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When I started writing my PhD thesis,  

I began to wonder what would make the best opening lines.  

I got many suggestions from my friends and colleagues (many thanks to all of them).  

I analyzed that the whole duration of PhD was an amalgamation of different emotions,  

tension, worries, happiness and most of all, confusion.  

But the most overwhelming of all was the overall satisfaction of completing the task  

I had undertaken.  

So I choose to start my preface on a lighter note, with all the  

enthralling memories of my unforgettable experience.  

I could not think of one unique event because there were numerous episodes that put my mind in impasse. 

 

 

 

I could tell you about the time I felt like almost drown in River Brahmaputra  

Or losing my way in thick American forests.  

Or, I could try to describe the first reprimand; I received from the director of my hostel  

for not keeping the room clean.  

Or perhaps, I could tell about my first conference/seminar, when my friends described me as ‘‘more of 

teacher than student’’ to illustrate the work carried out, but when in fact All  

I was trying was to fight the feeling of running away howling.  

The truth is that I found all the processes of research to be an incredibly fascinating game.  

Sometimes you win and feel like you deserve the Nobel Prize for a silly calculation that a fresher could 

have done, and sometimes you lose and you cannot stop thinking about the return match  

and  a new strategy that will get you to the laurels.  

With the impossibility of finding a single episode, I cannot do more than just say that all the words, 

electromagnetic theory and algorithms,  the reader will find in the thesis are the result of a game that I 

enjoyed a lot to play both while winning or while trying to win.  

My ultimate hope is that the reader will enjoy the content as well. But now I am too tempted to lay bare 

the content of this thesis! 
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Preface 
 
Earth functions as a system – a large, complex and dynamic one, but a system nonetheless. It is affected 

in measurable ways by external forces such as sun and its variability, and by the internal forces that are 

shaped by variations in the atmosphere, oceans, continents, life, and the complex web of interactions 

among them. According to Thermodynamics, the Earth can be defined as a closed system; In fact, it can 

only exchange energy, not matter, with its surroundings (asteroid penetrations and satellite remnants can 

be definitely neglected). Global water content on Earth, as any other matter, doesn't change; nevertheless 

water doesn't stand steady, but it is in continuous movement. 

 

Water relentlessly changes in position and state, moving throughout the whole planet in liquid, gaseous, 

and solid states; this process is called the Water Cycle (Figure I). The Water Cycle affects, and is studied 

by, several disciplines, among them Oceanography, Meteorology, Hydrology, Agronomy etc. 

 

 

 
Figure I : The water cycle (from http:ga.water.usgs.gov) 

 

 

“Water is at the heart of climate change and the impacts of climate variability. 

Any assessment of climate change, its causes and impacts, must be based on significantly better 

observations of the water cycle.”  

 

(National Research Council 1999)  

 

It is obvious that water is crucial for human life in the day-by-day needs, and it has the same importance 

in large-scale dynamics. The water cycle is, in fact, responsible for mitigating climate variations and 

homogenizing Earth's temperature, being at the same time a good tracer and forcer of climate changes. 

 

Among the variables mirroring the water cycle, soil moisture is probably the most important one, or at 

least, it is the one whose knowledge would improve most of the characterization of the large-scale water 

dynamics. Measurements of soil moisture, both its global distribution and temporal variations, are 

required to study the water and carbon cycles. Soil moisture is fundamental to land surface hydrology, 
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affecting flooding, groundwater recharge, and evapotranspiration (Viterbo and Betts 1999). It also 

influences weather and climate via its influence on turbulent and radiative fluxes between the land surface 

and atmosphere (Entekhabi and Rodriguez-Iturbe 1994). The water status of land plants and 

microorganisms is partly regulated by soil water, so soil moisture is a key component of the terrestrial 

carbon cycle (Howard and Howard 1993). Accordingly, soil moisture is usually a state variable in 

hydrologic (Rodriguez-Iturbe 2000) ecological (Running 1994), and climate models (Robock 2000). The 

global distribution and temporal variations of soil moisture are sought both for analyses and modeling 

purposes. 

 

Looking at the importance of the water cycle and of the role played by soil moisture for the same, a lot of 

progress in their knowledge and understanding has been exploited using the available technology. Prior to 

the space age (conventionally dated from 1957), humankind had never been able to take in the whole of a 

hemisphere in a single glance. In fact it had never had a global view of the world in which it lived. It was 

not until the first spacecraft went into orbit that our horizons expanded and we saw our planet as never 

before. During more than four decades of the spaceflights, planet Earth has been rediscovered through the 

systematic collection and analysis of vast amounts of information. During the last decades much effort 

has been spent by the scientific community in this direction and satellite microwave radiometry has been 

proposed as the optimal measurement technique. Satellite microwave radiometry presents several 

advantages: from one side, satellites permit the synoptic measurements of the Earth with a good revisit 

time; on the other side, microwave measurements can be acquired during both day-time and night-time 

regardless of the weather conditions (atmosphere is almost transparent at these frequencies). The 

attenuation properties of the atmosphere have been a hindrance to the development of Microwave and 

millimeter-wave, while the same have made it possible to sound the atmosphere. The millimeter wave 

spectrum contains two principal gaseous absorbers: oxygen and water vapor. In addition to gaseous 

absorption, aerosols (solid and liquid), produces significant attenuation.  

 

A passive system is restricted to measuring the incoming radiation of wave spectrum in question. Hence, 

a passive system is restrained to that portion of radiation that is emitted with a reasonable intensity from 

the observed objects. Microwave radiation can directly measure the dielectric properties of the Earth’s 

surface. Any change in these properties directly affects the reflectivity or emissivity measured by the 

passive microwave system. The dielectric property of the Earth’s surface layer is in turn strongly 

dependent on the surface moisture content. Hence, an analysis of the microwave data can be related to the 

moisture content of the soil surface layer. Microwave radiometry, uses, the measurement of naturally 

emitted microwave radiation, which is sensitive to the presence of liquid water. When directed toward the 

earth’s surface, it can reveal the quantity and distribution of water stored in vegetation and the first few 

centimeters of the soil, key components of the water cycle as well. Both the European Space Agency 

(ESA) and the National Aeronautics and Space Administration (NASA) have active programme to 

measure soil moisture using satellite microwave radiometers.   

 

This Ph.D. thesis contains the result of research undertaken at the University of Rome “Tor Vergata”, 

Doctorate Course on Computer Science, Control and Geoinformation. 

 

The general subject is microwave radiometry of vegetated areas under different conditions of soil 

wetness. The research work can be subdivided into two parts. 

 

The first part talks about analyzing in detail the multifrequency passive microwave signatures collected 

by AMSR-E instruments in the Brahmaputra Basin, Assam, India. The obtained results were analyzed to 

understand the interactions between microwave signatures and flooded surfaces and helped in exploiting 

the potential of microwave radiometry to monitor flood events.  
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The second part of the research involves refining, exploiting and testing the soil moisture retrieval 

algorithm of the   SMOS mission, particularly over forests. The SMOS mission is a strategic program of 

the European Space Agency, aimed at monitoring soil moisture over land and ocean salinity using an L 

band radiometer. 
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1. Introduction 
 

1.1 Basic Concepts 

 
The Earth continuously receives electromagnetic radiation coming mainly from the Sun. Part of it is 

scattered and/or absorbed by the atmosphere, and the other part is transmitted to the Earth’s surface. At 

the Earth’s surface, part of this energy is absorbed, and part is scattered outwards. The energy absorbed is 

then transformed into thermal energy, which leads to a temperature increase until the thermodynamic 

equilibrium is reached. At this state, according to Thermodynamics, all media (gases, liquids, solids and 

plasma) radiate energy to keep the energy balance. Radiometry is the field of science that studies the 

thermal electromagnetic energy radiated by the bodies. Radiometers are instruments capable of measuring 

the power emitted by a body with high accuracy. A microwave radiometer is a passive sensor that simply 

measures electromagnetic energy radiated towards it from some target or area. As a passive sensor, it is 

related more to the classical optical and IR sensors than to radar, its companion active microwave sensor. 

The energy detected by a radiometer at microwave frequencies is the thermal emission from the target 

itself as well as thermal emission from the sky that arrives at the radiometer after reflection from the 

target. 

 

The basic concepts of microwave radiometry are reviewed in this section. 

1.1.1 Brightness and power collected by an antenna 

 
Brightness, is defined as the power emitted by a source in a solid angle per unit area of the emitting 

surface B (θ, ϕ) [Wsr
−1

m
−2

]. Although the proper SI term for this quantity is actually radiance, but the 

term brightness is still commonly used in radiometry, photonics and laser work. Since the word 

“brightness” conveys a more intuitive understanding of its meaning than the technical term radiance, 

brightness is more commonly used. 

 

Brightness depends on the source’s normalized radiation pattern Ft (θ, ϕ) (power density per unit solid 

angle) and the total radiating area At. 
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Considering the case represented in Figure 1.1, where an antenna with effective area Ar and normalized 

radiation pattern Fn (θ, ϕ)  is receiving an incident brightness coming from an extended source (such as 

the sky or the terrain), the total power received by the antenna is given by (Ulaby et al., 1981): 
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Where, Bf (θ, ϕ) is the spectral brightness, defined as the brightness per unit bandwidth df, dΩ is the 

differential of soil angle, and ∆f is the bandwidth of the receiving antenna. The factor 1/2 accounts for the 

fact that thermal radiation is randomly polarized, while antennas can only collect one polarization. 
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Figure 1.1 : Geometry of the incident radiation from an extended source on an antenna, from Ulaby et al. 

(1981) 

1.1.2 Blackbody radiation 

 
All bodies at a non-zero absolute physical temperature radiate electromagnetic energy. If the body has a 

definite temperature, the higher it is the higher is the total emitted radiation, and the shorter is the 

wavelength of maximum emission. For example, at room temperature (~300 K), bodies emit thermal 

radiation that is mostly infrared and invisible to the eye. At higher temperatures the amount of infrared 

radiation increases and can be felt as heat, and the object glows red. At extremely high temperatures, 

bodies are dazzlingly bright yellow or blue-white and emit significant amounts of short wavelength 

radiation, including ultraviolet and even x-rays.  In 1901, Planck introduced the concept of a blackbody 

radiator in his quantum theory, which represents a reference, relative to which the radiant emittance of a 

material can be expressed. A blackbody is defined as an idealized, perfectly opaque material that absorbs 

all the incident radiation at all frequencies, without reflection. Also, a blackbody is a perfect emitter. 

Therefore, when a black-body reaches the thermodynamic equilibrium, it radiates all the absorbed energy 

omnidirectionally. The blackbody spectral brightness Bf  is given by the Planck’s radiation law: 
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Where, f is the frequency in Hz, h = 6.63*10
−34

 J·s is the Planck’s constant, kB = 1.38*10
23

 J/K is the 

Boltzmann’s constant, T is the physical temperature in K, and c = 3*10
8
 m/s is the speed of propagation. 

 

At microwave frequencies, hf/kBT ≪ 1, and the Taylor’s approximation 
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can be used to simplify (1.3) into a simple linear law such as: 
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where λ = c/f is the wavelength. This is the Rayleigh-Jeans law, a low-frequency approximation of the 

Planck’s radiation law. The Rayleigh-Jeans law is widely used in microwave radiometry since it is 

mathematically simpler than the Planck law and has a deviation error smaller than 1% for f < 117 GHz 

and T=300 K. A graphical comparison of the Planck law and the Rayleigh-Jeans law is provided in 

(Figure 1.2) for T=300 K (the Earth’s temperature) and T=6000 K (the Sun’s temperature). 

 

 
Figure 1.2: Comparison of Plank radiation law with its low-frequency approximation (Rayleigh-Jeans 

law) for T = 300K and T = 6000K 

 

Hence, the brightness of a blackbody Bbb at a physical temperature T and a bandwidth ∆f in the 

microwave region can be expressed as 
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The power collected by an antenna with normalized radiation pattern Fn (θ, ϕ) surrounded by a blackbody 

at a constant physical temperature T is given by (1.2) and (1.5), and can be expressed as 
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The solid angle Ω is the 2-Dimension analog of the conventional 1-Dimension angle. Just as the 1-D 

angle is defined as the distance along a circle divided by the radius of that circle, so the solid angle Ω is 

analogously defined as the area on the surface of a sphere divided by the radius squared of that sphere. 

The unit for Ω is steradians (sr), although it should be noted that both of these measures of angle (1-D and 

2-D) have no actual dimensions. Since the total surface area of a sphere is 4πR
2
, the total solid angle in 

one sphere is 4π sr.  

 

In case of the antenna, solid angle can be expressed as a function of its effective area 
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Hence, assuming the system bandwidth ∆f small enough so that Bf can be considered constant over the 

frequency range, equation (1.7), becomes 

 

 bb BP k T f    (1.9) 

 

This direct linear relationship between power and temperature is of fundamental importance in 

microwave remote sensing, where the power received by an antenna is commonly given in units of 

temperature (see Section 1.1.4). 

1.1.3 Gray body radiation 

 
A blackbody is a useful theoretical concept for describing radiation principles, but real materials or gray 

bodies do not behave like blackbodies: they do not absorb the entire energy incident upon them and their 

emission is lower than that of perfect blackbodies. It is therefore convenient to define a microwave 

brightness temperature TB (θ, ϕ), so that the brightness of a gray body can be expressed, similarly to 

equation (1.6) as, 
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TB (θ, ϕ) is the temperature that a blackbody would have to produce the observed brightness B (θ, ϕ); it is 

not the real temperature of the object, but an effective temperature. The brightness of gray bodies relative 

to that of blackbodies at the same physical temperature is called the emissivity e (θ, ϕ). 
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Note that, since real materials emit less than a blackbody, B (θ, ϕ) ≤ Bbb, and therefore 0 ≤ e (θ, ϕ) ≤ 1. 

The emissivity equals 0 in the case of a perfect reflector (e.g. a lossless metal), and 1 in the case of a 

perfect absorber, a blackbody. Thus, the brightness temperature TB (θ, ϕ) of a material is always smaller 

than, or equal to, its physical temperature T. 
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1.1.4 Power-temperature correspondence 

 
In the microwave region, since the radiance emitted by an object is proportional to its physical 

temperature (1.5), it is convenient to express the radiance in units of temperature. Hence, the brightness 

temperature TB (θ, ϕ) is used to characterize the radiation of an object (equation 1.10). Similarly, an 

apparent temperature TAP is defined to characterize the total brightness incident over a radiometer antenna 

Bi (θ, ϕ), as 
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Therefore, the power collected by an antenna with normalized radiation pattern Fn (θ, ϕ) receiving a non-

blackbody incidence brightness is given by (1.2) and (1.12), 
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It is convenient to define an antenna temperature TA as the temperature equivalent of the power received 

with an antenna, so that (1.9) holds as P = kBTA∆f for gray bodies. Hence, TA can be expressed as 

 
2 4

( , ) ( , )r
A AP n

A
T T F d


   


   (1.14) 

 

  

Note that TA includes contributions from the target being observed as well as from radiation emitted and 

scattered from other sources, but not from internal elements 

 

 
 

Figure 1.3: Radiation incident upon an Earth-looking radiometer. Relationship between the antenna 

temperature TA, apparent temperature TAP and brightness temperature TB, from Ulaby et al. (1981). 
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The case of prime interest in passive remote sensing is that of an Earth-looking radiometer, as illustrated 

in (Figure 1.3). In this case, the radiation incident upon the antenna is a function of both the land surface 

and the atmosphere, and may be expressed as 
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where TS is the brightness temperature of the land surface, TUP is the atmospheric upward radiation, TSC is 

the downward atmospheric radiation scattered by the Earth’s surface in the direction of the antenna, and 

La represents the attenuation of the atmosphere. At the lower microwave frequencies used in soil moisture 

sensing, the atmospheric effects are small and may be safely neglected in most cases. 

1.1.5 Measuring brightness temperatures from space and concerns 
 
Space-borne radiometers are very sensitive receivers capable of measuring the radiance emitted by the 

Earth’s surface with high accuracy. They are designed to transform the radiation collected by an antenna 

into mapable electric signals, and its performance is usually characterized by its radiometric resolution, 

accuracy, and spatial resolution (Randa 2008): 

 

 The radiometric resolution (sometimes called sensitivity) is computed as the smallest change in 

input brightness temperature or radiance that can be detected in the system output. 

 

 The radiometric accuracy represents the closeness of the agreement between the measured 

antenna temperature and its true value (systematic error). Because the true value cannot be 

determined exactly, the measured or calculated value of highest available accuracy is typically 

taken to be the true value. 

 

 The spatial resolution is the ability of the sensor to separate two closely spaced identical point 

sources. 

 

In a remote sensing mission, in addition to instrumental errors, other phenomena can degrade the 

radiometric resolution and must be corrected (compensated for). At lower frequencies, the atmosphere is 

almost transparent, and the main error sources are the Faraday rotation and the space radiation, which are 

described hereafter. 

1.1.5.1 The atmosphere: 

 
The atmosphere plays an obvious crucial role in Earth observation from space, since the electromagnetic 

field has to cross it. The damping of the field caused by the atmosphere affects the performance of the 

observing systems. Atmospheric attenuation caused by absorption from the constituent gases is strongly 

dependent on the frequency. The atmosphere essentially consists of nitrogen (78.1%) and oxygen 

(20.9%), a small amount of water vapor and minor quantities of other gases(carbon dioxide, methane, 

ozone etc.). Because of the low activity of nitrogen, permittivity of the atmosphere mainly results from 

the polarization of the other molecule species of which water vapor, being polar, is particularly active. At 

radio frequency (i.e., microwave), main interactive gases are oxygen and especially water vapor, which 

determine the dominant trend with frequency of real and imaginary parts of atmospheric permittivity. As 

indicated by the diagram in Figure 1.4, the overall attenuation by absorption show peaks at the resonance 

frequencies of water vapor and oxygen.  
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In general, many materials change their spatial arrangement of charges according to different 

configurations, resulting in different permittivity patterns, in particular in resonances at different 

frequencies, since involved charges, masses, frictional and restoring forces differ according to the 

deformation modes. A number of resonances are exhibited by materials, generally related to their 

complex and microscopic structure. The resonance frequencies and corresponding values of permittivity 

are actually related to transitions between vibrational and electronic energy levels.   

 

In general, an increasing trend of attenuation as a function of frequency is observed. It indeed, exalts in 

the thermal range, which is the spectral regions at which rotational and vibrational resonances of 

atmospheric species are more numerous, so that the atmosphere is practically opaque. Low absorption is 

found again in the visible, which, together with the microwave, is the main transparent band at which the 

Earth observing systems operate (Solimini 2013) . 

 

 
Figure 1.4: Atmospheric attenuation by absorption at different frequencies (Solimini 2013) 

1.1.5.2 Electromagnetic Interferences 

 
Radio Frequency Interference (RFI) in passive microwave remote sensing occurs due to the 

anthropogenic (man-made) signals, which contaminate calibrated radiometric brightness temperature 

measurements of naturally occurring background thermal radiation, resulting in anomalous 

measurements. The Noise levels generated due to the contamination are frequently sufficient to saturate 

the total power channel. RFI is a serious concern for future passive remote sensing missions in space. 

This is especially true for synthetic aperture radiometers because they employ small antennas with a wide 

field-of-view. 

1.1.5.3 Faraday Rotation 

 
When propagating through the ionosphere, a linearly polarized wave undergoes a progressive rotation of 

its plane of polarization due to the presence of the geomagnetic field and the anisotropy of the plasma 

medium (P.531-6 et al. 2001). This phenomena is known as Faraday rotation, which may be expressed as 
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where φ [rad] is the rotation angle, f [GHz] is the frequency, NT [electrons/m
2
] is the ionospheric total 

electron content (TEC), and Bav [Wb/m
2
] is the average Earth’s magnetic field along the propagation path. 

 

 
Figure 1.5:Typical values of Faraday rotation angle as a function of TEC and frequency, from(P.531-6 et 

al. 2001) 

 

Figure 1.5 shows typical values of the Faraday rotation angle as a function of TEC and frequency. TEC is 

significantly affected by the solar radiation, and shows significant temporal and latitudinal variations; 

assuming low latitudes, the Faraday rotation angle at 1.4 GHz can be as low as 4
0
 at night (TEC of 10

16
 

electrons/m
2
) and as high as 30

0
 at noon (TEC of 10

18
 electrons/m2). This rotation may result in errors on 

the brightness temperatures of 1-10 K, which is sufficient to cause errors in the retrieval of the surface 

parameters (Yueh 2000). As it will be seen, an effective way to avoid this problem is to use the first 

Stokes parameter, which is invariant to rotations. See the Stokes parameters will be defined in  Section 

1.1.6. Fully polarimetric measurements are also useful since make it possible a compensation of the 

effect. 

1.1.5.4 Space radiation 

 

Microwave radiation from space reflects over the Earth’s surface and is also received  by the antenna. 

Three main space phenomena should be considered, and their contribution to the antenna temperature 

needs to be taken into account:  

• The cosmic radiation level: It is fairly constant and low (~2.7 K) and, therefore, it does not 

significantly affect the quality of measurements. 

• The galactic noise: It comes from the reflection over the Earth’s surface of the pole or the center of the 

galaxy, and varies from 0.8 K to 40 K at 1.4 GHz (LeVine and Abraham 2002). It should be either 

avoided, by selecting a convenient orbit, or corrected through the use of existing galactic noise maps. 

However, the absolute accuracy of these maps is still questionable and the scattering models present 

errors. 

• Sun glint: It is the most important noise source, the Sun brightness temperature value is higher than 

100,000 K, and any reflection of Sun radiation collected by the antenna would seriously affect 
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measurements. Hence, direct reflections should be avoided by pointing the instrument to the shadow zone 

of a polar sun-synchronous orbit. 

1.1.6 Polarization and Stokes parameters 
 

The received field of an antenna is composed of electric and magnetic lines of forces. These lines of 

forces are always at right angle to each other. The electric field determines the direction of polarization of 

the wave.  

