatures at the thermal bands (in 

Kelvin), ε is the mean emissivity of two bands (ε75 and ε79), Δε is the emissivity 

difference ε75-ε79 and W is the total atmospheric water vapour content (in g cm
-2

). 

From a research in literature, it seemed that nowadays there are no developed 

methods to calculate LST from image data as AHS without specific atmospheric 

correction and the use of ancillary data (i.e. radiosonde). On the other hand, the 

entire technique presented in this paper aims at increasing the level of automatism 

in extracting building temperature considering only the processing of the image 

data. In fact, one of the purposes of the study is to investigate on the price to be 

paid in terms of error on the sought final quantities for increasing the level of 
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automatism. In next paragraphs we explain how we tried to estimate both  

emissivity and water vapour content directly from the used AHS image. 

However, first of all, georeferencing and a conversion from radiance Li (mWm
-2

sr
-

1
µ) to temperature Ti (K) for thermal bands has been applied with Planck‘s formula 

considering the equation: 

 

   
 

            
                                                                                                              

 

where a and b are optimized coefficients (Table 7.3) provided by  INTA for AHS 

flights. 

a coefficients b coefficients Error 

8,62823E-03 -5,78661E-04 band 71  max. error [K] = 0.03 

8,94013E-03 -6,10497E-04 band 72  max. error [K] = 0.03 

9,24115E-03 -6,42080E-04 band 73  max. error [K] = 0.04 

9,52452E-03 -6,72616E-04 band 74  max. error [K] = 0.05 

9,79788E-03 -7,02837E-04 band 75  max. error [K] = 0.05 

1,00895E-02 -7,35967E-04 band 76  max. error [K] = 0.06 

1,04274E-02 -7,75533E-04 band 77  max. error [K] = 0.08 

1,07362E-02 -8,12848E-04 band 78  max. error [K] = 0.09 

1,10336E-02 -8,49946E-04 band 79  max. error [K] = 0.10 

1,13322E-02 -8,88480E-04 band 80  max. error [K] = 0.12 

Table 7.3: applied coefficients to convert radiance to temperature (INTA) 
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7.4.1 Emissivity 

Land Surface emissivity (ε) is a proportionality factor that scales blackbody 

radiance (Planck‘s law) to predict emitted radiance, and it is the efficiency of 

transmitting thermal energy across the surface into the atmosphere. An automatic 

way to calculate this parameter is with NDVI
THM

 (NDVI thresholds method) [716], 

whose assessment by comparison with other more complex methods has been 

already carried out in [715]. It has to be observed that these latter complex methods 

rely on TES (Temperature Emissivity Separation) and TISI (Temperature 

Independent Spectral Indices) algorithms which, assuming an atmospheric 

correction of the data by means of radiative transfer models such as MODTRAN 

[17], perform better results but do not permit a high level of automation.  

NDVI
THM

 uses certain NDVI values (thresholds) to distinguish between soil pixels 

(NDVI < NDVIs) and pixels of full vegetation (NDVI > NDVIv). For those pixels 

composed of soil and vegetation (mixed pixels, NDVIs ≤ NDVI ≤ NDVIv). The 

general formula to calculate NDVI is: 

 

     
      –      

            
                                                         

where rNIR is the radiance of band 14, centered at 0.862 and rRED is the radiance 

of band 8, centered at 0.689 μm. 

The NDVI
THM

  considers the following simplified conditions: 

    

   

        

      

          if              
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where εv and εs are, respectively, the soil and vegetation emissivities, ρ is the 

reflectivity of red band and PV is the proportion of vegetation (also referred to as 

fractional vegetation cover, FVC).        

    
          

           
 
 

                          (9) 

Typical constant values of εv = 0.99, εs = 0.97, NDVIv = 0.5 and NDVIs = 0.2 

[27vecchia ref] have been proposed to apply the method in global conditions. 

Therefore, there are three different possibilities: 

1) NDVI  > 0.5       ε75= ε79=0.99              

   

2) 0.2 < NDVI < 0.5             

 
 
 
 
 
 
 
 
 

 

   

   

   
   
   

   
   

   
   

    
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 

 

     
     
     
     
     
     
     
     
     
      

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 

 

     
     
     
     
     
     
     
     
     
      

 
 
 
 
 
 
 
 

                                                               

                

3) NDVI < 0.2 

In the case of AHS with bands from 1 to 20 located in the VNIR, emissivities for 

pixels with NDVI < NDVIs could be estimated as: 
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where εs is the soil emissivity and εv is the vegetation emissivity (assumed to be 

both a constant value and PV is the fractional vegetation cover estimated from the 

NDVI.  