 

The polarization of an electromagnetic wave can be completely described by the four Stokes parameters I, 

Q, U, V. The first Stokes parameter (I) describes the total intensity of electromagnetic emission and the 

second Stokes parameter (Q) is the difference between the intensity in two orthogonal directions in a 

given polarization frame, i.e. vertical and horizontal polarizations. The third (U) and fourth (V) Stokes 

parameters, respectively, represent the real and imaginary parts of the cross-correlation between these 

orthogonal polarizations (Randa 2008) 
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  (1.17) 

 

Where, Ev and Eh are the electric field components at vertical and horizontal polarizations,  respectively, 

and ηo is the electromagnetic wave impedance of the medium (120π Ω in vacuum). In polarimetric remote 

sensing radiometry the Stokes parameters are conventionally expressed in terms of brightness temperature 
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  (1.18) 

 

where λ is the wavelength, and Bw is the noise-equivalent bandwidth. Tv and Th are the vertical and 

horizontal brightness temperatures, T45 and T−45 represent orthogonal measurements skewed ±45◦ with 

respect to normal, and Tlc and Trc refer to left-hand and right-hand circular polarized quantities.  
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Generally, the energy emitted from the Earth’s surface is partly polarized, meaning that the vertical 

brightness temperature is different from the horizontal. Whereas conventional dual-polarization 

radiometers only measure vertical and horizontal polarized brightness temperatures, a polarimetric 

radiometer is capable of directly or indirectly measuring all four Stokes parameters, which provides a full 

characterization of the polarization properties of the emitted energy. Note that the Faraday rotation ϕ 

mixes the polarization as follows 
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Hence, the first and fourth Stokes parameter are invariant to rotations, whereas the second and third 

Stokes parameter are not. In remote sensing, third and fourth Stokes parameters are primarily used for 

correcting polarization rotation (Yueh et al. 1995), (Mart´ın-Neira et al. 2002) or, in the case of the ocean 

for instance, to infer wind direction information (Brown et al. 2006). 

1.1.7 Microwave electromagnetic spectrum 
 
Electromagnetic waves are originator and carrier of information in earth observation. The information 

content of products delivered by a given type of system is essentially related to electromagnetic 

parameters (mainly frequency/ wavelength) and to the properties of the observed medium. . Frequency or 

wavelength of operation is mainly selected considering the kind, intensity and effectiveness of the 

interaction with the material to be observed and on the transmission of the atmosphere interposed between 

the sensor and the observed object. The wave interacts with different variety of materials, including 

natural or man-made solid, liquid and gaseous media. Because of the variety of obtainable information 

and the exploitability of various atmospheric windows, the portion of the electromagnetic spectrum over 

which the earth observation missions operate is wide, from low microwave frequency to the ultraviolet 

wavelengths. The choice of sensor, of frequency band is essentially driven by the kind of object user wish 

to observe and the type of parameters to be retrieved. 

 

Microwaves are waves with wavelengths ranging from about one meter to about one millimeter, or 

equivalently, with frequencies between 300 MHz (0.3 GHz) and 300 GHz. The microwave spectrum is 

subdivided into bans, according to the IEEE definitions recalled in (Table 1.1) 

 

Table 1.1: Microwave Electromagnetic Spectrum 

 
IEEE Band Frequency range (GHz) 

P (UHF) 0.3 – 1.0 

L 1.0 – 2.0 

S 2.0 – 4.0 

C 4.0 – 8.0 

X 8.0 – 12.0 

Ku 12.0 – 18.0 

K 18.0 – 27.0 

Ka 27.0 – 40.0 
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1.1.8 Microwave Radiometers 
 

A radiometer is a receiver that measures the electromagnetic radiation emitted by an object in a given 

frequency band. This radiation, being basically thermal noise, has generally very low power.   

1.1.8.1 Real Aperture Radiometers 

 

Real aperture radiometers scan across the field of view to measure the TB. Moreover, if they are flying at 

a height h the antenna size D required for a footprint d is D = ¸λh/d. For low-Earth orbit satellites 

operating at L-band, such as SMOS, an adequate ground resolution using real aperture radiometer implies 

an antenna size of several metres. This is impossible to implement for in-orbit sensors, but these 

radiometers are still being used (AMSR-E). The configurations and main characteristics of real aperture 

radiometers are briefly described hereafter. Further information may be found in  ((Skou 1989) and 

(Ulaby et al. 1986b).  

1.1.8.1.1 The Total Power Radiometer 

 

The TPR is the simplest type of radiometer; Its block diagram is shown in Figure 1.6, on the left the 

functional blocks are shown, while the measured voltage and the signal spectrum are plotted in the center 

and on the right, respectively. The output  

 

 0 ( )ut A NV k fG T T    (1.20) 

 

 
 

Figure 1.6: A Total Power radiometer block diagram. from (Ulaby et al. 1982) 

 

is dependent on the radiometer gain G and noise temperature TN. Gain variations are inherent to the 

performance of both gain and lossy microwave component, so TPR are not stable enough unless frequent 

calibrations are performed. The sensitivity of these radiometers is given by 
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being r   the integration time. It is the maximum than can be achieved if gain variations are neglected. 

1.1.8.1.2 Dicke radiometer 

 
The Dicke radiometer was proposed to solve the stability problems of total power radiometers. A Dicke 

radiometer views the scene during half the cycle and a matched load during the other half of the cycle. In 

this case, instead of the antenna temperature the difference between the antenna temperature and a known 

reference value TR is measured: 
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Note that this radiometer is more stable than TPR since the output does not depend on TN and the weight 

of G can be diminished by choosing TR values in the range of TN. However, neglecting the gain 

fluctuations, the sensitivity of this configuration is: 
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It is degraded by a factor of 2 as compared to total power radiometers. The 2 factor  arises from the fact 

that the scene is measured only half of the time. 

 

1.1.8.1.3 Noise Injection radiometer 

 
Noise injection radiometers (NIR) are a modification of Dicke radiometers to obtain an output 

independent of G and TN. As shown in Figure 1.7, the configuration uses as input to the Dicke radiometer 

the signal T0A= TA + TI = (TR -  TI ) + TI = TR, where TI is a variable noise temperature. Since T0A has the 

same value as TR, then the radiometer output is zero: 
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The sensitivity of noise injection radiometers is given by: 
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Figure 1.7: (a) total power, (b) Dicke, and (c) noise injection radiometer schematic (Skou 1989) 

1.1.8.2 Synthetic Aperture Radiometers  

 

Synthetic aperture technology was proposed to solve the antenna size problem of real aperture 

radiometers commented on the previous section (LeVine and Good 1983). The basic concept of 

interferometric radiometry is to synthesize a large aperture using a number of small antennas. A two-

dimensional image of the observed scenario is obtained by the cross-correlation of every pair of antenna 

having an overlapping field of view. The output voltages of a pair of antennas (e.g. located at (X1, Y1) and 

(X2, Y2)) are cross-correlated to obtain the so- called “visibility samples", as expressed by the following 

equation 
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where u and v are the spatial frequencies of visibility sample: (u, v) = (X2 - X1, Y2 - Y1) / λ = (∆x, ∆y) / λ, 

kB is the Boltzmann constant, B1 and B2 the receivers' noise bandwidths, G1 and G2 the avail- able power 

gains, b1(t) and b2(t) the complex signals measured by elements 1 and 2, respectively, and * is the 

complex conjugate operation. The complete set of the visibility samples is called a visibility map, and it is 

approximately the Fourier transform of the brightness temperature distribution of the scene. 

 

To invert this process the inverse Fourier transform can be applied as a first approximation (Camps et al. 

1997) or a more sophisticated G-matrix inversion (Anterrieu and Camps 2008), (Camps et al. 2008a)can 

be used. The result is a potential degradation of the radiometric sensitivity in terms of a higher rms noise, 

on the other hand a complete image is acquired in one snapshot, permitting to increase the integration 

time and improve the measurement sensitivity. Nevertheless, a further advantage of interferometric 

radiometry can be the multi-angular measurement: the output of an IFR is, in fact, an image; this permits 

having several views under different incidence angles of the same point on the Earth before it exits from 

the Field of View. For these reasons, interferometric radiometry has been preferred by ESA over real 

aperture radiometers, leading to the design and implementation of the MIRAS instrument aboard the 

SMOS mission. Details can be found in SMOS mission section (1.4.2). Further information may be found 

in (Camps 1996). 
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1.2 Applications 

1.2.1 Soil Moisture Monitoring 

 
Soil moisture patterns, both spatial and temporal, are the key to understand the spatial variability and 

scale problems that are of paramount importance in scientific hydrological, meteorological and 

climatological studies. Soil moisture not only controls the ratio of runoff and infiltration (Delworth and 

Manabe 1988; Wagner et al. 2003), decides the energy fluxes (Entekhabi and Rodriguez-Iturbe 1996; 

Prigent et al. 2005) but also influences vegetation development and through that the carbon cycle. It 

controls the exchange of water and heat energy between the land surface and the atmosphere through 

evaporation and plant transpiration. As a result, soil moisture plays an important role in the development 

of weather patterns and the production of precipitation. Simulations with numerical weather prediction 

models have shown that improved characterization of surface soil moisture, vegetation, and temperature 

can lead to significant forecast improvements. Soil moisture also strongly affects the amount of 

precipitation that runs off into nearby streams and rivers.  

 

A long term soil moisture data set on a region scale therefore could provide valuable information for 

researches such as climate change and global warming (Seneviratne et al. 2006), and also improve the 

weather forecasting (Beljaars et al. 1996; Schar et al. 1999) and water resources management in more 

methodical manner. 

 

Understanding of soil moisture is different in different disciplines. Soil Moisture for a farmer is different 

from that of a water resource manager or a weather forecaster. Generally, soil moisture is the water that is 

held in the spaces between soil particles. Usually surface soil moisture is the water that is in the upper 10 

cm of soil, whereas root zone soil moisture is the water that is available to plants, which is generally 

considered to be in the upper 200 cm of soil. 

 

Soil moisture profile can be observed at point scale by using gravimetric sampling or some automatic 

probes, such as Time Domain Reflectometry (TDR), Neutron Probe (NP), etc. These methods are 

commonly used to provide accurate and continuous soil moisture information and adopted by the 

meteorology, hydrology and agriculture stations. But these point information are not enough for the 

regional research and application, and are also not available in the remote areas where it is difficult to 

access and to maintain such stations. On the other hand, satellite remote sensing offers a possibility to 

measure surface soil moisture at regional, continental and even global scales. 

Remote sensing of soil moisture from the vantage point of space is advantageous because of its spatial 

coverage and temporal continuity. Research in soil moisture remote sensing began in the mid 1970's 

shortly after the surge in satellite development. Although surface soil moisture can be estimated indirectly 

from visible/infrared remote sensing data (Verstraeten et al. 2006), it failed to produce routinely soil 

moisture map mainly due to factors inherent in optical remote sensing, such as atmosphere effects, cloud 

masking effects and vegetation cover masking effects. Subsequent research has occurred along many 

diverse paths. In general, quantitative measurements of soil moisture in the surface layer of soil have been 

most successful using passive remote sensing in the microwave region. It is so because, microwave 

remote sensing offers a possibility to observe area-averaged surface soil moisture regularly in the global 

scale, by directly measuring to the soil dielectric properties which are strongly related to the liquid 

moisture content (Hipp 1974).Moreover, extra advantages of microwave remote sensing include: (1) long 

wavelength in microwave region which enable the low frequency microwave signals to penetrate clouds 
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and to provide physical information of the land surface; and (2) independent of illumination source which 

enables the spaceborne sensors to observe earth all-day with all-weather coverage. 

 

Many studies have shown the success of using passive microwave remote sensors to monitor surface soil 

moisture over land surfaces (Eagleman and Lin 1976; Ulaby et al. 1986b and Schmugge et al. 1994). As 

the moisture increases, the dielectric constant of the soil-water mixture increases and this change is 

detectable by microwave sensors (Njoku and Kong 1977). These sensors measure the intensity of 

microwave emission from the soil, which is proportional to the brightness temperature, a product of the 

surface temperature and emissivity. This observed emission is related to its moisture content, due to the 

large differences in the dielectric constant of dry soil and water (Moran et al. 2004)  

Soil moisture remote sensing is fraught with challenges. Only the moisture in the top few centimeters of 

soil can be detected. Algorithm development is complicated by the need for surface roughness and 

vegetation corrections, which are based on empirical and model based relationships, but still of limited 

breadth. Extending ground-based techniques to space-based systems requires innovative antenna 

technology. In spite of these challenges, recent advances in aperture synthesis and thinned array 

technology applied at L band (section 1.4.2) have shown great promise for soil moisture mapping. The 

potential exists today to retrieve soil moisture estimates from space-based instruments at frequencies 

ranging from 36 GHz (Ka band) to the observations at frequencies between 1 and 3 GHz (L band) for 

detection of soil moisture from a deeper soil layer, even in presence vegetation. 
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1.2.2 Floods and Methods of its monitoring: 
 

Flood is a natural event that can have far reaching effects on people and the environment. A sketch of 

flooding process is illustrated in Figure 1.8. It is an accumulation of too much water in too little time in an 

area where the land is normally dry. Floods are extremely common all over the world (they are the most 

common and widespread natural disaster except for fire), and are caused by a variety of reasons.. In some 

equatorial countries (viz., Bangladesh and India), the monsoon rains can cause bad flooding because the 

rain comes down fairly steadily for a long period of time. The water level in a certain area can rise 

extremely fast or slow, but generally, they develop over several days. Floods are most common near 

water, downstream from a dam, or in land that has a low elevation. There can exist regional floods, flash 

floods, ice-jam floods, storm surge floods, and debris landslide and mudflow floods. 

 

 
 

Figure1.8: Cause of floods (http://drace-project.org/index.php/floods/human factor) 

 
Regional floods usually occur seasonally; rain from the winter and spring added to the melting snow fill 

the river basins with more water than they can hold and the banks overflow. If the ground is still frozen, 

less water can be absorbed into the soil, which increases the runoff. Long periods of time with excessive 

rain can also contribute to create a regional flood because all the rain saturates the soil so that any more 

that is accumulated runs into streams and rivers, and overflows the banks. Slow-moving, low pressure or 

frontal storm systems like hurricanes that are dying off, and tropical storms can contribute to create a 

regional flood. 

 

Flashfloods can occur with very little, or no warning and they can easily become very strong in minutes. 

Large amounts of rain falling on a particular area in a short period of time is the main factor than triggers 

a flashflood, but characteristics like surface conditions, topography, and the slope of the land can make a 
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flashflood more likely in a certain area. Urban areas have a larger risk than other places because streets, 

roofs, and parking lots are a good place for water to runoff and gather. Mountainous areas also have a 

larger risk because the ground has a steep slope, and runoff water can go into a narrow canyon, and then 

the canyon can overflow. If you are standing below a flashflood when it starts, it will look like a wall of 

water is descending upon you.  

Ice jam floods occur on rivers that are at least partially frozen. If the water level rises, the ice will break 

up and then pile together in shallow places to block other things that might be coming downstream, like 

logs. The combination of the ice, logs, and other debris will block the river and keep the water from 

flowing by. Eventually the natural dam will break and the water behind it will be released. With all this 

water being released at the same time, the flood becomes a flashflood with large ice chunks in it that can 

badly hurt people or other objects.  

Storm surge flooding is caused by water pushed up on land that is usually dry by a storm surge. Dam and 

Levee (An embankment raised to prevent a river from overflowing) failure floods occur if more water 

piles up behind the dam or levee than the structure is built to hold. The water will spill over the dam, and 

most likely, the force of the water will break the dam, letting all the water inside pour out. In this case, the 

flood becomes a flash flood. Debris and landslide floods are created when debris, mud, rocks and maybe 

logs pile up over a river and form a temporary dam. As the water gathers behind the debris, a flood 

begins, and when the dam breaks and the water is released, it becomes a flashflood. 

The use of remote sensing within the domain of natural hazards and disasters has become increasingly 

common, due in part to increased awareness of environmental issues such as climate change, but also to 

the increase in geospatial technologies and the ability to provide up-to-date imagery to the public through 

the media and internet. They enable the collection and monitoring of data about atmospheric conditions 

and characteristics of the Earth’s surface leading to processes, which may bring about floods. Such 

information can be used to help determine appropriate actions to reduce the disastrous effects of these 

processes. It has been demonstrated that using satellite data for flood mapping becomes economically 

advantageous with respect to ground survey for areas larger than a couple of ten square kilometers. 

 

Since the year 2000 there have been a number of space borne satellites and sensors that have changed the 

approach to managing the natural disasters. The increase in the satellite data acquisition rates, sensor 

resolution, improvement of change detection algorithms and integration of remote sensing systems has 

significantly improved the real-time assessment and management of natural hazards (Gillespie et al. 

2007). 

 

Earth observation satellite systems provide a high degree of detail and a wealth of information at a global 

level for early warning activities. This information includes two categories of data: first, numerical values 

of detected geophysical parameters or related measurements, and second, imaging data sensed in various 

electromagnetic bands. Many different space systems, with different characteristics related to Spatial 

distribution, Spatial resolution, Temporal resolution, Spectral resolution and Radiometric resolution, 

provide valuable data. 

 

Both optical/infrared and microwave remote sensing instruments have been used for mapping surface 

water through time. Optical imagery operates in the visible portion of the wavelength spectrum, but also 

includes the infrared and thermal regions. Microwave imagery operates in the longer wavelengths from 

less than a centimeter up to a meter (or frequencies from 89 GHz to 0.3 GHz respectively). 

 

Different wavelengths have different responses to water in the landscape. Much of the literature shows 

that for optical imagery the infrared wavelength, particularly around 1.5-1.7 micrometers performs well 
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for separating water from land (Overton et al. 2006) Instruments such as Landsat have a relatively high 

spatial resolution (30m pixels) allowing for the detection of fine water bodies. However such imagery is 

not routinely collected on a global scale through time, making regular monitoring of flooding events 

difficult. 

 

Instruments such as the Advanced Very High Resolution Radiometer (AVHRR) and the more recent 

MODIS do collect data at daily/sub-daily intervals. Even with a poorer spatial resolution (1 km pixels), 

the AVHRR has been used to map water with reasonable success (Tanaka et al. 2003). The utility of 

AVHRR sensor was also realized by (Sandholt et al. 2003),  who state that although the spatial resolution 

is coarser than many other satellite sensors the frequent revisit time offers a greater probability of 

obtaining cloud-free imagery. They used linear spectral unmixing with thermal imagery to determine 

inundated areas, but were faced with the difficulty of selecting pure end members. Alternatively, they also 

tested supervised maximum likelihood and ISODATA clustering classifications with the higher spatial 

resolution Landsat ETM+, concluding that no technique is necessarily better than the other, rather that 

each has its advantages and disadvantages depending on the flooding extent, cloud cover and temporal 

variability. The MODIS sensors have a higher spatial resolution ranging from 250m up to 1km with a 

twice daily overpass through much of the world, which has also been used to map surface water 

(Sakamoto et al. 2007). Potentially one of the most useful studies for rapid-response flood mapping was 

conducted to create on-board satellite processing algorithms for Hyperion imagery (Ip et al. 2006). The 

algorithm utilizes three narrow spectral bands for a classification and is then compared to a base scene to 

extract flood detail rather than just wet regions (eg, rivers, lakes). However, Hyperion has limited global 

coverage, and obtains imagery in relatively small segments that would be useful for localized flooding but 

not necessarily large events. 

 

The extreme flooding events associated with several tropical storms in recent years (Hurricane Katrina, 

Cyclone Nargis) have been successfully and rapidly mapped using a variety of sensors to take advantage 

of differences in spatial and temporal resolution. Geoscience Australia is actively acquiring imagery of 

flooding events in Australia and attempting to develop semi-automated techniques for extracting 

inundated areas (Lymburner et al. 2008 and Thankappan et al. 2008)]. Flooding events of 2007 and 2008 

were successfully mapped using Landsat-5 TM and ALOS AVNIR-2. 

 

A major disadvantage in using optical imagery for flood mapping is that flood events are often associated 

with cloud cover. This is the main reason that scientists across the world started exploring microwave 

sensors for their potential to map surface water. For the active microwave case, the overall backscattering 

coefficient is essentially influenced by three processes: surface direct contribution, vegetation 

contribution and surface-vegetation double bounce. At lower frequencies (L, C and X Band) and angles 

higher than about 300, the three contributions behave and interact in a complex way. Surface 

backscattering increases with moisture and roughness. Vegetation attenuates surface backscattering and 

produces its own contribution, as well as double bounce. Flooding reduces the surface contribution, due 

to the decrease of roughness, and increases the double bounce effect in vegetated areas. At C Band, the 

overall effect produced by a moderate flooding is an increase of the backscattering coefficient due to an 

increase of the double bounce contribution. However, if the increase of water level submerges most of the 

vegetation cover, the overall effect is a decrease of backscattering coefficient. Therefore, the trend of the 

backscattering coefficient as a function of water level is not monotonic. These properties have been 

investigated for some cases of agricultural and natural vegetation, mostly at C and X Band, also with the 

aid of models (Le Toan et al. 1989; Caizzone et al. 2009 and Grings et al. 2005) The increase of the 

backscattering coefficient during flooding, related to double bounce, was detected also in forest cover 

areas, using L Band signatures (Wang et al. 1995) Synthetic Aperture Radar sensors have proven useful in 

mapping floods since the backscatter signature of water is so distinctive compared with that of vegetation 

(Alsdorf et al. 2007 and Lewis et al. 1998) but they are not routinely available at regional scales. (Smith 
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1997) suggested the use of Multi-frequency polarimetric SAR to classify different types of inundated 

terrain to an extent not possible with single-frequency SARs and visible/infrared sensors.  

 

The use of passive microwave remote sensing data to monitor soil moisture, vegetation and in turn the 

flood events, has been the subject of several studies in recent decades. Passive microwave sensors acquire 

data at a high temporal frequency (1-2 times daily) on a near-global scale in comparison to active sensors. 

Several theoretical and experimental investigations has proved the sensitivity of passive microwave 

remote sensing measurements to soil and vegetation properties from the physical perspective. Researchers 

tried to exploit the polarization effect on the emissivity on different surfaces. For bare soil, the emissivity 

at vertical (V) polarization is higher than the one at horizontal (H) polarization. An increase of soil 

moisture produces a decrease of emissivity at both polarizations, and at all microwave frequencies. 

However, the effect is more important at H polarization and at the lower frequencies (Ulaby et al. 1986a; 

Paloscia et al. 1993; Kerr and Njoku 1990). On the other hand, a decrease of roughness produces effects 

which are similar to the ones produced by an increase of moisture. If the soil becomes smoother, a 

decrease of emissivity, which is more evident at polarization and at lower frequencies, is observed 

(Paloscia et al. 1993). In the presence of flooding events and/or strong rainstorms, the two effects can 

couple together to reduce the emissivity, since the soil becomes wet and smoother at the same time. 