 

7.4.2 Water Vapour 

Knowledge of the total atmospheric water vapour content is necessary to improve 

the precision of the estimates of land surface temperature obtained from satellite 

data by means of split window algorithms. Radiosonde data represent one way to 

obtain atmospheric water vapour content: however, this is not always possible, also 

considering that radiosonde observations are not carried out in a systematic way. 

Considering the fact that there are no methods to calculate water vapour from AHS 

data without using radiation transfer models, a methodology has been proposed 

based on the split window technique [718], [719] and starting from the following 

expression: 

                                                          

where W is the atmospheric water vapour content in g cm
-2

 and Ti Tj are the at-

sensor brightness temperatures measured in two different thermal bands (in K). 

With a regression technique, it was possible to recalculate the coefficients a and b 

for application to AHS flights. The AHS sensors has ten thermal bands (71 to 80, 

with effective wavelengths of 8.190, 8.660, 9.170, 9.600, 10.080, 10.560, 11.160, 

11.720, 12.320 and  12.890 μm), so different combinations can be used (excluding 

band 80, which was affected by stripes). With the radiosoundings launched from 

Barajas airport, the regression have been performed with eight ground truth data 

synchronized with AHS flights from 25
th

 June (Day and Night), 26
th

 June (N), 28
th

 

June (D-N), 1
st
 July (D), 2

nd
 July N and 4

th
 July (D). In Table 7.4, the obtained 
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correlations considering all the possible coefficient combinations are shown: the 

highest correlation coefficient (0.963) corresponds to 74-76 bands, with an a 

coefficients of 1.5073 and b coefficients of 2.7465. The water vapour map on the 

test image has been then extracted using these coefficients: the obtained mean 

value was 0.1 g/cm
2
 higher than the ground truth data. 

 

 
71 72 73 74 75 76 77 78 79 

71 

 

0.4479 0.4706 0.5514 0.5645 0.6205 0.6547 0.7493 0.0307 

72 

  

0.5874 0.7514 0.8557 0.8985 0.2220 0.0831 0.3326 

73 

   

0.0004 0.8376 0.4802 0.0581 0.2029 0.3633 

74 

    

0.6176 0.9637 0.1051 0.2765 0.4134 

75 

     

0.1051 0.3689 0.3863 0.4457 

76 

      

0.4850 0.4496 0.4757 

77 

       

0.7943 0.4757 

78 

        

0.4987 

79 

         Table 7.4:  correlation values of water vapour retrieval for each band combination 

 

Now, all the terms in eq. (2) have been calculated and the LST map can be yielded. 
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7.5 Final results 

Afterwards, the building mask and the LST map have been merged to display the 

Building Surface Temperature map (Fig. 7.4). From a first qualitative analysis we 

distinguished a colder area in the north part of the swath (which is located at a 

higher altitude) and individuate the areas of the city characterized by higher 

temperatures values, such as an industrial site in the southern part. A more 

quantitative assessment was performed considering the AHS LST values. Due to an 

insufficient numbers of specific ground truth in correspondence of buildings during 

the AHS flight, the assessment was carried out relying on the TES method for the 

emissivity and on the radiosoundings measurements for the water vapor estimation 

[715], as a benchmark. We remind that this latter method is considered as the ―state 

of the art‖ about LST retrieval. The statistics of the results are shown in figure 7.5. 

On a set of 80 buildings randomly selected over the image mask, a RMSE (Root 

Mean Square Error) value of 1.59 K has been obtained. It can be observed a 

general good correlation (0.99) between estimated values with the proposed 

method and values obtained with radiosoundings and TES method. 
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Figure 7.5: Validation of Building Temperature values obtained using  radiosoundings and 

emissivity from TES algorithm versus Building Temperature values obtained using Split Window 

for water vapour and NDVI
THM
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Fig . 7.4: Building Temperature map (left) and a detail of it (right) 
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Conclusions  

 

In this work, an innovative processing chain for the automatic classification of 

urban area with Very High Resolution (VHR) images is presented. The complexity 

of urban environment and the key role of the context parameters in VHR images 

requires new automatic approaches  for land cover detection (chapter 1). 

The presented methodology has been tested on two types of VHR imagery: satellite 

multispectral as Quickbird, with four bands in visible (RGB) and near infrared 

band; airborne hyperspectral as AHS and MIVIS, with more than seventy bands 

from visible to thermal part of the spectrum. Both imagery have a comparable 

spatial resolution (chapter 2). 