Though on average, the vegetation growth produces a decrease of the difference between vertically 

polarized and horizontally polarized emission. Studies were also aimed at singling out vegetation effects 

from soil effects and it was found that the polarization difference at high frequencies (Ka band) was 

mostly related to vegetation emission, and showed a good correlation with vegetation indexes derived by 

optical instruments (Choudhury and Tucker 1987) further studies adopted lower frequencies, typically X 

band In order to eliminate the dependence on surface temperature, a normalized polarization index 

(Paloscia and Pampaloni 1988) was defined (details mentioned in section). A further parametric study, 

carried out by means of a discrete physical model, confirmed the main finding of experimental studies 

and pointed out that the same polarization index is also sensitive to soil moisture, at least at frequencies 

lower than 10 GHz (Ferrazzoli et al. 1992). In (Choudhury 1989), the absolute polarization difference at 

37 GHz proved to be correlated to vegetation density and was sensitive to flooding effects occurred in the 

Amazon River. This last application was further exploited in (Sippel et al. 1994 and Sippel et al. 1998) 

and (Hamilton et al. 2002). A simple algorithm, based on the polarization difference at 37 GHz measured 

by SMMR, was adopted to estimate the fraction of flooded area during several events occurred in the 

Amazon river and in other large South American rivers floodplains. 

 

The availability AMSR-E signatures offered new opportunities (Kawanishi et al. 2003) to understand soil 

moisture at different frequencies. This sensor spans a wide range of frequencies, from 6.925 GHz to 89.0 

GHz, and the spatial resolution is substantially improved with respect to previous ones (details in section 

1.4.1). Based on AMSR-E data, useful algorithms have been developed to retrieve soil moisture (Njoku et 

al. 2003 and Paloscia et al. 2006) and vegetation variables (Njoku and Chan 2006).  In more recent 

studies, (Ferrazzoli et al. 2010) found that increase in the water level are associated with the increase in 

the polarization index. (Singh et al. 2012; Singh et al. 2012a and Singh et al. 2013) also found that At the 

X band, the water level was better correlated with the PI than with emissivity and fractional water surface. 

The correlation was good in cases of slow variation in WL. In cases of sudden variation in the river, the PI 

followed the variations with some time delay related to the propagation of water within the covered 

AMSR-E pixel. 

 

One of the large challenges in using passive microwave to map surface water is its large spatial footprint 

(5km up to 70km). Mixed pixel analysis is often used to determine the proportion of water within each 

flooded pixel based on theoretical or empirical estimates of the proportion of wet and dry surfaces 

(Mialon et al. 2005). Daily river stage or discharge has been correlated to inundation area as derived from 

regularly acquired remote sensing imagery. Even without ground data, these correlations can still show 

the shape and timing of seasonal hydrographs, and with ground measurements the absolute discharge can 



 

20 

 

be estimated to within a factor of two (Smith 1997). For microwave data, (Choudhury 1989) achieved a 

linear correlation of R =0.8 while (Brakenridge et al. 2007a) used a fourth order polynomial with an 

AMSR-E 36.5 GHz horizontal ratio achieving good results. (Sippel et al. 1998) found mapped flooded 

area was correlated with river stage, using it to develop a predictive relationship for inundation patterns 

with historical stage records. Work by (Bindlish 2009) also demonstrated the role of passive microwave 

data for flood forecasting. Most of the work, however, has demonstrated the increased skill in 

runoff/rainfall partition modeling by using remotely sensed surface soil moisture (Pauwels et al. 2002; 

Jacobs et al. 2003 and Crow et al. 2005) as a tool for flood monitoring and assessment instead of for 

forecasting (Alsdorf et al. 2000; Brivio et al. 2002; Freeman et al. 2002 and Scofield et al. 1994). Making 

the transition between monitoring and forecasting requires direct observations of the hydrologic 

precursors to flooding events (e.g., elevated soil moisture conditions) and not simply the manifestation of 

the flood itself. 

 

Many researchers also worked to combine of various data sources (optical, active and passive microwave 

data) for flood mapping. (Ticehurst et al. 2009)  developed different ways of using optical (MODIS) and 

passive microwave remote sensing imagery (TRMM) for mapping floods to help reduce the effects of 

cloud contamination, and optimize the data’s spatial resolution and temporal frequency to suit the size and 

duration of the flood events. (Salvia et al. 2011) presented a methodology to estimate the fraction of 

flooded area and the mean water level inside a wetland using both active and passive microwave orbital 

systems. The methodology is based on the quasi-simultaneous measurements of the radiometric 

polarization difference and the differences of the backscattering coefficient with respect to a reference 

image.  
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1.2.3 Forest monitoring  

 
Forests cover about a third of the Earth's land surface, and they influence the exchange of gases and 

energy between the atmosphere and the surface. About 80% of the global biomass is contained in forests, 

and this forms the central component of the stocks and acquisition of carbon in the biosphere. The growth 

and distribution of forests has a critical impact on atmospheric carbon dioxide concentrations, a central 

issue in global change research. To meet the various information requirements in forest studies different 

data sources, like field survey, aerial photography and satellite imagery is used, depending on the level of 

detail required and the extension of the area under study.  

 

Ground-based measurements allow us to evaluate in detail the influence of variables depending markedly 

on time, such as soil moisture and Leaf Area Index (LAI), but they cover only small forest plots. For the 

purpose of consistently and repeatedly monitor forests and their parameters over larger areas, it is 

preferable to use remote sensing data. Several types of remote sensing data, including aerial photography, 

multi-spectral scanner (MSS), Lidar (Light Detection and Ranging) laser, Active-Passive Microwave data 

and Videography data have been used by forest agencies to detect, identify, classify, evaluate and 

measure various forest cover types and their changes.  

 

Over the past decades tremendous progress has been made in demonstrating the potentials and limitations 

for identifying and mapping various forest surface features using optical remote sensing data. Optical 

systems,  although proved their effectiveness in sensing leaf parameters, are not able to sense the woody 

biomass. At microwave frequencies, remote-sensing research was mostly based on active systems. 

Radiometric forestry has received a much lower attention than radar forestry mainly due to poor spatial 

resolution of spaceborne radiometers. Nevertheless, important experiments about forest emissivity took 

place using ground-based, airborne, and spaceborne radiometers (Shutko and Chukhlantsev  1982b; 

Matzler 1994a; Wigneron et al. 1997; Kruopis et al. 1999; Hallikainen et al. 1988; Lang et al. 2000; Lang 

et al. 2001 and Macelloni et al. 2001).  A review was given in (Pampaloni 2004).   

 

Particularly, the capability of microwave radiometers to monitor soil moisture is a subject receiving 

attention Experiments using both ground based and airborne radiometers have provided an insight into the 

problem but only a limited number of forests have been observed. Some experimental investigations, 

carried out over coniferous forests, or deciduous forests in cold climates, indicate that the effects of soil 

moisture variations on radiometric signatures are very low, even at L band (Guglielmetti et al. 2008), 

(Grant et al. 2007). Other experiments in temperate climates indicate that a moderate sensitivity to 

variations of soil moisture exists, at least at L band (Rahmoune et al. 2010). These experimental efforts 

were aimed at evaluating the overall emissivity and appreciate the sensitivity of the emission process to 

forest variables, such as branch volume, LAI, and soil-moisture content (SMC). 

 
More recently, studies about forest emission have been stimulated by the development of space projects, 

such as the Soil Moisture and Ocean Salinity of the European Space Agency, using lower microwave 

frequencies (L-band) for soil-moisture monitoring (Berger et al. 2003). Although field experiments are 

fundamental to investigate the potential of radiometers, theoretical simulations carried out using physical 

models, also add important information. Models allow us to extend the estimates to several cases of 

possible forest variables, single out all the contributions of forest components, and carry out parametric 

studies at various frequencies, angles, and polarizations. Theoretical efforts aimed at simulating the 

electromagnetic behavior of forests were mostly focused on radar applications (Ulaby et al. 1990; 

Chauhan et al. 1991; Karam 1997; Ferrazzoli and Guerriero 1995). However, physical models of forest 

emission are also available (Ferrazzoli and Guerriero 1996 and Karam 1997) The basic modeling 

approach is discrete and based on the radiative-transfer theory (τ – ω model). At higher frequencies (C 
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band and above) there is a strong contribution of leaves to crown attenuation, but at lower frequency (L-

band and below), leaves are almost transparent, attenuation is mostly due to branches, and soil 

contribution can be still appreciable, unless if the forest is dense.  

 

It was found that  a simple empirical approach, based on τ and ω parameters fitted over experimental data 

is not appropriate in the case of forests, due to very limited amount of  experimental brightness data 

presently available at L band and the complexity of the  emission/scattering processes, since trunks and 

branches are not small when compared to sensing wavelength. Therefore, in the algorithm developed to 

explit SMOS data over land, forests are modeled using a simple zero order RT model, but with τ and ω 

obtained by fitting the outputs of a theoretical discrete model developed at Tor Vergata University 

(Rahmoune et al. 2013). τ and ω represent, respectively, the vegetation attenuation properties and the 

scattering effects within the canopy layer. The algorithm compares the brightness temperatures measured 

by SMOS with those simulated by a zero order forward model, and starts an iterative procedure which 

minimizes the “cost function”. Further using allometric equations and auxiliary information, the inputs 

required by the model are related to the maximum yearly value of Leaf Area Index (LAI). The retrieval 

algorithm estimates soil moisture and optical depth as outputs of the retrieval process. Several more 

efforts have been done to improve the performance of the forward model and the retrieval algorithm to 

improve the soil moisture retrieval performance, at least under moderately developed forests (Ferrazzoli 

et al. 2013 and Rahmoune et al. 2013a).  
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1.3 Historical notes about Microwave Passive Systems 

Most of the instruments placed into the orbit for the study of the Earth’s atmosphere and surface have 

been of the type passive sensors, imagers and sounders operating in visible, infrared and microwave 

spectral regions. Technology development over the past four decades have allowed then capabilities of 

the current generation passive sensors to advance  far beyond those of the first instruments on Sputnik-1 

and also the TV camera on TIROS-1. 

 
As discussed in Section 2.1, a main application of microwave observations is soil moisture monitoring.  

There can be two approaches through which microwave remote sensing estimating surface soil moisture: 

active ways by Radar and/or Synthetic Aperture Radar (SAR) with high spatial resolution (in the order of 

ten to hundred meters) and long revisiting period (about 1 month), passive ways by radiometers with 

coarse resolution (~ order of tens of km) and frequent temporal coverage (daily or bi-daily). The spectral 

range of remotely sensed data was considerably enlarged by the use of passive radiometers in the 

microwave region (section 1.1.7).  

 

Spaceborne microwave observations started Sep 23
rd

, 1968 with the launch of Cosmos 243 satellite, 

which carried a non-scanning, nadir viewing 4-channel radiometer with objective to estimate atmospheric 

water vapor, liquid water, ice cover and sea temperature. The same radiometer was also flown on Cosmos 

384 with a lunch in 1970. But the first operational Radiometric imaging started since Oct 15
th
, 1972, when 

NOAA-2 S/C, which solely relied upon radiometric imaging to obtain cloud cover data.  

 

Recent and near future spaceborne passive microwave sensors  include the Scanning Multichannel 

Microwave Radiometer (SMMR; 6.6, 10.7, 18.0, 21 and 37 GHz) on board Nimbus-7 Pathfinder 

(Gloersen and Barath 1977), the Special Sensor Microwave Imager (SSM/I; 19.35, 22.2, 37.0 and 85.5 

GHz) on board Defense Meteorological Satellite Program (DMSP) (Hollinger et al. 1990), MSMR 

(Mutlifrequency Scanning Microwave Radiometer) on IRS-P4 (ISRO), the Advanced Microwave 

Scanning Radiometer (AMSR-E; 6.925, 10.65, 18.7, 23.8, 36.5 and 89 GHz) of the Earth Observing 

System (EOS) on board Aqua (Kawanishi et al. 2003), AMSR on ADEOS-II (NASDA), the more recent 

and first of its kind spaceborne synthetic aperture radiometer with sparsely filled 2-D antenna design, soil 

moisture and ocean salinity (SMOS) mission by the European Space Agency (ESA), and the upcoming 

NASA Soil Moisture Active and Passive (SMAP) mission. 
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1.4 Recent Satellite Missions 

1.4.1 Advanced Microwave Scanning Radiometer (AMSR-E) 
 

The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) was 

developed and provided to the National Aeronautics and Space Administration’s (NASA) EOS Aqua 

satellite by the National Space Development Agency of Japan (NASDA), as one of the indispensable 

instruments for Aqua’s mission.  AMSR-E is a modified version of AMSR. AMSR-E was launched 

December 2002 aboard the Advanced Earth Observing Satellite-II (ADEOS-II) (Nakajima et al. 1994), 

(Imaoka et al. 2002). It is a multichannel microwave radiometer that observes hydrological and 

geophysical parameters to understand the mechanism of global water and energy circulation. It uses one 

of the largest microwave radiometer antennas to observe global and continuous phenomena with finer 

spatial resolution, with respect to previous radiometers. In addition to the time-proven capabilities for 

observing such variables as water vapor, precipitation, and sea surface wind speed, novel geophysical 

parameters, including sea surface temperature (SST) and soil moisture, are retrieved by using microwave 

frequency channels. Near-real-time products are further used to investigate satellite data assimilation into 

weather forecasting models and to contribute to improved forecasting accuracy. AMSR-E aboard Aqua is 

a joint project between Japan and United States as well as an international activity in which scientists 

worldwide collaborate in algorithm development, data validation, and scientific research. 

 

The mission aims at exploring the global hydrologic cycle and its role in the earth’s climate system. 

AMSR-E plays an important role in the Aqua mission, by measuring geophysical parameters supporting 

several global change sciences and monitoring efforts, including precipitation, oceanic water vapor and 

cloud liquid water, sea surface wind speed, sea surface temperature, soil moisture, snow cover, and sea 

ice parameters.  
 

In the AMSR-E instrument design, there are two major improvements over previous spaceborne 

microwave radiometers for earth imaging: the addition of 6.925-GHz channels and the largest main 

reflector of its kind, providing higher spatial resolution. The 6.925-GHz channels enable us to observe 

SST over the global oceans, while the TMI 10-GHz channels only appear to be sensitive to warmer SST 

above 10
0
 C (Shibata et al. 1999). These channels are also useful to investigate soil moisture content. 

Although TMI realized the higher spatial resolution thanks to the lower orbit altitude of the TRMM, 

AMSR-E essentially improves the solution and extends its capability to global measurements. 

 

On the afternoon orbit of the Aqua satellite, AMSR-E provides measurement at approximately 1:30 A.M. 

and 1:30 P.M. This observing local time is not covered by the previous measurements of SSM/I. Having 

AMSR-E therefore also helps in filling this gap of local observing time. More important is the 

combination of AMSR-E and AMSR onboard ADEOS-II. This system, combining microwave 

radiometers of the latest design in morning and afternoon orbits, helps in providing information on 

diurnal variability of most geophysical parameters necessary for process studies and frequent sampling of 

transient phenomena like severe tropical storms essential for improving data assimilation techniques.  

1.4.1.1 Instrument design and performance 

1.4.1.1.1 Overview 

 

AMSR-E is a six-frequency total-power microwave radiometer system with dual polarization capability 

for all frequency bands. The frequency bands include 6.925, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz. 
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Conical scanning at 40 r/min is employed to observe the earth’s surface with a constant incidence angle of 

550. Multifrequency measurement is carried out by the multiple feed-horn antennas mounted on the 

satellite. Calibration counts are obtained every scan by using the high-temperature noise source (HTS) 

around a temperature of 300 K, and the cold-sky mirror (CSM) to introduce the temperature of deep 

space. At the time of the launch the 1.6-m diameter offset parabolic antenna was the second largest 

spaceborne microwave radiometer antenna of its kind (the 2.0-m antenna of AMSR was the largest). The 

instrument consumes approximately 350 W of power in normal mode, and weighs 314 kg. Major 

performance and characteristics are summarized in (Table 1.2). A photograph of the AMSR-E undergoing 

antenna deployment testing at NASDA’s Tsukuba Space Center is shown in Figure 1.9. Overview of the 

AMSR-E and Aqua spacecraft is shown in Figure 1.10.  

 

Table 1.2: Summary of Major Performance and Characteristic of AMSR-E 
 

Parameters Performance and characteristics  

Center Frequency (GHz) 6.925 10.65 18.7 23.8 36.5 89.0 (A) 89.0 (B) 

Bandwidth (MHz) 350 100 200 400 1000 3000 3000 

Polarization Vertical and Horizontal 

Dynamic range (K) 2.7 to 340 

Incidence angle (deg.) 55.0 54.5 

Off-nadir angle (deg.) 47.5 47.0 

Beam width (deg.) 2.2 1.5 0.8 0.92 0.42 0.19 0.18 

IFOV (km) Cross-track x Along-track 43x75 29x51 16x27 18x32 8.2x14 3.7x6.5 3.5x5.9 

Swath-width (km) 1450 

Integration time (msec) 2.5 1.2 
 

 
 

 
 

Figure 1.9: Photo of AMSR-E sensor unit during deployment testing at NASDA Tsukuba Space Center  
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Figure 1.10: Overview of AMSR-E sensor unit 
 
. 

1.4.1.1.2 Frequency Bands 

 

Many, but not all, of the bands were selected within the frequency range allocated for earth observation or 

radio astronomy by the International Telecommunication Union. The 6.925-GHz band is not primarily 

allocated for earth observation, but defined as the primary band for ground-to-ground and ground-to-

satellite radio communications. Thus, there may be some radio-frequency interference (RFI). RFI was 

detected in brightness temperatures of SMMR 6.6-GHz channels over large cities, as well as in TMI 10-

GHz channels over urban areas. However, the effect can be not so strong in remote areas over land and in 

open oceans far from land. The specific value of 6.925 GHz was chosen for AMSR on ADEOS-II in 

consideration of electromagnetic compatibility with the platform. To obtain the air temperature sounding 

channels of the Advanced Microwave Sounding Unit (AMSU) on Aqua is used (but not by conical 

scanning). For water vapor channels, 23.8 GHz was chosen as the hinge point on the higher frequency 

side of the water vapor absorption line at 22.235 GHz. This selection differs from that of SSM/I, as well 

as TMI. 

1.4.1.1.3 Antenna Beam Characteristics 

 

Covering a wide frequency range imposes two antithetical requirements on the reflector: large aperture 

size to achieve high spatial resolution in lower frequency channels and an accurate mirror surface to 

realize high main-  beam efficiency, particularly in 89-GHz channels. The AMSR-E main reflector is an 

offset parabola, with a projected aperture size of 1.6 m along the beam direction and a focal length of 1.25 

m. To reduce weight and minimize thermal deformation in orbit, the main reflector is composed of an 

aluminum honeycomb panel sandwiched by carbon-fiber-reinforced plastic plates. Six dual-mode feed-

horn antennas illuminate the reflector for multifrequency observation. Figure 1.10 shows the array of feed 

horns. The 18.7- and 23.8-GHz radiometers share an identical feed horn, while two 89-GHz receivers 

(89A and 89B, two feed horns) are needed to maintain adequate spatial sampling in the along-track 

direction. The input power is divided into vertical and horizontal polarizations by orthogonal-mode 

transducers and fed to the subsequent receiver systems. 
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1.4.1.1.4 Receiver Characteristics 

 

AMSR-E employs total-power radiometers to achieve higher sensitivity than Dicke-type radiometers. 

Compared to switching-type radiometers that measure reference inputs during some portion of their 

integration time, a total-power radiometer has the simplest configuration without any compensation 

mechanisms of gain fluctuation and utilizes “total” incident power on the antenna. The low-noise and 

high-gain amplifiers using high electron mobility transistor (HEMT) devices were newly developed to 

achieve enhanced sensitivity in the higher frequency bands (Nakahara et al. 1995). Except for the 6.925-

GHz channels, the input radio frequency (RF) is converted to an intermediate frequency. The RF signal in 

the 6.925-GHz band is directly amplified and detected. To ensure a dynamic range from 2.7–340K, 

AMSR-E employs an automatic gain control (AGC). The AGC controls not only gains but also offset 

values of the dc-amplifier block to make calibration counts of HTS and CSM within the range of the 

output digital number (ten or 12 bits, depending on the frequency).  

1.4.1.1.5 Scanning Geometry and Global Coverage 

 

 
 

Figure 1.11: AMSR-E scanning geometry 

 
The AMSR-E scan geometry is shown in Figure 1.11. The AMSR-E SU continuously rotates 

counterclockwise about an axis parallel to the geocentric direction, with an off-nadir angle of 47.5
0
 (55

0
 

incidence angle on the equator). Therefore, the scan direction is from right to left when looking in the 

satellite traveling direction. Only ±610 (positive sense in a clockwise direction) is used in the forward 

direction to take effective data of the earth (low data contains ±750 of samples, but this is reduced by 

ground data processing), resulting in a swath width of approximately 1450 km. The effective observing 

angle for the 6.925-GHz channels is -610 to +580 due to possible interference in the main beam’s field of 

view (exact angle range should be examined after launch). During each rotation (taking 1.5 s), the sub-

satellite point advances a distance of 10.1 km. A sampling period of 2.6 ms corresponds to a cross-track 

sampling interval of 8.9 km, except for 89-GHz channels. For 89-GHz channels, the sampling period is 

1.3 ms, resulting in sampling intervals of 4.5 km (89A) and 4.4 km (89B) on the ground. On each scan, 

196 samples (392 samples for 89-GHz channels) are obtained within a ±61
0
 scan angle. 
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The sampling geometry in the 89-GHz band is a little complicated. A different off-nadir angle of 47
0
 is 

adopted for 89B, resulting in a difference of beam direction from 89A of 15 km in the along-track 

direction. Three successive scans can cover the earth’s surface as shown in Figure 1.12. The distances 

between two adjacent scan lines differ for 89A to 89B (6.0 km) and 89B to 89A (4.1 km). However, this 

explanation is only valid for the center of scans. As the scanning proceeds from the center to the end, the 

two scans (89A to 89B) overlap, and their order is reversed. 
 

 
 

Figure 1.12: Schematic diagram of 89 GHz scan geometry. Beam centers of three successive scans are 

shown by solid (N), dotted (N+1), and thick-solid (N+2) lines. 
 

The instantaneous field of view (IFOV) of each frequency is shown in Table 1.2. The concept of effective 

field of view (Kummerow et al. 2001) is not introduced here. In the lower frequency bands, the sampling 

intervals (10.1 km in along-track and 9.0 km in cross-track directions) are much smaller than the IFOV, 

so observed targets re heavily oversampled. Utilization of these oversampled data is up to data users. 

Selection of Aqua’s orbit and the AMSR-E swath width of 1450 km enable us to cover the entire earth in 

two days using ascending or descending data only. 
 

1.4.1.2 Ground data processing  

1.4.1.2.1 Dataflow Overview 

 

All science data from the Aqua satellite including AMSR-E are received by two ground stations, Alaska 

Ground Station (AGS) and Svalbard Ground Station (SGS), and are transferred to the EOS Data and 

Operations System (EDOS) at NASA Goddard Space Flight Center. The AMSR-E science data are 

processed into the Rate Buffered Data (RBD). Two RBDs [science RBD and Ground Based Attitude 

Determination (GBAD) RBD] are then transferred to the NASDA Earth Observation Center (EOC) in 

Japan for subsequent data processing. All the standard products, including Level 1A, Level 1B, Level 1B-

Map, Level 2, Level 2-Map, and Level 3, are produced at EOC and made available for data users via the 

Earth observation Information System (EOIS) interfaces. Near-real-time products are immediately sent to 

operational users including the Japan Meteorological Agency (JMA) and the Japan Fishery Information 

Center. Those data are utilized for investigating practical applications, including satellite data assimilation 
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into numerical weather forecasting models and surveillance of fishing grounds. The data transmitted to 

the Earth Observation Research Center (EORC) are used for processing research products and calibrating 

and validating the standard products. 

 

In parallel with the processing and distribution described above, the Level 1A data generated by NASDA 

are transmitted to the U.S. ground segments for the U.S. team’s processing (Level 2 and above). Based on 

this product, geophysical products are then produced by the Science Investigator-led Processing System 

(SIPS) at the Global Hydrology and Climate Center (GHCC). The National Snow and Ice Data Center 

(NSIDC) DAAC is responsible for archiving and distributing the U.S. products. The AMSR-E real-time 

data are also downlinked to any ground station via the direct broadcasting capability of the Aqua satellite.  
 

1.4.1.2.2 Data Products 
 

All the data products are stored in the Hierarchical Data Format (HDF) developed at the National Center 

for Supercomputing Application (NCSA) to maintain minimum compatibility with NASA’s HDF-EOS 

format. 

 

1) Level 1A: The Level 1A product stores observed digital counts converted from instrument output 

voltages. Other necessary information for subsequent processing, including navigation and attitude 

information, latitude and longitude for each observed point, raw calibration counts and derived 

radiometric calibration coefficients for each scan, surface type information (land area percentages in a 3-

dB footprint), and instrument monitoring data, is also retained. All the scan points within a 75 scan angle 

are retained. The data are not map-projected, but stored in the original swath format.  

 

2) Level 1B: Although the Level 1B data structure is almost the same as that of Level 1A, it stores 

brightness temperatures instead of raw observation counts. First of all, antenna temperatures are derived 

by using the radiometric calibration coefficients contained in the Level 1A data. Brightness temperatures 

are then computed by a simple linear combination of vertically and horizontally polarized antenna 

temperatures and the cosmic background temperature. The number of samples in a scan is reduced in the 

Level 1B processing from 243 (486 for 89 GHz) to 196 (392 for 89 GHz), corresponding to the changes 

of valid scan angle from 75
0
 to 61

0
. The Level 1B Map is a map-projected regional subset product of 

brightness temperatures. The image size of 300 X 300 pixels, with approximately 10-km pixel spacing, 

results in map coverage of 3000 km X 3000 km. 

 

3) Level 2: Through retrieval algorithms, eight geophysical parameters are computed by combining 

multifrequency dual polarized brightness temperatures. The geophysical parameters include integrated 

water vapor (total precipitable water), integrated cloud liquid water, precipitation (surface rain rate and 

accumulated amount), sea surface wind speed, sea surface temperature, sea ice concentration, snow water 

equivalent (or depth), and soil moisture content. The product is categorized into two groups: standard 

products and research products. The standard products are operationally processed at EOC by using 

standard algorithms that are relatively matured and well-validated. In contrast, the research products are 

beta versions of the standard products, or products based on completely new concepts. The Level 2 

products are still swath-type data with the same sampling interval as that of lower frequency channels 

(approximately 10 km). Latitude and longitude for each footprint and ancillary information such as 

quality flags are appended, which includes air temperature and humidity profiles, are used in processing 

Level 2 products as ancillary information.  
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4) Level 3: The Level 3 products are daily and monthly grids of Level 1B and Level 2 products. 

Depending on the products, 0.25 X 0.25 grids and/or polar stereographic grids with 25-km resolution are 

used. 

 

For the current study, we have used brightness temperature values, provided by level 2 product 

(AE_L2A.2 - AMSR-E/Aqua) global swath brightness temperatures, resampled at resolutions of 56 km, 

38 km, 21 km, 12 km, and 5.4 km. Level 3 (AE_Land3.2 - AMSR-E/Aqua) level 3 global daily surface 

soil moisture with vegetation water content, surface temperature, & brightness temperature are generated 

on a nominal 25-km equal area earth grid by time-compositing the level 2B parameters separately for 

ascending and descending passes. This product was used to compare AMSR-E global soil moisture map 

with soil moisture obtained from other data products (SMOS).   
 

1.4.2 Soil Moisture and Ocean Salinity (SMOS) Mission: 

1.4.2.1 Mission objective and characteristics  

 
The SMOS (Soil Moisture and Ocean Salinity) mission was approved by the European Space Agency 

(ESA) in May 1999. Its objective is to provide frequent global Soil Moisture and Sea Surface Salinity 

(SSS) maps. SMOS was launched on November 2, 2009, and after the first calibration and checkout 

period (the so-called Commissioning Phase), processed products started to be distributed.   

 
The SMOS satellite, launched with a ROCKOT Breeze KM, is on a low Earth polar Sun- synchronous 

dawn-dusk orbit, at 763 km of altitude, covering a complete orbit around the Earth in approximately 100 

minutes. It is characterized by a 3-day revisit time at the Equator and a spatial resolution ranging between 

32 and 100 km. 

 

The single payload of the SMOS mission is the Microwave Imaging Radiometer by Aperture Synthesis 

(MIRAS,(McMullan et al. 2008)); MIRAS is a 2D interferometric radiometer operating in the protected 

L-band with a nominal frequency of 1413.5 MHz and a bandwidth of 27 MHz. It consists of three 

deployable arms connected to a central hub (8-m diameter radiometer when completely deployed). The 

arms are equally spaced with an angular separation of 120
0
. Each arm encompasses three segments, each 

one containing six L-band radiometers (Light-weight Cost-Effective Front-end, LICEF). Four more 

radiometers are situated in the central hub, for a total of 66 radiometers. In addition to that, there are three 

Noise Injection Radiometers (NIRs) located in the central hub, each of which consists of two LICEF 

receivers coupled to a single antenna. The total number of elements is therefore 69 antennas and 72 

receivers, arranged as shown in Figure 1.13. 

 

The integration time used in MIRAS is 0.158 s, with an interval between snapshots of 1.2 s, allowing a 

snapshot radiometric sensitivity of 3.5 - 5.8 K over land and 2.5 - 4.1 K over ocean. Every 1.2 seconds 

data provided by the Control and Monitoring Network (CMN), by the Noise Injection Radiometer (NIR), 

by the LICEF units, plus additional information from the platform (attitude information) are recorded in 

the Raw-Data product. Raw Data are downloaded through the X-band channel when a ground contact 

is established. MIRAS can operate according to two different observation modes: 

 

Dual-Polarization mode: Brightness temperatures are alternately measured in each polarization every 1.2 

s, and all the LICEFs measure the same polarization. 

 

Full-Polarization mode: Brightness temperatures in H and V polarization as well as the third and fourth 

Stokes parameters are measured. Four consecutive integration times are used for each measurement. 
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During the first integration time, all receivers measure the X polarization and during the third integration 

time, the Y polarization. In the other two integration times the polarization of one arm is the opposite of 

the other two arms to perform measurements of the cross-polarization terms T (XY/YX).The arm in the 

alternative polarization rotates in a clockwise direction completing 4 rounds in each integration time. 

 

 
 

Figure 1.13: MIRAS arm and LICEF details. Courtesy ESA 

 

Brightness temperatures are reconstructed in the director cosine domain (ξ, η) : 

 

 ( , ) (sin( )cos( ),sin( )sin( ))        (1.27) 

  
where θ is the angle from the normal to the instrument plane (0 ≤ θ ≤ π/2 ) and ϕ is the angle in the 

instrument plane (0 ≤ ϕ ≤ 2π). Theoretically, the maximum visible space is the area inside the unit circle 

(ξ
2
 + η

2
 = 1) even though non-zero antenna pattern backlobes also contribute to the TB image in the unit 

circle. Geometric conventions are sketched in Figure 1.14. 

 

 visibility samples are measured and plotted as a function of the distance between antennas in the 

horizontal (u) and vertical (v) components; 

 

 the visibility map is properly repeated to compute the Inverse Fourier Transformation (F
-1

) 

leading to the brightness temperatures map (TB ) in the cosine domain, and finally 

 

 the periodic extension is removed from the brightness temperature map. 
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Figure 1.14 : Geometric concentions for the definition of the (ξ, η) coordinates.  

Spatial resolution is defined as ∆x = √a.b 
 

According to the MIRAS instrument design the distance between antennas (d) does not satisfy the 

Nyquist criterion (d ≤ λ/3) (Camps et al. 1997) so part of the Field of View (FOV) is affected by aliasing; 

the six closest aliases circles are shown in Figure 1.15, where the black dots stand for the theoretical 

maximum FOV, the red ones are the aliasing circle borders, and the central green zone is the Alias-Free 

Field of View (AF-FOV). 

 

The AF-FOV can be extended considering that sky has low, stable, and known emission. This 

contribution can be modeled and its aliasing effects compensated, leading to the definition of the so-called 

Extended Alias-Free FOV (EAF-FOV). The black dots are the theoretical largest FOV, and the yellow 

zone in the center of the figure is the EAF-FOV. 

 

  
 

Figure 1.15 : SMOS (a) AF and (b) EAF-FOV in the cosine domain: (black) unit circle, (red) SMOS 

aliased zone borders, and (green) SMOS (a) AF-FOV and (b) EAF-FOV 
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Due to this particular feature and to the dimensions of the FOV (approximately 1000 x 1000 km) 

instrument parameters change according to their position in the FOV, among them the radiometric 

accuracy and sensitivity, the incidence angle, and spatial resolution Figure 1.16 (a). Namely radiometric 

accuracy and sensitivity ranges in the intervals 2.5 - 4 K and 3.5 - 7 K, respectively, while incidence angle 

can assume values between 0
0
 and 60

0
 giving a spatial resolution (∆x = √a.b) is bound between 32 and 

100 km. 

In Figure 1.16 (b) the geometric parameters incidence angle (blue line) and spatial resolution (red line) 

are presented. 

 

  
 

Figure 1.16: (a) Radiometric Radiometric (blue) Accuracy and (red) Sensitivity, and (b) (blue) Incidence 

Angle and (red) Spatial Resolution [calculated using SEPS]. 

 

1.4.2.2 ISEA grid 

 

ISEA grids are simple in concept. Begin with a Snyder Equal Area projection to a regular icosahedron 

(see the stereo pairs in figure 17 (a)) inscribed in a sphere. In each of the 20 equilateral triangle faces of 

the icosahedrons inscribe a hexagon by dividing each triangle edge into thirds (see the large gray hexagon 

in figure 17 (b)). Then project the hexagon back onto the sphere using the Inverse Snyder Icosahedral 

equal area projection. This yields a coarse-resolution equal area grid called the resolution 1 grid. It 

consists of 20 hexagons on the surface of the sphere and 12 pentagons centered on the 12 vertices of the 

icosahedrons (Carr et al. 1997). 

 

To form higher resolution grids, tessellate each equilateral triangle in the planar view with more hexagons 

and use the inverse projection back to the sphere. The details of the regular tessellation are as follows: 

Always center a hexagon about the center point of the equilateral triangle. For odd resolution grids, orient 

the hexagon so its base is parallel to the base of the triangle. For even resolution grids orient the hexagon 

so a vertex points at the base of the triangle. Figure 1.17 (a) shows the central hexagons for resolutions 1 

and 2 in gray and black, respectively.) Select the edge length of a resolution n +1  hexagon so it is 1=p3 

times the edge length of a resolution r hexagon. Thus, the area of a hexagon reduces by a factor of 1/√3 

with each increase in resolution. As the resolution increases by 1, the tessellation procedure produces a 

hexagon centered on each hexagon vertex and center point of the lower resolution tessellation. As 
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illustrated in Figure 1.17 (b), the procedure partitions a lower resolution hexagon cell into one central cell 

and six fractional (1/3) cells. This is not as simple as partitioning a large square into exactly four smaller 

squares.  

 

While the merits of strictly nesting cells within cells depend on the context, one clear merit is aggregation 

simplicity. The ISEA fractional cells create aggregation and disaggregation problems that are currently 

under investigation. The orientation of the icosahedron relative to the globe is an important consideration. 

The selected orientation for the ISEA grid creates symmetry about the equator. This is desirable for 

numerical modeling purposes. There are always 12 pentagon cells about the vertices of the icosahedron. 

The selected orientation places 11 of the pentagon cells over water areas, so that most land mass views 

will be completely composed of hexagons. 

 

The advantages of the ISEA grids are (1) they have irregularities (12 pentagon cells) that are minor 

nuisances rather than being pathological singularities, (2) they are suitable for modeling on all parts of the 

globe including the poles, (3) they preserve symmetry about the equator, (4) they provide an infinite 

nesting of equal area sub-grids, and (5) they provide a basis for uniform global density of sampling for 

data at all spatial resolutions. The grid facilitates comparisons between high and low latitude data and 

high and low spatial resolution data. The grid also improves the isotropy of finite-difference quantities 

compared to those calculated for rectangular grid schemes. For example (Fisch et al. 1986) note that two 

dimensional Navier-Stokes implementations are optimal with hexagons. Finally, no ambiguity exists 

about nearest neighbors as all nearest neighbor cells share an edge with a reference cell and their 

distances to the center of a reference cell are nearly equal.  

 

              
(a)                         (b) 

 

Figure 1.17: (a) Stereo pairs of a regular icosahedron., (b) Subdividing the faces of a regular icosahedron: 

Gray and black regions represent the central hexagons for resolutions 1 and 2, respectively. 

 

SMOS products (i.e. L1C brightness temperatures in X and Y pol., and L2 soil moisture) are defined on 

the ISEA 4H9 grid with a spatial resolution of 15 km. Each point (or node) of this grid is known as a 

DGG (Discrete Global Grid) that has fixed coordinates (i.e. Latitude, Longitude) and is assigned an 

identificator the “DGG Id”. All the grid point information (DGG Id, Latitude, Longitude) has been 

gathered in an ascii file isea4h9.txt.gz. 

It is worth mentioning that the grid of SMOS products is 15 km of spatial resolution and the radiometric 

resolution of the instrument is ~40 km. 

1.4.2.3 Data Products 

 
The following SMOS data products are available: 

http://www.cesbio.ups-tlse.fr/SMOS_blog/wp-content/uploads/TOOLS/isea4h9.txt.gz
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 Level 1A product: calibrated visibilities between receivers prior to applying image reconstruction. 

 

 Level 1B product: output of the image reconstruction of the observations and comprising the 

Fourier component of the brightness temperature in the antenna polarization reference frame. 

 

 Level 1C product: multi-angular brightness temperatures at the top of the atmosphere, geolocated 

in an equal-area grid system. Two different Level 1C products are generated according to the 

surface type: one containing only sea and the other only containing land pixels. Two sets of 

information are available: pixel-wise and snapshot-wise. For each Level 1C product there is also 

a browse product containing brightness temperatures for an incidence angle of 42.5°. 

 

 Level 2 soil moisture product: containing not only the soil moisture retrieved, but also a series of 

ancillary data derived from the processing (nadir optical thickness, surface temperature, 

roughness parameter, dielectric constant and brightness temperature retrieved at top of 

atmosphere and on the surface) with the corresponding uncertainties. 

 

 Level 2 ocean salinity product: containing three different ocean salinity values derived from 

retrieval algorithms using different assumptions for the surface roughness correction and the 

brightness temperature retrieved at the top of atmosphere and on the sea surface (with the 

corresponding uncertainties). 

 

 Near-real time product: similar to the Level 1C product but adjusted to requirements of 

operational meteorological agencies such as ECMWF and Météo France, available 3 hours from 

sensing. It will contain brightness temperatures at the top of the atmosphere on an ISEA grid with 

reduced spatial resolution. 

 

For the current study,L2 soil moisture data were used. The focus was on the forested area. The L2 SM 

retrieval algorithm used two types of auxiliary data files: static and dynamic. The static data do not vary 

over time or have slowly varying quantities. They include the soil texture maps from FAO (FAO 1988), 

the land use maps from ECOCLIMAP (Masson et al. 2003b) and MODIS, and the topography index 

(Mialon et al. 2008). The dynamic data provided time varying quantities (snow, freeze defreeze, rain, 

temperature) obtained from the European Centre for Medium Range Weather Forecasts (ECMWF) 

forecasts.  

 

The algorithm is based on two main components. The first consists of a forward model, which estimates 

the brightness temperature emitted by land nodes of SMOS using a priori information (auxiliary data) 

about land cover, surface temperature, Leaf Area Index (LAI), etc., and initial estimates of soil moisture 

taken by the data base of the ECMWF data. The second consists of an inversion process, which estimates 

the actual soil moisture and optical depth by using Level 1C multiangular measurements, forward model 

outputs and a Cost Function. The radiative transfer parameters τ (optical depth) and ω (albedo) are 

estimated using the synthetic outputs of the theoretical model, according to the procedure which was 

further developed and described in further sections of the thesis. 
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1.5 Research objectives: 

Estimation of soil moisture from radiometric measurements is not simple and direct since there are many 

soil and vegetation parameters affecting the land emission. The development of algorithms to compute 

bio/geophysical variables from brightness temperature measurements and the assessment of the impact of 

each of the involved parameters is crucial to have accurate soil moisture estimations. The radiometric 

measurements vary drastically over vegetative surfaces in different environments. An attempt is made to 

understand the behavior of soil moisture on different land surfaces when studied through radiometer at 

different frequencies. 

 

The subject of the thesis is “MICROWAVE RADIOMETRY OF VEGETATED SURFACES IN 

DIFFERENT ENIRONMENTS “, with first part investigating flooding events in  short vegetation at 

higher frequencies (C-band and above) and second part exploiting lower frequency (L-Band) over forests. 

 

The first part of the PhD work discusses the use of multifrequency AMSR-E signatures in floods 

monitoring and shows tests over the part of Indian Brahmaputra basin (test sites at North Lakimpur 

district). The temporal evolution of parameters defined in the literature, such as FWS, and PI is analyzed, 

and results are compared against available ground measurements of river water level. Techniques aimed 

at eliminating images affected by heavy rainfalls are also investigated.  Radiometric signatures of L-band 

could not be used in this area due to high Radio Frequency Interference (RFI) in Asian regions. 
 

 

The second part of the research was carried out as part of the background research for the SMOS mission. 

At the spatial resolution of SMOS (~40Km), many pixels over land contain a certain percentage of forest 

cover. Forests usually consist of rather thick and dense vegetation layers. However modelling studies 

have shown that it might be possible to monitor soil moisture  in moderately dense forests  if forest 

emission can be modeled correctly. In this thesis, last results about the retrieved soil moisture are 

presented using both the presently available algorithm and a refined one, based on a revised forward 

model, which will be implemented in the next version of the processor.  

 

Retrieved values of optical depth τ have been compared against tree height made available by NASA 

Earth Observatory. For both configurations, the retrieved soil moistures were compared against IN-SITU 

measurements of the SCAN/SNOTEL network which includes several forest sites in the US, for which 

multitemporal measurements of soil moisture and other environmental variables are available and  RFI 

problems were moderate. By considering the multitemporal series, for each node we have compared the 

retrieved and the measured values of soil moisture for the various cases mentioned above. A further 

analysis using the soil moisture retrieved by the different algorithms exploiting the Advanced Microwave 

Scanning Radiometer for the Earth (AMSR-E) is also carried out and results were compared against the 

ones obtained by SMOS. 
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1.6 Organization of the Thesis 

This Ph.D. Thesis focuses on understanding of microwave radiometer observations user different 

environmental conditions, and it is organized as follows: 

 

Chapter 2 describes the variables influencing the microwave emission of land covers, as well as the basic 

models adopted to estimate the dielectric constant of soils, and revises the land emission models 

(including radiative transfer principles) which are used at present in soil moisture retrieval algorithms. 

 

Chapter 3 describes the results of the tests performed using selected AMSR-E channels on the parts of 

Brahmaputra Basin, India for analyzing the inundated areas in both bare and vegetated land. 

 

Chapter 4 investigates the capability of SMOS MIRAS radiometer to monitor soil moisture over forests 

of North America.  
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2 Microwave Emission of Land covers 
 

Although there have been a number of space borne microwave instruments since the late 1970's, antenna 

technology and the need to accommodate requirements of the atmospheric and ocean sciences have 

resulted in these sensors operating at frequencies higher than what is deemed optimal for soil moisture 

estimation (6.9, 10, 19, 37, and 85 GHz). Research in soil moisture remote sensing began in the mid 

1970's shortly after the surge in satellite development (Barton 1978; Eagleman and Lin 1976; Idso et al. 

1975; Njoku and Kong 1977 and Schmugge et al. 1977). Theoretical and empirical evidence suggest that 

the 1400-1427 MHz region (L-band) is most suitable for soil moisture radiometry because long 

wavelengths penetrate soil and vegetation to a greater extent than higher frequencies (Jackson et al. 1993 

and Njoku and Entekhabi 1996) and transmission is prohibited in the band by the Federal 

Communications Commission so that it remains suitable for radioastronomy observations (cosmic 

hydrogen absorption occurs at 1420 MHz). 

At 1400 MHz, there is a large contrast between the dielectric properties of liquid water (~80) and dry 

soil (< 4). Several investigators (Wang and Schmugge 1980; Dobson et al. 1985 and Ulaby et al. 1986b) 

studied the dielectric properties of wet soil. As the moisture increases, the dielectric constant of the soil-

water mixture increases and this change is detectable by microwave sensors (Njoku and Kong et al. 

1977). The microwave brightness temperature of an emitter of microwave radiation is related to the 

physical temperature of the source through the emissivity as mentioned in section (1.1.3). The depth 

through which energy is emitted and sensed by microwave radiometers has been the subject of research 

and discussion for many years, but it varies, depending on the frequencies we are studying, viz., for L-

Band, it is on the order of about 5 cm. 

This chapter describes the properties of soils and vegetation, and revises the land emission models which 

are used at present in soil moisture retrieval algorithms from microwave remote sensing data. 