 

The idea was to create an original scheme for the automatic production of classified 

maps, stemming from the fusion of different and last generation remote sensing 

techniques such as automatic image classification with neural networks using 

spectral, textural and shape characteristics of the main land cover classes (chapter 

3). 
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The features to extract from the VHR imagery corresponded to vegetation, water, 

bare soil, buildings and roads. Before performing the classification step, a pre-

processing stage has been considered to standardise the data (chapter 4). The 

atmospheric correction, through the retrieval of reflectance values with information 

from the scene, the sensors, atmospheric and model settings, allowed to compare 

the response of the main land cover classes in different images and correct the 

influence of the atmosphere on the surfaces spectra. Besides, the exploitation of the 

thermal information in hyperspectral images let to remove the building shadows in 

urban area, enhancing the image quality through the application of simulated 

reflectance algorithm in urban environments. This showed satisfactory results in 

the removal of  building shadows, especially considering the use of hyperspectral 

sensors, where the spatial resolution of the thermal bands is the same of the other 

visible and near infrared bands. This methodology allowed to suppress topographic 

effect and it had the advantage of conserving surface albedo information. 

 

Following, a deeper analysis of the land cover classes characteristics in all the 

images allowed to explain their sensitivity to the classification process (chapter 5). 

This step showed that natural classes (vegetation and water) has a distinctive 

spectra: on the other hand, man-made has generally a wider variability and they 

also need additional parameters from their context for their identification. 

 

The classification has been achieved through a mixed approach by combining 

Kohonen‘s SOMs and a MLP network, based on:  

a) the extraction of clusters of pixels representing the land cover classes with a 

Kohonen‘s SOM (unsupervised approach);  

b) a labelling step, to assign the spotted cluster to a semantic land cover class; 

c) the use of the pixels belonging to the labeled clusters to train a MLP 

supervised neural network (supervised approach).  
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In fact, the training sets for the MLP have been extracted automatically from the 

image. A first Kohonen SOM was applied to extract vegetation, water, bare soil 

and, in some cases, roads. After masking the classified pixels, a second Kohonen 

SOM has been successively applied to spot buildings (exploiting the homogeneity 

parameter) and roads (if they were not detected before). Finally, the pixels from 

each clusters have been randomly chosen and they have been sent to the supervised 

neural networks. 

 

We observed that classes like vegetation and water can be generally spotted and 

labeled in automatic way (chapter 6). Bare soils can be highlighted with Kohonen 

map: the labelling is often interactive, due to  its variability in composition. The 

addition of homogeneity allowed to distinguish buildings: this class can be made of 

different buildings clusters, therefore the labeling depends on the number of 

buildings typology. Roads can be spotted with spectral characteristics and, if this 

parameter is not enough, the use of an additional segmentation step could help in 

its retrieval. 

For the extraction of these macro-classes, the use of the entire hyperspectral 

spectrum instead of the only four analogous bands of Quickbird seems to slightly 

improve the results of few percentages points. 

 

To complete this study, an innovative application of the proposed automatic 

classification methodology to urban thermography has been proposed (chapter 7). 

It was based on the fusion of automatic buildings detection and Land Surface 

Temperature (LST) retrieval from hyperspectral data. The final result is an original 

scheme for the production of building temperatures maps over urban areas. The 

method has been applied to an image taken over the city of Madrid and the 

obtained results shows a RMSE of 1.59 K of LST . Considering that an increased 

use of hyperspectral imagery for UHI management can be foreseen for the next 
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years, the developed technique may contribute to improve the characterization of 

the building heat transfer processes in the more general context of Energy Balance 

Models. 

 

As final remarks, this study shows the capacity of the Kohonen SOM to cluster 

VHR images in a predefined number of features which can be assigned to a 

semantic class.  

This labelling is more efficient for natural surfaces. Therefore, output image of 

water/land maps, vegetation/sealed areas maps can be performed often 

autonomously. In more complex environments, especially with human structure, 

the automatic labeling cannot be applied in all the different cases and more clusters 

can be assigned to the same semantic class. By the way, the use of contextual 

parameter (as texture and shape) helps in this discrimination. 

Concluding, from the present work and the literature research, even if some very 

satisfactory results have been obtained, it can be hypothesized that a universal and 

objective classification criteria which is able to classify automatically each kind of 

image in the desired output classes has not been found yet.  

These results stem from an objective evaluation that a classification criteria is 

always subjective in its strict sense. It has been shown how the same image can be 

classified in several ways, even if the number of the output class is the same (Fig. 

3.1). Therefore, the classification criteria and its output depend on the purposes of 

the analysis and the intrinsic composition of the image itself. 

It is worthwhile to observe that human assistance will be reduced to a quick view 

of the clusterization output, with a fast re-label of the clusters if the automatic 

results are not satisfactory. 

 

In my personal opinion, now the efforts in this field have to be directed to the study 

of the input of the classifier, considering that the classification accuracy reached a 

satisfactory value. A deeper study of the common and the distinctive parameters 
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(i.e. topological relationship) in each cover classes could help in the direction of 

building more powerful classification chains and move the entire process toward a 

more automatic processor. 
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Technical Applications 
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USGS  United States Geological 
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