2.1 Bare Soils 

2.1.1 Physical properties of soils 
 

An accurate estimation of spatially variable soil media properties is necessary to develop reliable models 

of flow and transport throughout the soil-plant-atmosphere continuum, for efficient management of 

resources, and for maintenance of environmental quality. Soils consist of a mix of air, water, organic 

matter, and mineral particles. According to (Jenny 1994), soils result from the combination of climate, 

organisms, relief, parent material, and time. Further information on soil properties is reported, among 

others, in (Brady and Weil 2003 and Behari 2005). Next sections briefly summarize the main soil physical 

properties. 

2.1.1.1 Texture 

 
The size distribution of primary mineral particles, called soil texture, has a strong influence on the 

properties of a soil. It usually ranges from below 0.002 mm to above 2 mm in diameter. The fraction 

above 2 mm is classed as gravel, and the fractions below 2 mm are classed as clay, silt, or sand as is 

indicated in Table 2.1. The relative proportions of clay, silt, and sand determine the soil texture. The three 

fundamental groups of soil are sands, loams, and clays, but there are many other types named according 

to the USDA soil classification triangle shown in Figure 2.1. 
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Texture affects other soil properties as shown in Table 2.2 Fine-textured soils (clays) hold more water 

than coarse-textured soils (sands), and thus different soils will have a different dielectric constant 

behavior (0) which will impact the intensity of the soil emission. 

 
Table 2.1: Classification of soil particles as a function of their diameter (in mm) 

 
Sand Silt Clay 

Very Course Coarse  Medium Fine Very fine 

2.0 to 1.0   1.0 to 0.5 0.5 to 0.25 0.25 to 0.10 0.10 to 0.05 0.05 to 0.002 <0.002 

 

 

 
 

Figure 2.1: USDA Soil classification traingle 

 

 

Table 2.2: Properties of Soil as a function of Texture 

 

 Sand Silt Clay 

Permeability rapid low to moderate slow 

Porosity large pores small pores small pores 

Water holding capacity limited medium very large 

2.1.1.2 Bulk and solid phase density 

 
Soil is a typical heterogeneous multiphasic porous system which, in its general form, contains three 

natural phases: (1) the solid phase or the soil matrix (formed by mineral particles and solid organic 

materials); (2) the liquid phase, which is often represented by water and which could more properly be 

called the soil solution; and (3) the gaseous phase, which contains air and other gases.  
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Soil bulk density ρb [g/cm3] is defined as the ratio of the mass of dry solids to the bulk volume of the soil 

occupied by those dry solids:  

   

 s s s
b p p

s s s

c A cMassofdrysoil

Volumeofbulksoil D A D
      (2.1) 

 

being ρp the soil phase density, As the area, cs the equivalent depth filled with solid, and Ds the total 

equivalent density of the soil made up of solids, water, and air. The density of the  solid phase is constant 

for a soil type, and varies from 1.3 to 2.1 g/cm3 in sands, from 1.2 to 2.6 g/cm3 in clays, and from 0.8 to 

1.6 g/cm3 in loams (Chukhlantsev 2006). On the contrary, the bulk density has not a unique value since 

depends on compaction, swelling, etc. Porous soils have low ρb and those compact have higher values. 

The range of possible values varies from 1 to 1.6 g/cm3 for clay, clay loam, and silt loam soils, and from 

1.2 to 1.8 g/cm3 in sands and sandy loams.  

2.1.1.3 Pore space or porosity 

 

Pores are the void spaces between soil particles. Pore spaces of dry soils are mostly filled with air, while 

water fills the pores of wet soils. Processes such as infiltration, ground-water movement, and storage 

occur in these void spaces. Porosity is in turn affected by texture, soil structure, compaction, and organic 

matter. The porosity is determined from the bulk density ρb and particle density ρp (see section 2.1.1.2) as,  

 

 1 b
s

p

P



   (2.2) 

 

Pores in a soil have a large variability in arrangement, size, and shape. Sands have very few small pores 

which hold water, while clays have many large pores which are needed for the rapid water intake and 

distribution of water. Typical values of the porosity range from 25-50% in sands, from 35-50% in loams, 

and from 33-60% in clays (Fetter 2001).  

2.1.1.4 Permeability and water holding capacity 

 

Permeability is the rate at which fluid can flow through the soil pores, while water-holding capacity is the 

ability of soils to hold water for plant use. Both parameters are a function of soil structure, porosity, and 

texture as summarized in Table 2.2.  

2.1.1.5 Structure 

 
Soil structure refers to the way sand, silt, and clay particles are arranged into clumps or aggregates. The 

aggregates are bound together by clay and organic matter. Structure affects drainage, root growth, 

infiltration, germination, and aeration.  

2.1.1.6 Temperature 

 
Soil temperature determines the chemical reaction within a soil and, thus, plants growth, water movement 

and availability of nutrients. Soil temperature depends on meteorological and physical soil properties such 

as color, surface roughness, and water content. For instance, dark soils absorb more heat than smooth 

light-colored ones and thus warm faster. On its part, soil moisture affects the rate of temperature change: 
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more heat is needed to warm a wet soil than a dry one. The temperature of soils follows the temperature 

of the air, but with a time lag. This effect diminishes with soil depth.  

2.1.1.7 Water in soils 

 
Water content is one of the most variable characteristics of soil. Although there is not a unique 

classification of water in soils, the common classification divides it into bound and free water. Bound 

water is the water adsorbed by the surface of soil particles, while free water is the liquid water located in 

the pore spaces. Bound water depends on soil texture and takes the minimum values (2-3%) in sands, and 

the maximum (20-40%) in clays. The soil moisture, or water in a soil, is usually determined in two ways:  

 

Gravimetric soil moisture wg, which depends on the wet and dry weights of the soil sample (ww and wd 

respectively),  

 

 w d
g

d

w w
w

w


  (2.3) 

 

Volumetric soil moisture mv, which depends on the volume of water Vw, the volume of the soil sample Vs, 

the soil bulk density ρb, and the density of wet soil ρws and water ρw,  

 

 w ws b
s g

s w w

V
w w m

V

 

 
    (2.4) 

 

The field capacity and wilting pointing are, among other hydrological parameters, involved in the 

dielectric constant models. The field capacity (FC) is the maximum amount of water held in a soil against 

gravity or amount of water held in soil after excess water has drained away. Physically, it is the water held 

at a soil at a tension of 1/3 bar. The field capacity can be estimated from the volumetric soil moisture and 

the weight fractions (in %) of sand S and clay C as (Wang and Schmugge 1980) 

 

 0.3 0.25 0.5FC S C    (2.5) 

 

The wilting point (WP) is the level of soil moisture below which plants wilt, and is usually taken as the 

soil moisture at a tension of 15 bar. The wilting point is estimated from the textural composition as (Wang 

and Schmugge 1980),  

 

 0.06774 0.00064 0.00478WP S C    (2.6) 

 

The difference between field capacity and wilting point is the available water content.  

 

Last but not least, organic litter layers on top of soils as well as the organic matter content intermixed in 

mineral soils are very important properties (Bot and Bernites 2005): Plant residues that cover the soil 

surface protect the soil from sealing and crusting by raindrop impact, thereby enhancing rainwater 

infiltration and reducing runoff. Organic matter affects both the chemical and physical properties of the 

soil and its overall health. It influences soil structure by an enhanced stability of soil aggregates and pores 

through bonding/adhesion of particles and increases diversity and activity of soil organisms, and nutrient 

availability. Furthermore, and very importantly, organic matter increases the soil moisture holding 

capacity by increasing the soil porosity as well as (like in case of clay minerals) through high water-

binding capacities of humic substances. (Miller 1977) stated that typically 1-3 kg/m
2
 of liquid water are 

stored in a medium dense forest vegetation, and a like amount can be retained on the forest floor. Helvey 
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and Patric (1965), reported that the water storage capacity of the forest floor can be 135-170% of the 

weight of the forest floor litter.  

2.1.2 Dielectric constant of soils 
 

The dielectric constant of the soil is a measure of the response of the soil to an incident electromagnetic 

wave. This response is composed of two parts (real and imaginary), which determine the wave velocity 

and energy losses respectively. In a non-homogeneous medium such as the soil, the dielectric properties 

have a strong impact on its microwave emission. However, the relationship between the soil dielectric 

constant
' ''

s s sj    , and the soil physical properties is not straightforward, rather it is combination is 

individual dielectric constants of its complements (i.e., air, water, dry soil etc). From the measured value 

of dielectric constant, the emissivity of the soil at a given frequency can be calculated. The physical 

explanation is based on the large permanent dipole of water (displacement of positive and negative 

molecular charge due to the position of the hydrogen atoms in relation to the oxygen atom), resulting in a 

significantly higher dielectric constant (relative permittivity) compared to most other natural materials. 

Therefore, the proportion of water strongly affects the measured permittivity of a soil. Permittivity of 

terrain typically increases slowly with increasing moisture content, then, beyond a threshold value, 

increases steeply with moisture content (Solimini 2013). Figure 2.2, shows real and imaginary parts of 

permittivity at L and C bands of two different soil types at L and C band vs Volumetric water content 

(Wang and Schmugge 1980). Permittivity results from a complex contribution of the soil’s components, 

air, solid particles and water, and several so-called dielectric mixing models exist to estimate soil moisture 

from it.  

 

 
 

Figure 2.2: Relative real (upper curves) and imaginary (lower curves) parts of permittivity of two 

different soil types at f = 1.4 GHz (left) and f = 5.0 GHz (right) vs. volumetric water content mv (m
3
/m

3
). 

(Solimini 2013) 

 

A large number of studies have been performed during the last decades to find out this relationship since 

it plays an important part in the soil moisture retrieval algorithms from remote sensing data (Birchak et al. 

1974; Hipp 1974; Wang and Schmugge 1980; Topp et al. 1980; Hallikainen et al. 1985; Dobson et al. 

1985; Shutko and Rentov 1982a; Mironov et al. 2004; Roth et al. 1992; Peplinsky et al. 1995; Curtis 2001 

and Calvet et al. 1995). Some of these models are simple empirical models in which data is fitted by a 

curve unique for all soils; others propose semi-empirical approaches which take into account some soil 
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physical properties. The dielectric constant of dry soils is almost independent of temperature (Topp et al. 

1980) and frequency. On the contrary, wet soils show a complex behavior depending on the interaction 

between soil, water, and air particles. (Hallikainen et al. 1985) performed a series of dielectric constant 

measurements of five soils with different texture composition at frequencies between 1.4 and 18 GHz and 

found out that texture has a strong effect on the dielectric behavior which is especially pronounced at 

frequencies below 5 GHz.  In the dielectric-mixing model by (Roth et al. 1992), differences in soil texture 

and bound water and free water are ignored altogether. Next sections review some of the most commonly 

used dielectric constant models relevant to the thesis work. More information can be found in (Behari 

2005 and Chukhlantsev 2006). A thorough review on soil moisture measurements is presented by 

(Robinson et al. 2008). 

2.1.2.1 Empirical approach 

 
In this approach, mathematical expressions are simply fitted to the observed data. This approach does not 

take soil physics into account. This is, for instance, the approach followed by in (Topp et al. 1980), where 

the dielectric constant of mineral soils ε is related to the volumetric moisture content measured using TDR 

techniques ws by a third order polynomial: 

 

 
6 3 4 2 2 24.3.10 5.5.10 2.92.10 5.3.10s s s sw           (2.7) 

 

This equation has been successfully used by many authors over different soils and even ice, although 

others have found out that soil moisture content was under- or overestimated. (Ledieu et al. 1986) 

presented an even simpler empirical relation, by fitting a linear relation between dielectric constant and 

volumetric moisture content. (Noboroi et al. 2001) offers a complete reference of these studies.  

2.1.2.2 Semi-empirical approach 

 

Other models use a semi-empirical (SEM) approach that contains a model of the complex dielectric 

constant and the volume fraction of each of the soil components. This kind of approach was used by 

(Wang and Schmugge 1980; Dobson et al. 1985 and Roth et al. 1992). In most cases, the starting point is 

the dielectric mixing model by (Birchak et al. 1974):  

 

 s sp sp a a fw fw bw bwV V V V             (2.8) 

 

Where, Vsp (εsp), Va (εa), Vfw (εfw) and Vbw (εbw) are the volume fraction (dielectric constant) of solid phase, 

air, free water, and bound water in the soil, respectively. The expression in (2.8) can be rewritten as a 

function of the bulk density and the volumetric moisture as  

 

 1 ( 1)b
s sp fw fw bw bw s

s

V V w   
   


       (2.9) 

 

If α = 0.5 the model in equation 2.9  is known as refractive model. 

 
The Wang and Schmugge model and the Mironov model consider the effect of bound water on the 

dielectric constant. They are limited to rather short frequencies of 1-5 GHz and 1-10 GHz, respectively. 

The Dobson model is valid for a larger range of frequency (1-18 GHz) but it does not differentiate 

between bound water and free water.  

 



 

44 

 

2.1.2.2.1 Dobson et al. model 

 
The semi-empirical mixing dielectric model (SMDM) was developed by Dobson et al. (1985) on the 

bases of dielectric data covering five soil types, a wide range of moisture conditions, and two frequency 

ranges extending from 0.3 to 1.3 GHz and from 1.4 to 18 GHz. The SMDM has the following form: 
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1
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  (2.10) 

where 
'

m  and 
''

m are respectively the real and imaginary parts of dielectric constant  of moist soil, 
'

s is 

the real dielectric constant of soil solids, vm is the volumetric moisture content, b  is the bulk density in 

g/cm3, s  is the specific density of the soil solids. The quantities 
'

fw  and 
''

fw  are the real and imaginary 

parts of dielectric constant of free water, which can be calculated with the Debye like dielectric relaxation 

formulas. The values  = 0:65, 
' , and 

'' are empirically determined constant. To account for moist 

soil conductivity, the dielectric relaxation formulas were taken in the form 
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 (2.11) 

 

where 0 = 8.854 * 10
-12

 F/m is the permittivity of free space, f is the frequency in Hz, 0w  and w  = 4:9 

are the low and high frequency limits for the free water dielectric constants, respectively, w is the 

relaxation time for free water, eff is the effective conductivity parameter. Expressions for 0w  and w  

are given as a function of temperature by Ulaby et al. (1986b). At room temperature (20
0
C), 2 w  = 0.58 

* 10
-10

 s and 0w = 80.1. 

 

All the parameters in equation (2.10) and (2.11), which were empirically determined in (Dobson et al. 

1985 and Peplinsky et al. 1995), are presented in the table 2.3, S and C represents in percentage the mass 

fraction of sand and clay, respectively 

 

Table 2.3: Details of parameters empirically determined by Dobson et al. (1985) 

 

 =0.65 '

s =(1.01 + 0.44 s )
2
 -

0.062 

' = (1.275 – 0.519S – 

0.152C 

'' = 1.338 -0.603S – 

0.166C 

0.3 < f < 1.3GHz 
eff = 0.0467 + 0.2204 b - 0.4111S + 0.6614C 

1.4 < f < 

18GHz 
eff = -1.645 + 1.939 b - 2.25622S + 1.594C 
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It is worth noticing that all the SMDM input parameters relating to a given soil type are available from the 

soil granulometric mineralogy data, which can be borrowed from soil databases. This is a major 

advantage of the SMDM over many other models, resulting in a wide employment of this model in 

microwave remote sensing. 

2.1.2.2.2 Mironov et al. model 

 

The SEM proposed by (Dobson et al. 1985) has become an effective means to relate soil moisture and 

microwave dielectric properties (De Roo et al. 2001; Galantowicz et al. 2000 and Jackson et al. 1999). In 

order to provide for frequency dispersion of the soil dielectric properties, the Debye relaxation formula 

for the complex dielectric constant (CDC) related to the out-of-soil water is extensively employed in the 

SEM. At the same time, soil moisture is known to have biphasic dielectric properties (Ulaby et al. 1986b), 

which usually are correlated to the bound soil water (BSW) and free soil water (FSW). Apparently, the 

SEM does not account for the dielectric dissimilarities between the BSW and FSW components. 

Therefore, it appeared not to be applicable to the soils studied in (Sabburg et al. 1997) and (Or and Wraith 

1999)1, and the problem of determination of the BSW dielectric properties is still important for the 

development of moist soil dielectric models. 

 

The first study of the BSW dielectric properties was undertaken in (Wang and Schmugge 1980). 

Subsequently, CDCs of the BSW and FSW fractions as the separate components of moist soil were 

obtained in (Mironov et al. 1995 and Mironov et al. 1997). The approach employed was based on the 

refractive mixing dielectric model (RMDM), initially proposed and validated in (Birchak et al. 1974). At 

the same time, the RMDM is only capable of making prediction of the soil CDC as a function of moisture 

for the frequency, for which soil dielectric measurements were carried out. 

 

In contrast to the SMDM, exclusively employing dielectric relaxation spectrum valid for the water located 

out of soil, the GRMDM suggested in (Mironov et al. 2004) employs the dielectric spectra explicitly 

related to either bound or free soil water. The description of this concept is given below. 

 

The real and imaginary parts, 
'

m  
''

m , as a function of volumetric moisture vm , can be represented in the 

form of RMDM: 
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Where mn , dn , bn , un  and m , d , b , u  are the values of refractive index and normalized 

attenuation coefficient, which is understood here as a proportion of the standard attenuation coefficient to 

the free space propagation constant. The subscripts m, d, b and u in (2.12), (2.13) and further on stand for 

moist soil, dry soil, bound soil water (BSW), and free soil water (FSW), respectively, and vtm  is a value 

of the maximum bound water fraction (MBWF) in a given type of the soil. The latter depends on the soil 
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mineral contents. The real and imaginary parts for bound, 
'

b
''

b ,and 
'

u
''

u , water components are 

presented with the Debye relaxation equations 
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In formula (2.14), the value f designates the frequency, while the values ,b u , ,b u and 0 ,b u are 

conductivity , relaxation time and low frequency limit dielectric constants, relating to either BWS or FWS 

components. The value 0  is the DC for free space, while  = 4.9 represents the DC in the high-

frequency limit for both types of soil water. As can be seen from Equations (39 - 41), a certain type of 

moist soil, in terms of its dielectric spectra, can be completely determined via a set of the following 

spectroscopic parameters:  
'

d  and 
''

d , for dry soil; value of maximum bound water fraction, vtm ; low 

frequency limit dielectric constants, 0b  and 0u , for bound and free soil water; relaxation times, b and 

u , for bound and free soil water; conductivities, b and u , for bound and free soil water. 

 

The Mironov model for moist soils attained features of physical law and ensured more accurate dielectric 

predictions, with the soil clay content being an intrinsic texture parameter of the soil.  

 

2.1.3 Soil surface roughness 
 

The effect of soil surface roughness on the brightness temperature has been an issue widely addressed in 

the literature (Choudhury et al. 1979; Wang and Choudhury 1981; Mo and Schmugge 1987; Wang 1983; 

Schneeberger et al. 2004; Escorihuela et al. 2007; Wegmüller and Mätzler 1999 and Wigneron et al. 

2001). Fung (1994), proposed a theoretical physical model based on surface characteristics derived from 

the measured soil height profile. A simple empirical roughness model which takes into account only the 

coherent term of the scattering was reported in (Choudhury et al. 1979). 

 

 
2 2 2exp( 4 cos ( ))sp op sk        (2.15) 

 

 Where, Гop is the reflectivity at p-polarization (p = v or h) of a smooth surface given by, k = 2π/λ¸ 

is the electromagnetic wave number, σs is the standard deviation of the surface height, and θ is the 

incidence angle. This model was reviewed, and another formulation was proposed in (Wang and 

Choudhury1981) 

 

 ( ) [(1 ) ( ) ( )]exp( cos )n

sp s op s oq sQ Q h            (2.16) 

  

In this case, two semi-empirical parameters were included to model the effects of the polarization mixing 

(Qs), and surface roughness (hs and n). The dependence of these parameters on surface properties such as 

correlation length (lc) or standard deviation of height (σs) is not yet clear. (Mo and Schmugge 1987) and 

(Wigneron et al. 2001) conclude that the n = 2 dependence proposed in (Choudhury et al. 1979) is too 

strong for L-band. A value of n = 0 at both polarizations was found to be consistent with measurements in 
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(Wigneron et al. 2001), while Escorihuela et al. (2007) distinguishes n values for both polarizations (1 at 

horizontal and -1 at vertical). 

 

Similarly, there are discrepancies on the value of the roughness parameter hs. Some authors obtain hs from 

experimental data by best-fit (Wigneron et al. 2001) while others propose expressions for hs as a function 

of geophysical parameters. Mo and Schmugge (1987) obtained good results with two parameterizations of 

hs as a function of σ
s
 and lc.  

  

Finally, there is a general agreement on the value of the cross-polarization parameter Qs, which has been 

found to be very small (0 to 0.12) at L-band (Mo and Schmugge 1987 and Wigneron et al. 2001). Apart 

from these considerations, the effects of frequency and incidence angle on the roughness parameters have 

not been studied thoroughly. Mo and Schmugge (1987) and Shi et al. (2002) pointed out that the 

roughness effects depend on both of the frequency and the incidence angle. 

 

Shi et al. (2002) suggested a parameterization of the surface reflectivity derived from data simulated for a 

wide range of soil water content and roughness properties using the integral equation model (Fung 1994). 

The surface reflectivity model of Shi et al. (2002) was tested in Schneeberger et al. (2004) and found, not 

capable of explaining discrepancies between the ground truth and remotely sensed data.  

2.1.4 Soil effective temperature 

 
Soil microwave brightness temperature depends on soil emission and on the soil effective temperature, Teff 

(Ulaby et al. 1986b). The theoretical effective temperature of a soil profile can be estimated as, 
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Where, T is the thermodynamic temperature, and α is the attenuation coefficient at a depth z. The 

attenuation is a function of the soil dielectric constant (0), and of the microwave emission wavelength : 
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Several simple formulations have been developed to estimate the soil effective temperature from soil 

properties, and soil moisture and temperature profiles. Choudhury et al. (1982) proposed a 

parameterization of Teff based on the soil temperature at deep soil (T∞) corresponding to a depth between 

50 cm and 1 m, and on a ‘’surface" temperature (Tsurf) corresponding to a depth of 0-5 cm: 

 

 ( )eff s surfT T C T T      (2.19) 

 

The coefficient Cs was considered constant for a given frequency, and equal to 0.246 at L-band. On the 

other hand, Chanzy et al. (1997) presented a model for the soil effective temperature at L- and C-bands 

based on the air temperature, a deep soil temperature, and the brightness temperature measured at X-band 

and V-pol. 

 

Wigneron et al. (2001) proposed a parameterization based on equation 2.19, but with a coefficient Cs 

dependent on the volumetric water content ws, and two semi-empirical parameters (w0 and bw0): 
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 0

0

( )( ) wbs
eff surf

w
T T T T

w
      (2.20) 

 

Another formulation using the soil dielectric constant instead of the volumetric water content was 

proposed by Holmes et al. (2006). The performance of equation 2,19 and 2.20, if soil properties such as 

texture and density were accounted for in the determination of the Cs parameter, is analyzed in Wigneron 

et al. (2008). 

 

2.1.5 Microwave Emission Models 

 
Charged particles in matter, being in an accelerated motion caused by collisions, can originate 

electromagnetic radiation. The emission process is reciprocal of absorption. As outlined in (Solimini 

2013), this latter consists in the conversion of electromagnetic energy into thermal energy through particle 

collision. In the reverse sense, a charge accelerated by a collision converts part of its kinetic energy into 

electromagnetic energy. Microwave remote sensing is based on the measurement of the thermal radiation 

or brightness temperature of a target, which is determined by its physical temperature and emissivity 

(1.1.3). The emissivity of land covers depends on soil moisture, but also on soil temperature (Choudhury 

et al. 1982; Wigneron et al. 2001 and Holmes et al. 2006), soil surface roughness (Mo and Schmugge 

1987; Wigneron et al. 2001 and Escorihuela et al. 2007), vegetation canopy (Brunfeldt and Ulaby 1984; 

Jackson and Schmugge 1991; Ferrazzoli et al. 2002 and Della Vecchia et al. 2006), snow cover (Schwank 

et al. 2004), relief (Mätlzler and Standley 2000 and Talone et al. 2007), etc.  

 

The emissivity was defined in (1.11). It is the parameter that characterizes the ability of a body to 

originate electromagnetic radiation by spontaneous emission and that provides important information on 

the observed surface. 

 

 

 
 

Figure 2.3 : Microwave emissivity of a fresh water at surface at L- (left), C- (middle) and X-band (right).  

Red curve, v polarization; blue, h polarization  

 
The figures from 2.3 to 2.5, display the microwave emissivities of water and of terrain with ideally 

smooth surfaces obtained from the simulations (Solimini 2013). These graphs are obtained by data, 

which was carried out by simply implementing the formula for the reflection coefficient of the 

half-space with the permittivity of water. These results are approximate, but useful to explain the 

trend. Although a more precise computation is questionable, since actual data may be changed by 
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surface roughness. The red curves refer to vertical polarization, while the blue ones are for the 

horizontal. All diagrams highlight the divarication of the emissivities at vertical and horizontal 

polarizations as the observation direction departs from the normal to the surface. Figure 2.3, shows that 

little variations of the emissivity of a smooth water surface can be expected with the frequency, atleast in 

the range from L- to X-band has. The following figures refer to soil with different moisture contents.  

 

 

 
Figure 2.4: C-band emissivity of ideal flat-surface terrain: top left, dry (mv = 12%); top right, moist (mv = 

21%); bottom left, wet (mv = 31%); bottom right, very wet (mv = 35%). Red curves refer to v polarization 

and the blue curves to h polarization. 

 

 

 
Figure 2.5: L-band emissivity of ideal at-surface terrain: top left, dry (mv = 12%); top right, moist (mv = 

21%); bottom left, wet (mv = 31%); bottom right, very wet (mv = 35%). Red curves refer to vertical 

polarization, the blue curves to horizontal polarization. Note that ev < 1 at the pseudo-Brewster angle 

for the wettest soil (bottom right). 
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Figure 2.4, shows how the C-band emissivity decreases with increasing soil moisture content. The 

pseudo-Brewster angle, at which the emissivity on vertical polarization is almost unitary, is identified. 

The angle displaces towards higher values as the moisture content, and hence the permittivity increase. 

 

The decrease of the L-band emissivity with increasing soil moisture shown by the diagrams of Figure 2.5 

is more observable than at C-band, because of the slightly larger sensitivity of the permittivity to the 

amount of water (1.1.5.1). The displacement of the pseudo-Brewster angle is also apparent, as well as the 

decrease of the maximum emissivity below one for the wettest terrain. Emission from different surface 

are mentioned in the below sections. 

 

The emissivity of bare soils is given by 

 

 1s se     (2.21) 

 

where, Гs is the total reflectivity. The rough surface reflectivity consists of a coherent component and an 

incoherent component. 

 

 ( , ) ( , )s coh inc         (2.22) 

 

coh is obtained using formulas of equation (2.21) or (2.22), while inc can be obtained from the 

integration of the bistatic scattering coefficients of the rough surface. If the roughness of the surface is 

characterized by the two parameters: the surface height standard deviation σ and the correlation length lc, 

then the two components or reflectivity can be written as: 
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 h=4k
2
σ

2
 (k is the wavenumber) and op is the reflectivity of a smooth surface, given by 

the Fresnel formulation: 
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  (2.24) 

  

εs is the dielectric constant of soils, which is estimated using a model such as those summarized in Section 

2.1.2. 

 

The quantity ( , , , )s

qp i i r r     is the incoherent bistatic scattering coefficient for a wave of polarization p 

from the incidence direction ( , )i i   scattered into the outgoing direction ( , )r r  with polarization q.  

 

 The integration over the entire half space and errors in the modeling of the bistatic scattering coefficients 

make the computation of equation (2.23) unfeasible or prone to errors. For this reason, the second term is 

often neglected, and compensated by an adjustment of h parameter.  
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2.2 Vegetative Soil 

If the remote sensor is placed above a canopy looking downwards, the measured brightness temperature 

will contain not only information on the soil, but also on vegetation, since vegetation radiates its own 

energy and, moreover, attenuates and scatters the soil radiation The common practice is to use 

approximate formulas or semi-empirical models in which the different components of the brightness 

temperature could be differentiated. The emissivity of a soil covered by vegetation is usually estimated as 

the contribution of three terms: (i) the radiation from the soil that is attenuated by the overlying 

vegetation, (ii) the upward radiation from the vegetation, and (iii) the downward radiation from the 

vegetation, reflected by the soil, and attenuated by the canopy (Ulaby et al. 1986b) 
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where ebs is the emissivity of a bare soil, Tveg and Tsoil are the physical temperatures of the vegetation and 

soil, respectively, Lveg = exp(τ sec θ) is the attenuation due to the vegetation cover. τ is the optical 

thickness of the standing vegetation cover, which includes both green and senescent vegetation materials. 

τ is usually found to be correlated to Volumetric Water Content (VWC), but it is  difficult to provide 

estimate of this latter variable at global scale. In some semiempirical models, the optical thickness is 

expressed by a simple formula, such as, τ = b.VWC, b is a coefficient  (Van de Griend and Wigneron 

2004), and VWC is the vegetation water content. ω is the single scattering albedo. This formulation is 

based on the single scattering approach proposed in Kirdiashev et al. (1979). The b coefficient depends on 

the polarization and the frequency. The single scattering albedo describes the scattering of the emitted 

radiation by the vegetation and is a function of frequency and plant geometry. Equation (2.25) is a 

simplified version of the general Radiative Transfer Equation, which is summarized in Appendix A. 

 

In the SMOS forest algorithm, τ is parameterized as a function of the Leaf Area Index (LAI). There are 

two main reasons for this: (i) it is much easier to build global maps of LAI from spaceborne remote 

sensing observations in the optical domain or from modeling with interactive vegetation (Wigneron et al. 

2002) than maps of VWC; (ii) several recent studies have also found good correlation between τ and LAI 

(Saleh et al. 2005) over a fallow and over several crops. It is likely the parameterization of τ from LAI, 

rather than from VWC, will be rather efficient as long as the vegetation is green (in particular during the 

vegetation growth). This parameterization might be less accurate during the senescence phase (during 

which τ might be underestimated from low LAI values over some vegetation types). And so the correct 

value of LAI is essential for the model. 

2.3 Soil moisture retrieval algorithms 

The PhD thesis focus on identifying the inundated areas using measurements of TB obtained from AMSR-

E mission and improving soil moisture retrieval algorithm over forests within the SMOS mission. The 

brightness temperature of land covers is influenced by many variables, the most important being soil 

moisture and temperature, and vegetation characteristics. The challenge is to reconstruct the 

environmental parameters from the measured signal by using a minimum of ancillary data. To do this, 

different soil moisture retrieval algorithms have been developed. Some of them were summarized  in the 

review by Wagner et al. (2003). Broadly it can be put into three major groups. The first one is based on 
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the experimental relationship between the geophysical variables and the radiative transfer equation using 

a regression technique. This approach has limited applicability, since often the regression is valid only for 

the test sites where they were obtained. The second approach is based on the use of neural networks. 

These algorithms have been used with satisfactory results in the retrieval of agricultural parameters from 

radiometric data (Del Frate and Wang 2001 and Del Frate et al. 2003), but need a training phase that is not 

always feasible. And the third type of algorithms, which is more widely used, is based on the inversion of 

radiative transfer models. The soil moisture models are used as forward models, and the geophysical 

variables are retrieved by minimization of a cost function (Parde et al. 2004 and Saleh et al. 2006a). This 

approach has also some disadvantages, since errors of the model can lead to errors in the retrieval. The 

expression of the Cost Function is: 
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Where the simulated brightness temperature BpT is computed using a land emission model. 
meas

BhT is the 

measured brightness temperature, and nP is any of the parameters on which BpT depends. A first-guess 

value of the parameters nP (
ini

nP ) with associated standard deviation 
nP can be also considered in the cost 

function. Estimates can be constrained to be close to the initial value by choosing low 
nP values, or they 

can be left as a free parameter by selecting 
nP >>1. 

 

Algorithms considering various other factors have also been proposed to retrieve soil moisture content 

from passive microwave remote sensed data. (Jackson et al. 1993), developed a so-called single channel 

algorithm (SCA), in which the brightness temperature of the 6.9 GHz horizontal polarization channel was 

used. In this algorithm, ancillary data such as air temperature, land cover, Normalized Difference 

Vegetation Index (NDVI), surface roughness, and soil texture and porosity are needed. The algorithm of 

Njoku and Entekhabi (1996) and Njoku et al. (2003), is a multiple channel iterative retrieval algorithm. It 

uses the brightness temperature observed by the lowest six channels of AMSR-E. Using this algorithm, 

the surface temperature, the vegetation opacity and the soil moisture are estimated simultaneously. The 

algorithm proposed by Paloscia et al. (2006), is an experiment-based linear regression retrieval, in which 

soil moisture is estimated by using both  10.7GHz and  6.9GHz channels. 

  

After more than 20 years effort, good results were obtained and several global and continental scale soil 

moisture datasets (Njoku et al. 2003 and Owe et al. 2008) were generated. But both the quality and the 

spatial extension of these algorithms must be further improved. For example, Shibata et al. (2003) pointed 

out that the soil moisture in desert regions retrieved from AMSR-E soil moisture algorithms indicate very 

wet areas. To solve such problem, the Radiative Transfer Model (RTM) should be improved firstly. 
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3 Flood Monitoring using Microwave Passive Remote Sensing 
(AMSR-E) in part of Brahmaputra basin, India 

 

3.1 Introduction 

Floods are one of the most recurring, widespread and disastrous hazards of the world, both natural and 

man-made in origin. On the world flood map, India is only preceded by Bangladesh and among the major 

rivers basins of India, Brahmaputra basin and floods are almost synonymous to the world. Every year 

thousands of acres of land remain under water for most part of the year in this region. One of the 

important causes for frequent occurrence of flood in this region is the extremely dynamic monsoon 

rainfall regime in the backdrop of the unique physiographic setting. Also, the water yield of the 

Brahmaputra is among the highest in the world. These factors, together with high sediment yield, limited 

width of the valley and the abruptly flattened gradient, leads to tremendous drainage congestion and 

resultant flooding. The scenario is further exacerbated by a myriad of social, economic and environmental 

factors causing increased vulnerability of people to the flood hazard 

 

Monitoring of global phenomenon such as flood using satellite data is important for assessing the damage 

caused by flood. Also it can lead to a better understanding of the global water cycle and its role in climate 

change. Over the past decade, several flood monitoring/forecast methodologies, based on remote sensing 

data, have been proposed as described in Section 1.2.2. Among them, the ones based on microwave 

observations have a better success rate since large flood events and intense cloud covers are often 

encountered simultaneously. Furthermore, since flood events are dynamic processes, higher temporal 

resolutions are required even if this leads to lower spatial resolutions. Therefore, passive microwaves are 

often exploited. This is particularly true in the case of large river basins, where extreme flood events 

compromise thousands of square kilometres in a matter of few hours. 

 

Earlier work carried out by Singh et al. (2008) and Dutta et al. (2010) has also discussed the necessity of 

flood mapping and a detailed hydrodynamic investigation to simulate the flood behaviour and the flood 

propagation in the low lying flood plain in the proposed study area.  

 

Rainfall measurement over land is another crucial element for understanding the water cycle exchange 

between land and atmosphere. Precipitation has a very high correlation with the soil moisture. However it 

is very difficult to find a direct way to study these two variables with respect to each other as rainfall is 

the main source of uncertainty in retrieval of soil moisture (Jin et al. 2006). In fact, the microwave signals 

gets highly affected when they pass through a raining atmosphere, which results in incorrect estimation of 

soil moisture in the footprint of the satellite. For global rain identification, (Grody 1991) developed a set 

of rules to separate rain from snow and deserts. Ferraro and Marks (1994) expanded on those ideas and 

developed a more expansive set of screens to be used for rainfall retrievals that included separate indices 

for land and ocean, improved screens for semi-arid land, coastlines, and sea ice, as well as some 

discussion on the uncertainties related to each screen. 

 

As stated in Section 1.4.1, the Advanced Microwave Scanning Radiometer (AMSR-E) of the Earth 

Observing System (EOS), developed by the National Space Development Agency of Japan (NASDA) and 

provided to the U.S. National Aeronautics and Space Administration (NASA) for launch on its Aqua 

satellite, can be a valid instrument for flood monitoring. The AMSR-E instrument operates at multiple 

frequencies, ranging from 6.9 GHz – 89.0 GHz. The antenna scans conically at a fixed incidence angle of 
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 across a 1445 km swath, providing near-global coverage in two days or less.  

 

In this Chapter, the use of multifrequency AMSR-E signatures in floods monitoring is tested over the 

Indian Brahmaputra basin. The temporal evolution of parameters defined in the literature, such as FWS, 

and PI is analyzed, and results are compared against available ground measurements of river water level. 

Techniques aimed at eliminating images affected by heavy rainfalls are also investigated. 

 

The proposed monitoring techniques can be extensively tested and exploited in the future years. Although 

AMSR-E automatically spun down in Oct 2011, AMSR2 sensor, a slightly modified and improved 

version of AMSR-E, mounted on Japan’s GCOM-W satellite (Imaoka et al. 2010), is already providing 

data. TRMM data which acquires data through multi-channel passive microwave radiometer including the 

one at 19 GHz, can also be exploited to understand the effect of heavy rainfall on the brightness 

temperature (TB) values. The current study will also add upon the existing operational Global Disaster 

Alert and Coordination System (GDACS) web site for flood mapping even during high rain storms.   

3.2 Study Area 

3.2.1 General properties 
 

In this work, critical sites in and around Lakhimpur District in Assam, falling within the Brahmaputra 

basin, often characterized by high frequency of flooding events, were considered. A map of the area is 

shown in Figure 3.1. It is bounded between 26°48' and 27°53' northern latitude, and 93°42' and 94°20' 

eastern longitude. The sites are mostly agricultural with paddy fields. One site falls on the River 

Subansiri, whereas the other two fall on the Brahmaputra. The total area is around 2277 km
2
 out 

of which, 2257 km
2
 is rural and 20 km

2 
is under urban area. Agriculture is the mainstay of the district’s 

economy. Almost 67% of the Gross Cropped Area (GCA) is covered by paddy crop. Livelihood of more 

than 80% people is solely dependent on agriculture. Major part of GCA is covered by Kharif season crops 

(May-August), followed by Rabi season crops (December-February). Rice, jute, mustard, wheat, pulses 

are the principal field crops in the district. Fruits and vegetables also constitute an important part of the 

agriculture produce in the district. Detailed information is made available by Govt. of India (2004). 

 

Timely information about floods provide strong indicators of a forthcoming disaster, but owing to the 

unpredictability of the behaviour of the Brahmaputra River and with increased incidences of 

anthropogenic activities on it, real time estimations of the aftermath will help to reduce, manage and 

control the increasing extent of the disaster. Also, a major pool of both finance and research are being 

channelled towards forecasting floods in this valley with little or few results towards actually monitoring 

and managing the floods and its repercussions. This calls for a different approach to handle such a natural 

disaster. Hence real-time monitoring and analysis of such a recurring and phenomenal hazard is essential. 
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Figure 3.1: Study area: Lakhimpur District, Assam, India 

3.2.2 Regional Hydrology  

3.2.2.1 The River System  

 
The Brahmaputra: Undoubtedly the most dynamic and awe-inspiring rivers of India, Brahmaputra, has a 

few unique characteristics. It is fed by numerous tributaries, rivulets and streams. Added to all these are 

the wide and divergent braids of the Brahmaputra and meanders which issue from it, resulting into an 

intricate maze of water bodies spread not merely across the valley, but also enclosing it. The Brahmaputra 

is fed on its course through the valley by no less than 57 tributaries on its North bank and 33 on its South. 

Out of the total Northeast region area of 2.2510
6
 km

2 
the Brahmaputra drainage system covers an area of 

a massive 1.7510
6
 km

2
. Most of its 1.7510

6
 km

2
 area receives an average annual rainfall of nearly 200 

cm. The maximum discharge of the river at Dhubri (from where it enters Bangladesh) is 19821 m
3
 s

-1
.  

 

The Brahmaputra River is the southern boundary of North Lakhimpur district and touches all along the 

southern and southeastern boundary. The Brahmaputra behaves as a braided channel near Lakhimpur and 

the adjoining Dhemaji district. The alluvial deposits within the main channel lead to sideward migration 

of the banks.  Therefore, besides the flood problem of the Brahmaputra, intensive bank erosion is another 

problem during floods in these areas (Govt. Of India 2012) 

 

The Subansiri:  The Subansiri is the largest tributary of the Brahmaputra and originates in the south of 

Po Rom peak (5059 m) and enters Assam through Arunachal Pradesh. Its total length is 520 km and it 

drains a basin of 37,000 km
2
. The river maintains an almost stable course but becomes unstable as soon as 

it enters the alluvial plains of Assam in North Lakhimpur. In the10 km reach from the foothills near 

Gerukamukh to Chauldhuaghat, the riverbed is composed of sand mixed with pebbles and boulders. 
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Further downstream, it is mostly composed of sand. The average slope of the river bed from the foothills 

to Chauldhuaghat and to the confluence of Ranga River is about 24 cm km
-1

 (0.00024). The river banks 

from the foothills to Chauldhuaghat are composed mostly of sand, gravel and silt, beyond which they are 

composed almost exclusively of alluvial silt.  

 

The mean daily discharge of Subansiri at Gerukamukh is 138842 m
3
 s

-1
 (Govt. Of India 2012). The 

average annual sediment yield at Chauldhuaghat is 94.8310
6
 kg (WAPCOS 1993). No significant 

anthropogenic effect has been identified on the sediment or channel of the main river. The river 

discharges 5936 m
3
 s

-1 
of water at Bhimpara Ghat.  

 

The Ranganadi: The River originates from the Dafla hills of Arunachal Pradesh. The total length of the 

river is 145 km and total catchment area is 2173 km
2
 in Arunachal Pradesh and 767 km

2
 in Assam.  It  

discharges 496 m
3
 s

-1 
water at 3.2 km upstream of National Highway 52.  

 

The Dikrong: The Dikrong also has its origins from the Dafla Hills of Arunachal Pradesh. In Arunachal 

Pradesh it is known as Par Nadi. It enters the plains near Harmutty Tea Estate and runs 40 km to join the 

Brahmaputra at Badati. It discharges 566 m
3
 s

-1 
of water at 1.6 km downstream of National Highway 52.  

The catchment area of the river is 1326 km
2
 in Arunachal Pradesh and 262 km

2
 in Assam.    

 

The causes of flood in Lakhimpur District can be attributed to excessive rainfalls in Assam and Arunachal 

Pradesh, melting of snow at Tibet and bursting of natural dams formed by the landslides on the rivers 

flowing from Arunachal Pradesh. During flood the river gets charged with enormous quantity of silt and 

in their movement of the river alters the conditions of flow and sometimes changes the river course 

causing havoc in its low-lying basin.  

3.3 AMSR-E Observations 

AMSR-E/Aqua global swath brightness temperatures (L2A) data was used in this study for obtaining the 

brightness temperature (TB) and the Polarization Index (PI). The resolution of the AMSR-E data at C 

band, X band and Ka bands is (43 × 75 km), (29 × 51 km) and (8 × 14 km) respectively. In this work, for 

each band the product with the best available resolution was selected. Data was interpolated at each band 

to resample it at same interval. The interpolation interval was taken as half a minute of degree. 

Radiometric signatures were aggregated at the 6 × 6 km resolution on the EASE-Grid geographical 

projection. The data was captured for three specific sites within the study area viz., Dhalghat (27°06' and 

27°18' , 94°06' and 94°18'), Ghansari (26°48' and 27°00' , 94°06' and 94°18') and Jamugurihat (26°30' and 

26°42' , 92°42' and 92°54'). Dhalghat and Jamugurihat sites falls within the Lakhimpur District, where as 

Ghansari falls in Jorhat District. For each site, the mean value of the above interpolated data within a box 

of the 12' by 12' (sampling interval in minute) has been considered. 

3.3.1 Dynamic ranges of  emissivity at vertical and horizontal polarization  

 
The emissivity at Horizontal (H) and Vertical (V) polarization was derived from the TB measured by 

AMSR-E and the ground surface temperature provided by Indian Meteorological Department (IMD). 

Separately, emissivity was calculated for 10.65, 18.7 and 36.5 GHz frequencies at both polarizations. 

These three frequencies behave differently when interacted with the atmosphere, clouds and vegetation. 

Comparative analysis was carried out to find the relationship between vertical and horizontal emissivity at 

10.65, 18.7 and 36.5 GHz. Dhalghat site was chosen and the year 2007 was selected. Results are shown in 

Figure 3.2.  The regression equations between horizontal and vertical polarization at the three frequencies 

are: 
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Figure 3.2: Relationship  between emissivities at H(eH) and V(eV) polarization at 10.65, 18.7 and 36.5 

GHz for Dhalghat Site (2007) 
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where, e10V (H), e18V (H) and e36V (H) are the emissivities at 10.65, 18.7 and 36.5 GHz , and at vertical (V) 

and horizontal (H) polarization, respectively. Almost similar results are obtained at Ghansari and 

Jamugurihat sites in the study area. Since the data samples consist of the whole year data, which includes 

the monsoon season data as well, we can consider that the variation in the emissivity ranges from pixels 

with high flood effect to pixels with little or no flooding. The equation (3.1) relationships are similar to 

the ones found by Fily et al. (2003), who obtained 
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in his study over North America. Matzler, (1994), obtained  
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from ground measurement in the Alps. Goita and Royer (2002), who found,  
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using satellite data over northern Quebec in Canada. Other studies also found that emissivity variations 
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are related to various changes of surface properties. Basist et al. (1998) found that the variation in the 

emissivity at horizontal polarization is mainly due to the presence of water in the pixel, when TB is 

computed in the microwave range. Other studies (Griddings and Choudhury 1989 and Sippel et al. 1998) 

also suggest that the microwave emissivity is strongly affected by the percentage of water bodies in the 

observed pixels even in vegetative areas. The emissivity of water is low when compared to the other 

objects existing on the earth surface (Prigent et al. 1997). The emissivity is also affected by the soil 

moisture effect for few centimeters inside the surface (Owe et al. 1999 and Vinnikov et al. 1999)) and by 

the vegetation (Prigent et al. 2001). Brakenridge et al. (2007b), proposed a “discharge estimator” based on 

Ka band AMSR-E data, which was successfully tested over several rivers worldwide. The high frequency 

channel was selected for spatial resolution issues, and vegetation effects were considered negligible in the 

selected sites. 

 

In our case, since the surface was covered by permanently flooded paddy fields, the dynamic range of 

emissivity is mostly due to variations of water level within the fields, partially correlated with variation in 

water level of the river. The diagrams of Figure 3.3 indicate that 10.65 GHz has better dynamic range of 

emissivity at both H and V polarization compared with 18.7 and 36.5 GHz. This last frequency shows 

further limitations, related to raindrop effects, as will be shown in next Sections. In agreement with 

previous studies, H polarization shows a better dynamic range, at all frequencies. 

 

Lower frequency channels at C and X bands can suffer from radio frequency interference (RFI). But after 

applying algorithm of spectral difference indices (Njoku et al. 2005), for the year 2007, we found that our 

study area was not affected by RFI at X band. 

3.3.2 Polarization Index 

 
Fresnel equations and energy conservation law were introduced in section 2. According with these 

principles, the microwave emission from a homogeneous medium with a smooth surface observed at off-

nadir angle is partially polarized, since the vertical component of TB is higher than the horizontal one. The 

polarization difference TBV-TBH depends on the permittivity of the medium and is maximum at Brewster 

angle. It is reduced if the soil is dry, or rough, or is covered by vegetation. The emission from a terrain 

depends on surface temperature, but the polarization property of the emitted radiation is independent from 

it. This property can be exploited by normalizing the polarization difference to the average value of TB at 

V and H polarization. The polarization Index PI is defined as (Paloscia and Pampaloni 1988):  
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where, TBV and TBH are the brightness temperature at vertical and horizontal polarizations, respectively. 

Due to the normalization, the change in the value of PI can be attributed to the surface features. The 

results were evaluated at C, X and Ka bands of AMSR-E. PI multitemporal trends were compared against 

variations of water level (WL) within the river. The data for WL was provided by the State Water 

Resource Department, Lakhimpur, Assam, India. They collected WL at Dhalghat (DG), Ghansarai (GH) 

and Jamugurihat (JG) sites. DG readings were measured on Subansiri River, which is also a major 

tributary of River Brahmaputra, where as GH and JG readings are taken on Brahmaputra River itself. For 

each day, three water level values were measured (morning, noon and evening). Depending on the pass of 

AMSR-E data, WL values were taken viz., morning WL value for ascending pass and evening value for 

descending pass. Geographically, DG is at a higher slope compared to GH and JG. Figure 3.3, shows the 

variation of PI over the whole Julian days of 2007 at different frequencies on all the three sites.  Baring 

few exceptions at JG, on all the sites, the values of PI at X band is observed to be lower from January till 



 

59 

 

early April and then from November till December end whereas, from mid June till late September, the PI 

values are at the higher side, which coincides with the monsoon period in the region. The observation at C 

and Ka band basically follow the same pattern, but they also show irregular variations which may be due 

to the effects of radio frequency interferences (RFI) at C band and rain drop effect, at Ka band. 

 

 
 

 
 

Figure 3.3: Upper figures: PI (C, X and Ka band) vs Julian Date of 2007 for Dhalgat, Ghansari and 

Jamugurihat sites. Lower figures: corresponding trends of Water Level (WL). 

 
Some specific days from pre-monsoon to monsoon and post-monsoon seasons for the year 2007 were also 

analyzed. The analysis was carried out for DG site. Maximum and minimum values of the emissivity 

(within the box) and average PI are reported in Table 3.1 for X and Ka band. The selection of the days was 

based on their variability in terms of rain fall and flood conditions viz., 29/06/2007 (no rains but flood), 

15/07/2007 (Rains but no flood), 31/07/2007 (Rains and flood), 25/08/2007 (No rain but flood) and 

10/09/2007 (very slight rain but flooded) (Table 3.2). It can be observed that there is rise in the PI with the 

increase in the WL at both bands, but on a high rain fall day (viz., 15/06/2007) the PI value at 36.5 GHz is 

dropped significantly. The rain drops effect on PI values has been discussed in detail in section 3.5 of the 

paper.  

 

Table 3.1: Minimum and maximum values of emissivities, and average PI values, on selected dates at X 

and Ka bands. 

Date Freq (GHz) WL(m) Rain(mm) eV mean eH mean PI 

29/06/2007 10 88.5 0 0.8477 0.7647 0.1030 

 36   0.8907 0.8358 0.0636 

15/07/2007 10 87.68 67 0.8542 0.7820 0.0882 

 36   0.8496 0.8437 0.0069 

31/07/2007 10 89.16 10 0.8235 0.7190 0.1354 

 36   0.8883 0.8077 0.0951 

25/08/2007 10 88.4 0 0.8680 0.7973 0.0849 

 36   0.9007 0.8519 0.0557 

10/09/2007 10 89.15 07 0.8345 0.7344 0.1275 

 36   0.8933 0.8232 0.0817 
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Table 3.2: Cumulative distribution of FWS calculated at specific days using X band TB values and surface 

temperature data provided by IMD. 

Date 90% 80% 70% 60% 50% 

15/07/2007 5.319149 17.02128 26.06383 36.17021 47.34043 

31/07/2007 13.29787 22.87234 30.31915 38.29787 47.87234 

25/08/2007 12.79621 21.80095 29.85782 38.38863 42.18009 

10/09/2007 10 19.04762 25.2381 30 38.09524 

 

3.3.3 Fractional Water Surface 
 

To a first-order approximation, the satellite measured TB over land is a product between the emissivity and 

the surface temperature, and is given in 1.1.3. 

 

 BP P ST e T   (3.6) 

 

eP is the emissivity at P (vertical or horizontal) polarization, TBP is brightness temperature at P 

polarization  and TS is the surface temperature. This formula neglects atmospheric contributions. Over 

land the TB variations observed by the AMSR-E sensor in the frequency range of 6–37 GHz are primarily 

controlled by the underlying surface, except when precipitating clouds are present. This is due to the 

rather high emissivity of the land surface, and the transparency of clear atmosphere in most microwave 

bands. Although the atmosphere contributes to the satellite-measured TB, its contributions are generally 

lower than 10% of the observed variability in the absence of precipitation at all frequencies, except the 

absorption lines of water vapor and oxygen (National Research Council 1999 and Ferraro et al. 1998).As 

recalled in 3.3.1, when the frequency increases, the dynamic range of TB decreases. The TBP obtained from 

AMSR-E data is used to find the emissivity eP, as the surface temperature is known from IMD data. IMD 

provided hourly TS data needed to obtain emissivity on the surface during both ascending and descending 

passes of the AMSR-E. The obtained emissivity is used to find out the fractional water surface FWS (Fily 

et al. 2003), defined as  
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ePdry is the emissivity of dry surface and ePW is emissivity of water. Multitemporal trends of FWSH and 

FWSV at X and Ka band obtained over DG site are shown in Figure 3.4. The trends indicate that the 

horizontally polarized emissivity is slightly more sensitive to surface effects than the vertically polarized 

emissivity. Moreover, it can be observed that the dynamic range of emissivity in case of lower frequencies 

is wider compared to the higher ones. This result is expected, since vegetation attenuation increases with 

frequency. 
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Figure 3.4: Temporal trend of FWS at  H and V Polarization as a function of Julian Date of 2007. Left: X 

band. Right: Ka band. 

 
The entire basin was also considered and the cumulative distribution was computed. Results are shown in 

Table 3.2. The probability to have FWS ≥ 0.9 changes from 5% on 15/07/2007 (before Monsoon) to 13% 

on 31/07/2007 (during Monsoon). To interpret the results, we must consider that the study area also 

comprises of rivers, lakes ponds and wetlands/marshy lands, which in total account for nearly 5% of the 

total area. If that is considered as a benchmark, we can conclude that the increase in the percentage of FWS 

for the values above 0.9 may be due to the flooding in the region. The average of WL data collected from 

three sites falling at three locations in the area shows a general correlation with FWS. In general FWS is 

found to be a useful indicator in flood monitoring as it depicts the variation of flooded areas in both space 

and time. 

 

It can be also observed that with the increase in the WL the cumulative distribution of FWS shifts towards 

higher values, but the decrease in WL does not decrease the FWS in the same ratio. This is due to the fact 

that the flooding in the area is mostly due to breaching of the embankment made along the river and not 

just due to increase of WL in the main river. Due to this, even after the decrease in WL in the river, water 

gets blocked due to the remaining embankment height and as such it remains in the area for long.  

3.4 Correlations with ground truth 

3.4.1 General considerations  
 
FWS is a useful parameter to monitor variations of soil moisture associated to flooding. In the area of this 

experiment, the land was mostly covered by permanently flooded paddy fields, so that variations of 

emission properties were related to vegetation submerging, rather than soil moisture variations. So, as 

such the representation of FWS is not the best suited one to monitor the flood effects in the area. This 

reflected in the figures and correlation obtained by comparisons with ground data in the sections below. 

FWS was calculated only at DG site, for which Surface Temperature data was available.  

3.4.2 Fractional Water Surface FWS vs Water Level WL 
 
FWS at both polarizations was calculated and compared with the WL at DG site. At 10.65 GHz, the 

horizontal polarization  shows a better correlation with the WL as compared to the vertical polarization, 

but both correlation coefficients are lower than 0.4. The results are poor for 36.5 GHz at both 

polarizations (correlation coefficients less than 0.1).  
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3.4.3 Polarization Index (PI) vs Water Level (WL)  
 

  
 

  
 

  
 

Figure 3.5: Scatterplots of Polarization Index (PI) vs. Water Level (WL) for Dhalgat, Ghansari and 

Jamugurihat sites. Left: 10.65 GHz. Right: 36.5 GHz. 

 

In order to evaluate more specifically the trends of PI as a function of WL, the three locations have been 

considered. The trends of PI vs. WL, at X and Ka band, are shown in Figure 3.5. 36.5 GHz is affected by 

raindrop effects, during rainfalls, and high vegetation attenuation, which even reduces the dynamic range.  

PI is better correlated with variations of water level, with respect to FWS. This result finds explanation in 

the particular characteristics of the considered sites. They are dominated by paddy fields. A moderate 

flooding produces an increase of soil moisture, while intense flooding produces a reduction in the 

emerged height of vegetation. As demonstrated by previous studies (see, e.g. Paloscia and Pampaloni 

(1988), the PI at X band is sensitive to both effects. Therefore, it is an effective indicator of both moderate 

and intense flooding for regions dominated by paddy vegetation. 
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3.5 Effect of  falling raindrops  

As mentioned in section 3.2, there was a significant drop in the PI value on the day when a high rain fall 

was recorded. It was confirmed by the precipitation data (see Table 3.1). To get an insight into this effect,  

further  comparisons were made between rainfall data and PI. Multitemporal trends of rainfall, water level 

and PI are reported in Figure 3.6. At Ka band, on some  days in which there was heavy rain fall, there is 

sudden drop in the values of PI (see, e.g. Julian days 151, 159, 167, 190, 197, 208, 206, 229, 246, 253 in 

Figure 3.6 (a), whereas on a rain free days the PI basically follows the WL trends.  The drops are often 

observed even at X band, although to a lesser extent (Figure 3.6 (b)). In figure 3.6 (c), it can be seen that 

WL increases with the increase in precipitation.  

 

In order to evaluate the performance of the algorithm proposed by (Ferraro et al.1998) in this basin, 

results of specific days were investigated. Subsequently, identification and elimination of rain affected 

samples was applied using 23.8 GHz and 89.0 GHz channels of AMSR-E data. Examples of images not 

affected and affected by raindrops are reported in Figure 3.7 (a) and (b), respectively.  FWSH, FWSV and PI 

are mapped at both X and Ka band for two specific dates: Day 179 (29/06/2007, without rain) and Day 

196 (15/07/2007, with rain).  The area was bounded in a 26°30' and 27°42', 93°30' and 94°42' box. Data 

was interpolated in same way to resample it at equal interval, 12' by 12' (sampling interval in minute). In 

absence of rain (Figure 3.7 (a)) the maps are consistent. Higher values of both FWSH, FWSV, and PI are 

observed along the river at both frequencies, although with different extent. In the rainy day (Figure 3.7 

(b)), the spatial patterns at 36.5 GHz show anomalies, particularly for FWSH and FWSV. The selection of 

dates was made based on similarity in flooding condition over the area. The anomalies are due to the high 

sensitivity of Ka band to raindrops effects, with respect to X band.  

3.6 Rain pixels elimination 

To get over from the rain drop problems, the screening method proposed by (Ferraro et al. 1998) was 

used. Due to different climatic conditions, the current algorithm used slightly different threshold values 

for AMSR-E channels, based on the plot showing the difference between TBV at 23.8 GHz and TBV at 89.0 

GHz vs. TBV at 89.0 GHz. 
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Figure 3.6: Multitemporal trends. a) PI at 36.5 GHz, b) PI at 10.65 GHz and c) Water Level. Rainfall 

measurements are reported for comparison. 

 
Plots of TBV at 89.0 GHz as a function of the difference TBV (23.8 GHz)-TBV (89.0 GHz) generated over all 

samples on the site on 29/06/2007 (Day 179) and 15/07/2007 (Day 186) are shown in Figure 3.8. 

Precipitation data provided by IMD confirm that rainfall did not occur on the first day and occurred on the 

second day (see Table 3.1).   By applying the algorithm, we established that the samples, at which (TBV 

(23.8 GHz) -TBV (89.0 GHz) > 35K and TBV (89.0 GHz) < 240K) are rain affected pixels. The values so  
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(a) 

 

 
(b) 

 
Figure.3.7: (a) Maps of FWSH, FWSV and PI at 10.65 GHz and 36.5 GHz on 29/06/2007, without rain (b): 

Maps of FWSH, FWSV and PI at 10.65 GHz and 36.5 GHz on 15/07/2007 with rain 

 
Obtained for threshold however, were slightly different from the one obtained by Jin et al. (2006), mainly 

due to the fact that here the study area is not that dry as in west central Africa. Data were analyzed for two 

dates and the threshold was decided based on the scatter plot obtained. 
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Figure 3.8: Scatterplots of TBV at 89.0 GHz vs. the difference TBV (23 GHz – 89.0 GHz). Left: June 29 (no 

rain). Right: July 15 (rain) 

 
The trends of PI as a function of Water Level were plotted again after removing all the samples which 

resulted affected by rain according to the algorithm. Results are shown in Figure 3.9. The samples 

affected by rain are indicated by red dots. The correlation coefficient is improved by a significant amount 

in all the three sites (Figure 3.9).  

3.7 Possible use of PI to generate flood maps 

A detailed analysis over three areas showed that the PI at X band has a good potential to monitor the 

extension of flooding. The analysis was extended to a wide (1.4
0
 × 1.4

0
) area, including the basin. Results 

are shown in the form of PI maps in Figure 3.10. Maps show PI values on three dates of 2007: 18/03/2007 

(before flood), 10/09/2007 (during flood) and 13/11/2007 (after flood). Difference maps are also reported.  

Dates were selected keeping in mind the ground conditions tallied with IMD and WL data. The maps 

were obtained by using same interpolation techniques keeping half a minute interval at X band. On both 

sides of the river, flooding produces evident effects over large areas, confirming the potential of the 

instrument (particularly using PI at X band) to be used as an operational tool. It was noticed that the 

increase of PI during monsoon is mostly attributed to vegetation submerging. 
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Figure 3.9: Scatterplots of Polarization Index (PI) at X band vs. Water Level for Dhalgat, Ghansari  

and Jamugurihat sites. Left: All samples, red dots indicate samples affected by rain.  

Right: Only rain free samples. 
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Figure 3.10: Maps of PI at X band of Lakhimpur District and neighboring areas, in 2007. Left hand side, 

top to bottom: March 18th (before flood), September 10th (during flood) and difference image. Right had 

side, top to bottom: September 10th (during flood), November 13th (after flood) and the difference image.  

White squares indicate the locations of water level stations and the blue line represents the main rivers. 

3.8 Conclusion 

The capability of AMSR-E signatures to monitor floods has been tested over the Indian Brahmaputra 

basin, which suffers intense flood effects related to periodic Monsoon. The lowest AMSR-E frequency (C 

band) suffers limitations due to coarse resolution, and is affected by RFI. At the higher frequencies (e.g. 

Ka band) limitations are related to raindrop interactions and high vegetation attenuation. X band 
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demonstrated to have a good trade-off between spatial resolution and sensitivity requirements. Therefore, 

it proves to be particularly useful when the site is characterized by wide vegetation covers and high 

recurrence of rainstorms. The performances of different parameters defined in the literature, such as 

Polarization Index (PI) and Fractional Water Surface (FWS) have been investigated. PI proved to have the 

best correlation with water level measurements in the river. This result is related to the particular 

properties of the site, which is mostly covered by paddy fields. Flooding effects on PI are related both to 

an increase of soil moisture and to a decrease of emerged vegetation height. While correlation between PI 

and WL is good when WL increases, it is reduced when it decreases, since the water remains in the large 

AMSR-E pixels, and subsides with some delay with respect to the river. At X band, a significant 

improvement in the correlation between PI and WL is obtained after eliminating samples affected by 

raindrop interactions. To this aim, a technique based on AMSR-E data collected at 23.8 GHz and 89.0 

GHz, was applied. The PhD work proposal also included development of a flood response system. The 

plan was to generate a network-enabled GIS based solution, to be developed using open source tools, to 

assess post flood damage with the help of query based modules, with outputs in the form of both maps 

and statistical database. This resultant data and information generated would have been useful for 

planning, designing and executing the emergency response measures in an effective manner. But the 

resolution of AMSRE data was not optimum to map the accurate extent of flood for a better post-flood 

disaster management analysis at smaller scales. Due to this reason, this implementation could not be 

attempted. But such system could be of great benefit to the society, even if it just displays the flood maps 

derived from AMSRE data (without details query) on GIS background (village boundary), for a operators  

to assess the condition of a village during flood. 
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4 Retrieving soil moisture over Forests : SMOS results and 
comparison with ground observation, other algorithms and 
independent observations 

 

4.1 Introduction 

As discussed in chapter 1.2.1, soil moisture (SM) is an important parameter in weather, hydrologic, 

climatologic and atmospheric models because of its influence on evaporation, infiltration, runoff and 

uptake of water by vegetation. Because of its variability in time and place, however, creating a database 

of the entire earth based on field measurements would be extremely time- and labor-intensive. A solution 

to this is satellite imagery. Satellite imagery can give information on SM on a global scale, potentially at 

intervals of at most a couple of days. 

 

For this purpose, the European Space Agency (ESA) has developed the Soil Moisture and Ocean Salinity 

(SMOS) satellite to retrieve soil moisture over several kinds of land cover, including low vegetation and 

forests (see section 1.4.2). This satellite measures brightness temperature (TB) at L-band. From these 

measurements SM in the top five centimeters of the soil can be determined. The resolution is in a range of 

30-50Km but, the data grid is approximately 15 by 15 km.  

 

It is well established that soil moisture retrieval is difficult under forest cover (Grant et al. 2007; 

Guglielmetti et al. 2008 and Kurum et al. 2012). In fact the attenuation related to the high wood biomass 

reduces the contribution of the soil surface to the overall emission, thus reducing the sensitivity to 

variations of soil moisture. A further reduction of sensitivity is associated to litter cover (Grant et al. 

2007; Kurum et al. 2012 and Grant et al. 2009). At C band and higher frequencies, crown attenuation 

makes soil moisture retrieval very difficult in most of the cases. At L band some sensitivity to soil 

moisture is expected, since crown attenuation is lower than that at the higher frequencies, however 

establishing quantitative models is not that simple.  

 

Hence taking the above factors into consideration, developing a reliable forward model and a valid 

retrieval algorithm for forests is essential to analyze SMOS data more efficiently.  

 

First of all, forest cover dominates several SMOS pixels. Moreover there are mixed pixels, and even when 

other land covers (e.g. agricultural fields, grass) are dominant, a correct characterization of forest 

emission improves the retrieval accuracy (Van de Griend et al. 2003). 

 

To provide an insight into this problem important ground-based and airborne experiments have been 

undertaken over the years. Multitemporal measurements of brightness temperature were carried out over 

coniferous and broadleaf forests using L-band radiometers mounted on a tower (Grant et al. 2007; 

Guglielmetti et al. 2008; Kurum et al. 2012; Grant et al. 2008; Guglielmetti et al. 2007; Santi et al. 2009 

and Kurum et al. 2011), and were accompanied by detailed measurements of ground variables, such as 

soil moisture, wood biomass, and forest geometrical properties. In some cases, outputs were used to test 

theoretical models (Kurum et al. 2011 and Kurum et al. 2012), or fit the parameters of semi-empirical 

models (Grant et al. 2008 and Santi et al. 2009). Upward looking radiometric data were also collected in 

some forests (Grant et al. 2008 and Santi et al. 2009). Moreover, airborne campaigns have provided useful 

data for investigating the relationship between emissivity and forest biomass (Lang et al. 2000; Saleh et 

al. 2004 and Macelloni et al. 2001), and soil conditions (Grant et al. 2010). Although these efforts are 
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very important, they are not yet sufficient to reach a complete understanding of the forest emission 

problem, and to draw conclusive considerations. While some studies indicate the radiometric sensitivity 

to variations of soil moisture to be poor in developed forests (Grant et al. 2007; Guglielmetti et al. 2008 

and Kurum et al. 2012), others over moderately dense forests with thin litter show the sensitivity to be 

appreciable (Guglielmetti et al. 2007;  Santi et al. 2009 and Grant et al. 2010), although still lower than 

over low vegetation. Moreover, further efforts are required to establish if the sensitivity to soil moisture is 

mostly reduced by crown attenuation or by litter cover. Spaceborne monitoring can substantially help to 

investigate these problems. 

 

Details about SMOS measurements have been given in Section 1.4.2 and the basic concepts underlying 

the algorithms adopted to retrieve soil moisture have been given in Section 2. The SMOS retrieval 

algorithm (Kerr et al., 2012) is based on two main components. The first consists of a forward model, 

which estimates the TB emitted by land nodes of SMOS using a priori information (from auxiliary data) 

about land cover, surface temperature, Leaf Area Index (LAI), and initial estimates of soil moisture taken 

by the data base of the European Centre for Medium-Range Weather Forecasts (ECMWF). The second 

consists of an inversion process, which estimates the actual soil moisture and optical depth by using 

multiangular measurements, forward model outputs and a Cost Function (Kerr et al. 2012). The algorithm 

follows an iterative approach which aims at minimizing a cost function whose main component is the sum 

of the squared weighted differences between measured and modeled TB data, for a collection of incidence 

angles. This is achieved by finding the best-suited set of parameters, which drive the direct TB model, 

e.g., SM and vegetation characteristics. 

 

For all SMOS nodes classified as soil covered by vegetation, the TB is estimated by a simple first order 

radiative transfer model (Grant et al. 2007) as described in section 2.2. At the SMOS scale, pixels are not 

uniform and may have a variety of surface types. In such cases, the total TB comes from several classes of 

emitters. This composite TB is obtained through an aggregated forward model which combines each class 

of emitting sources weighted by their intra-pixel cover fractions. In order to keep the algorithm consistent, 

and to consider the case of mixed pixels, the same approach is kept for both low vegetation and forests 

(Kerr et al. 2012). For the case of forests, the radiative transfer parameters τ (optical depth) and ω 

(albedo) are estimated using the synthetic outputs of the theoretical model described in Ferrazzoli and 

Guerriero (1996), according to the procedure which was further developed in Ferrazzoli et al. (2002). The 

theoretical model was tested and revised using sets of ground based and airborne measurements carried 

out over various forests in different environments (Della Vecchia et al. 2007; Della Vecchia et al. 2010 

and Rahmoune et al. 2010). 

 

The choice of the operating wavelength for SMOS is determined by the increase in sensitivity of the 

brightness temperature to soil moisture (ground) with the decrease in the observation frequency. The 

1400–1427 MHz band (L-Band) is used because it is the lowest passive frequency band allocated to the 

Earth Exploration Satellite Service (EESS) (Kerr 2001). But the microwave radiometers receive 

emissions at very low levels compared to those generally handled by other radio communications 

services; these sensors are therefore generally more susceptible to Radio Frequency Interference (RFI) 

originated from man-made emitters on the ground, on aircraft or space borne systems. 

 

The issue of RFI within this passive band, especially due to the presence of long-range air surveillance 

radar systems in nearby bands, has been identified as a key concern by Committee On Scientific Use Of 

The Radio Spectrum (2010). Observations already performed using airborne campaigns have shown clear 

instances of RFI signals (Zribi 2011). Unwanted emissions arising from radars within the adjacent Earth 

Exploration-Satellite Service (EESS) band within the radiometer antenna footprint can easily exceed the 

maximum emission level allowed. The experience obtained during the operations of SMOS satellite is 

also showing that the presence of radio-links in nearby bands and unauthorized transmissions within 

passive band are also a common source of interference for the radiometer (Daganzo 2010). 
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The RFI problem is not due to inadequate filtering in the SMOS receiver (which is using less than the 

allocated frequency band and which boasts of very high performance), but is due to two specific 

problems: i) Unauthorized emissions within the protected passive band coming from active sources, ii)  

Unwanted emissions from active services operating in neighboring bands. 

 

In this chapter results obtained by a prototype version of SMOS SM retrieval algorithm are shown. The 

basic algorithm is described in the Algorithm Theoretical Baseline Document (ATBD) (Kerr et al. 2010 

and Kerr et al. 2012), while details about forest cover are given by Rahmoune et al. (2013). The prototype 

version of the algorithm here adopted is flexible and it can run with different sources of auxiliary data. In 

particular the Leaf Area Index, which is an input to the forward model, can be extracted by the 

ECOCLIMAP database (Masson et al. 2003b) or by the MODIS database (Knyazikhin et al. 1998a). 

   

In this chapter, first of all, the specific aspects of the algorithm for forests will be described, followed 

with the details about the selected test sites used for validation of the results.  Then some results about 

retrieved optical depth will be discussed..This is an important aspect, since a correct retrieval of optical 

depth is fundamental in order to correctly retrieve soil moisture. Finally, soil moisture retrieval results 

will be presented. Different approaches to make comparisons with available ground measurements and 

filtered data were used, and relevant results were presented. Initially, for the selected nodes of the 

available ground networks, averaging was done among SM outputs obtained by the retrieval algorithm in 

all SMOS nodes with a center falling within the buffer of 15 Km distance from the ground observation. 

This first analysis was done by using both ECOCLIMAP and MODIS as input data sets for the LAI of the 

forward model, and results were presented. Then, other comparisons with ground measurements were 

shown, done using ECOCLIMAP as input data set, and taking just the SMOS node with a center having 

the closest position with respect to the considered network node. This analysis was repeated under 

different conditions imposed to RFI filtering and location of SMOS nodes with respect to the swath axis. 

Finally, SM data obtained by SMOS and results obtained by the Advanced Microwave Scanning 

Radiometer - Earth Observing System (AMSR-E) were compared with respect to the ground observation 

to analyze the SM output derived from different data products. In this study, two algorithms were 

considered, which were developed to determine SM from AMSR-E measurements, namely that of the 

National Snow and Ice Data Centre (NSIDC) and the Vrije Universiteit Amsterdam (VUA) in 

combination with NASA.  

4.2 SMOS Algorithm 

4.2.1 General properties of SMOS Algorithm over forests 

4.2.1.1 The forward model  
 

As stated in Section 4.1, a simple radiative transfer equation of zero order RT0 (see Sections 2.1.5 and 

2.2) is used as forward model in order to estimate the brightness temperatures which are compared against 

SMOS measurements. For forests, the initial values of ω and τ (see equation 2.25) were estimated by 

fitting the outputs of a theoretical model, which is based on the radiative transfer theory and adopts a 

discrete approach (Ferrazzoli and Guerriero 1996). In that model, trunks and branches are represented as 

dielectric objects with the shape of cylinders, while leaves are represented as needles or disks. The bistatic 

scattering cross sections and extinction cross sections are computed by using suitable electromagnetic 

approximations. The bistatic scattering coefficient of the soil is computed by using the Integral Equation 

Model, in its bistatic version (Fung 1994). Single contributions are combined by using the matrix 

doubling algorithm, which allows us to compute the overall bistatic scattering coefficient in all directions, 
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including multiple scattering effects. The overall reflectivity is computed using formulas of Section 2.1.5, 

where the incoherent component is obtained by integration over the upper half space and the emissivity is 

finally obtained by the energy conservation law. Details about the electromagnetic model are given in 

Ferrazzoli and Guerriero (1996). For litter, the model published in Della Vecchia et al. (2007), which 

considers the litter as a dielectric layer over the soil, was applied.  

 

This theoretical forest model was previously tested against ground based and airborne measurements 

(Della Vecchia et al., 2007; Della Vecchia et al., 2010; Rahmoune et al., 2010). RMS errors were in the 

range of 2.5 K – 4.0 K. 

 

 As discussed in (Rahmoune et al., 2013), for estimating the input variables and parameters, the procedure 

assumes to know, besides soil variables, the following inputs: 

 

 Leaf Area Index contributed by forest leaves LAIF  

 

 Leaf Area Index contributed by herbaceous vegetation LAIV 

 

 Distribution of trunk diameters at breast height dbh [cm]: p(dbh) 

 

 Moisture [g/g] and dry matter density ρD [g/cm
3
] of trunks, branches and leaves. 

 

 

Using allometric equations, simplifying approximations and the theoretical model, the emissivity was 

computed at both V and H polarizations, at all angles in the range of 20°-50° and for soil moisture values 

in a range of 0.05-04.  
 

 

The simulation outputs were used to fit the equivalent parameters τF (forest optical depth) and ωF (forest 

albedo), contributed by arboreous vegetation and assumed to be independent of polarization, of the RT0 

forest model. The RT0 model was run for the same conditions as the theoretical model, and ωF and τF 

were selected in order to yield the minimum root mean square (rms) difference between TB (K) outputs of 

the two models.  
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Figure 4.1: Trends of fitted radiative transfer parameters τF and ωF as a function of maximum yearly value 

of forest LAI,for broadleaf forests (Rahmoune 2013). 

 

A key variable is the actual maximum yearly value of Leaf Area Index contributed by forest leaves 

(LAIFmax). The trends of τF and ωF as a function of LAIFmax , for the case of broadleaf forests, are shown in 

Figure 4.1. Values of τF lower than about 0.6 are achieved for sparse forests with LAIFmax < 2. The albedo 

ωF shows a decreasing trend vs. LAIFmax .  

 

A linear regression was then applied to the relationship between the optical depth and LAIFmax, in order to 

compute the coefficients of a linear relationship such as: 

 

 maxF F Fb LAI   (4.1) 

 

The resulting coefficients are: 

bF = 0.29 for broadleaf forests. 

bF = 0.36 for coniferous forests. 



 

75 

 

Equation (4.1) gives the maximum yearly value of τF, which is achieved in full leaf development. If the 

forest is deciduous, τF decreases in late autumn and winter due to the absence of leaves. Further model 

simulations, not shown here, indicated that the corresponding decrease of bF coefficient is 0.03 units. 

Therefore, a general expression is: 

 

 max max0.03( )F F F F Fb LAI LAI LAI     (4.2) 

 

The total optical depth, including contributions of both forest vegetation and herbaceous vegetation is 

given by: 

 F V Vb LAI    (4.3) 

 

The bV coefficient is set equal to 0.06, which is the value adopted by the ATBD for low vegetation (Kerr 

et al., 2010). 

 

Then, we assumed: 

LAIF  = fF  LAI 

LAIV  = fV  LAI 

LAI is the total Leaf Area Index, available by ECOCLIMAP data base (Masson et al., 2003b).  

fF  and fV represented the fractions of LAI contributed by arboreous leaves and herbaceous vegetation, 

respectively. Some data are available in the literature, showing some dispersion. In order to simplify the 

initial guess of τ we made an assumption which was verified in some broadleaf and coniferous forests 

(Peduzzi et al., 2010 and Blanken et al., 1997). : fF  = 0.6, fV  = 0.4 

 

For the albedo, the value achieved fitting the outputs of the theoretical model (as described above) for the 

dense forest (higher values of LAIFmax in Figure 4.1) is used: 

 

ωF = 0.08 

This value represented a good fit for both broadleaf and coniferous forests. 

 

The roughness parameter h of Equation (2.23) has been set equal to 0.3. This value corresponds to a 

height standard.of about 1.0 cm, which is quite realistic.  

 

The procedure described in this Section leads to compution of the optical depth and the albedo of the RT0 

forest model 

4.2.1.2 The retrieval procedure 

 

Using brightness temperatures simulated by the forward model and measured over SMOS grid nodes, SM 

and optical depth are determined. The calculated TB is used in an iterative procedure which minimizes a 

“cost function” in order to get the retrieved SM and τ. The cost function subtracts measured multiangular 

brightness temperatures (L1C data), measured by the satellite to the TB’s simulated by the model.  SM 

and τ , which are parameters in the equations for TB (see Section 2, eq. 2.25), are kept free in the function 

in order to determine the best fit of measured and theoretical TB. 
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In this process, the algorithm uses initial values of soil moisture predicted by ECMWF and the optical 

depth predicted by the procedure illustrated in section 4.2.1.1. 

4.3 AMSRE Algorithm 

As specified in Section 4.1, soil moistures retrieved by SMOS will be compared with the outputs of two 

algorithms exploiting AMSR-E data. Some information about the two algorithms is summarized here. 

The AMSR-E satellite has a morning (descending) and evening (ascending) overpass (see Section 1.4.1). 

Two different SM datasets derived from the AMSR-E satellite, NSIDC and VUA, have been considered. 

The difference between NSIDC and UVA SM product lies in the algorithm used. The details are 

explained in the next paragraph. For both the cases, SM is determined for approximately the first 

centimeter of soil. Both datasets have a resolution of 0.25 by 0.25 decimal degrees.  

 

NSIDC SM data is determined using X-band (10.65 GHz) and Ku-band (18.7 GHz) channels. The 

algorithm uses two low frequency dual polarized channels to optimize SM, vegetation optical depth and 

effective soil temperature simultaneously.  The SM algorithm uses the Polarization ratio (PR). PR is the 

difference between the vertical and horizontal TB at a given frequency divided by their sum. This 

effectively eliminates or reduces surface temperature effects, which is necessary since no dynamic 

ancillary surface temperature is used as input to the algorithm. The algorithm first calculates a 

vegetation/roughness parameter, g using PR at 10.7 GHz and PR at 18.7 GHz, plus three empirical 

coefficients. SM is then computed using departures of PR at 10.7 GHz from a baseline value, plus four 

additional coefficients. The baseline values for PR at 10.7 GHz are based on monthly minima at each grid 

cell over annual cycle. The parameter g incorporates effects of vegetation and roughness together and is 

interpreted as an equivalent vegetation water content. It uses average values of optical depth and temporal 

variations for calculating SM. The input TB data corresponds to 38 Km mean spatial resolution, and are 

resampled to a global cylindrical 25 km EASE- Grid cell spacing. The effective spatial resolution is thus 

slightly higher than the inherent 38 km resolution.  

 

VUA data is derived according to the Land Surface Parameter Model (LPRM) (Owe et al. 2007). The 

LPRM is a three-parameter retrieval model for passive microwave data and is based on a microwave 

radiative transfer model that links surface geophysical variables (i.e., SM, optical depth, and soil/canopy 

temperature). The model uses dual polarized channel (either 6.925 or 10.65 GHz) and retrieves both SM 

and optical depth. The SM retrieval methodology uses a nonlinear iterative procedure in a forward 

modeling approach, into its primary source components, i.e. the soil emission and the canopy emission, 

and then optimizes on the canopy optical depth and the soil dielectric constant. Once convergence 

between the calculated and observed TB is achieved, the model uses global database of physical properties 

(Rodell et al. 2004) together with a soil dielectric mixing model (Wang and Schmugge 1980) to derive 

surface SM. The model is largely physically-based with no regional dependence since no field 

observations of SM, canopy biophysical properties, or other observations are used for calibration 

purposes. 

 

For both the products, descending data was used, as it was falling close to the timing of SMOS SM 

measurement and Ground SM observations. 

4.4 Test Sites 

4.4.1 SCAN/SNOTEL Nodes 
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The SCAN from the National Soil Survey Center (NRCS), USDA, gives free access near real time (NRT) 

with hourly sampling access to climatic station data across the U.S. (http://www.wcc.nrcs.usda.gov) 

(Schaefer et al. 2007). The stations are equipped with a multitude of sensors (air temperature, relative 

humidity, soil moisture at different depths, soil temperature at different depths, solar radiation, wind 

speed, precipitation, etc.). The most important sensors for this study are the soil moisture at 2 in (~5 cm), 

soil temperature at 2 in, and precipitation. The soil moisture instrument is the Hydra Probe (Stevens). The 

original objective of the SCAN network was to improve decision making in agriculture, but the network 

has been extensively used in research activities. Several investigations  (Sahoo et al. 2008; De Lannoy et 

al. 2007;  Jackson et al. 2010 and De Lannoy et al. 2011) used the SCAN site data combined with other 

data sources for validation of soil moisture products.  

 

 
 

Figure 4.2: SCAN network 

 

The network has a low density compared to the heterogeneity of soil moisture over the SMOS footprint 

but covers a wide variety of soil types and climates over continental U.S. (See map in Figure 4.2). The 

NRT data are provided after screened sensor limits, and no additional processing or quality check is 

provided. 

 

The NRCS also gives NRT access to the SNOTEL network. This network covers the Western U.S. and 

Alaska. SNOTEL stations are, in majority, installed over mountainous regions (Rocky Mountains, 

Colorado) with forests. In many SNOTEL sites, a soil moisture Hydra Probe is installed. Both SNOTEL 

and SCAN data collection systems use meteor burst communication techniques to obtain near real-time 

data from remote sites (http://www.wcc.nrcs.usda.gov/ftpref/downloads/factpub/soils/SNOTEL-

SCAN.pdf). 

 

4.4.2 BERMS (CANADA) 
 

BERMS is located in the southern boreal forest in north central Saskatchewan, Canada. The BERMS 

research effort is a collaborative project with EC and other government agencies and universities 

(http://berms.ccrp.ec.gc.ca/Overview/e-overview-brochure.htm). The project began in 1996 following the 

http://www.wcc.nrcs.usda.gov/
http://www.wcc.nrcs.usda.gov/ftpref/downloads/factpub/soils/SNOTEL-SCAN.pdf
http://www.wcc.nrcs.usda.gov/ftpref/downloads/factpub/soils/SNOTEL-SCAN.pdf
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end of the BOReal Ecosystem and Atmosphere Study (BOREAS). While BOREAS was an episodic 

research project that took place in 1994 and 1996, the BERMS project is continuous. 

 

 
Figure 4.3: CanEx-SM10 study area over BERMS 

 

The Canadian Experiment for Soil Moisture in 2010 (CanEx-SM10) originated as an initiative of 

Canadian researchers to support the Soil Moisture and Ocean Salinity (SMOS) validation activities over 

land and to develop soil moisture retrieval algorithms. The experiment was extended to include pre-

launch validation and algorithm development for the Soil Moisture Active and Passive (SMAP) mission 

through a collaboration with US researchers. CanEx-SM10 field phase took place from May 31 to June 

17, 2010 over agricultural and forested sites located in Saskatchewan, Canada. The BERMS region is 

located north of Prince Albert in Saskatchewan near the southern extent of the boreal forest. See map in  

Figure 4.3. The topography is generally rolling and the dominant vegetation type depends on soil type, 

drainage conditions and disturbance. The dominant species in well drained and sandy soils are jack pine 

with black spruce more prominent in wetter, less well drained areas. Aspen, which is typically a 

disturbance species, can be found in areas that have been burned or harvested. Other species, such as 

white spruce, birch, and tamarack can also be found. The CanEx-SM10 project does not use the entire 

BERMS study area but rather is confined to a domain in the most eastern portion of the study area. 

 

BERMS consists of a series of instrumented research sites located in various vegetation types and age 

structures throughout the region. Within the study domain indicated above are OBS, OJP, FEN, H75, H94 

and H02. A brief description of each site is mentioned below. More information can be found at 

http://berms.ccrp.ec.gc.ca/Sites/e-sites.htm. 

 

 OBS: Old Black Spruce Mature wet coniferous black spruce forest Moss and Labrador tea 

understory Stand age ~ 114 years Canopy height 11 m. 

 

 OJP: Old jack Pine Mature dry coniferous jack pine forest Lichen understory Stand age ~ 94 

years Canopy height 14 m. 

 

 H94: Harvested Jack Pine 1994 Young jack pine stand logged in 1994 Stand age ~ 20 years 

Canopy height ~ 2-3 m. 

 

http://berms.ccrp.ec.gc.ca/Sites/e-sites.htm
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 H75: Harvested Jack Pine 1975 Young jack pine stand logged in 1975 (originally part of 

BOREAS experiment) Stand age: ~ 30 years Canopy height ~ 5 m. 

 

 H02: Harvested Jack Pine 2002 Site was logged in 2000 with the surface scarified in 2002 

Ground cover consisting of sparse grass, shrubs and immature jack pine seedlings. 

 

 FEN: Patterned fen surrounded by black spruce, tamarack and jack pine forest (originally part of 

BOREAS experiment). 

4.4.3 Indian sites 
 
L-band is a protected frequency band for radio-astronomy and remote sensing satellite services. However, 

it is bordered by radio location and communications services, and field experimental campaigns have 

provided evidence that there is a potential risk for corruption due to out-of-band emission or Radio 

Frequency Interferences (RFIs). SMOS data which uses L-band, shows severe RFI problems. The RFI 

sources, present over large parts of Europe, China, South Asia and the Middle East, significantly 

influence the quality of the SMOS data. Figure 4.4 shows RFI map over India at ascending and 

descending orbit of SMOS data (www.cesbio.ups-ttlse.fr/SMOS-blog/tag=rfi).  Asia and Europe together 

hold 86% of the sources in the world and 86% of the strongest (Oliva et al. 2012). The American 

continent is by comparison much cleaner, except for some RFI sources distributed over Canada and 

United States. 

 

India is also one of the most severely affected countries due to Radio Frequency Interference (RFI). This 

makes difficult to work with lower frequencies specially L-band over most parts of the India. Since the 

power transmitted by a RFI source within the passive band is proportional to the TB measured by the 

radiometer, this problem directly results in wrong estimation of the TB and makes the data useless for any 

further studies. A refined analysis using on-board calibration data allows to focus the TB images 

(http://www.smos-bec.imc.csic.es/node/36), but even though the RFI regions become more localized, the 

amount of RFI was in many cases so large that the tails of the ‘impulse response’ to a RFI quasi point 

source extended over the whole image, making it difficult the retrieval of geophysical parameters. 

 

Results of the erroneous TB values due to RFI over the Indian forest along with RFI maps provided by 

SMOS are discussed in the following paragraphs. 

 

As the satellite moves, the single SMOS node is viewed with many incidence angles from 0
0
 to 60

0
, and 

for each node we have two polarizations XY/HV. Some of these incidence angles are affected by RFI 

either in X Y or in X or Y. Figure 4.5 (a), indicates the number of view affected by RFI corresponding to 

X-polarization and Y-polarization, acquired consecutively every 1.2 sec in dual polarization mode. In 

SMOS imagery, the antenna switches connect the receivers in one array arm either to the X- or Y-

polarization antenna probe following a predetermined sequence. Four stokes parameters images are 

obtained after four switching intervals, and due to pulsed nature of many RFI sources, RFI can happen in 

one of the intervals and not in others, in an unpredictable manner. Figure 4.5 (b) shows maps of TB values 

at Vertical and Horizontal polarization over each Julian day of year 2010 over the forest (Western Ghats), 

of India. It is obvious from the figure that in some cases the RFI is so strong that it completely corrupts 

the whole TB values (Julian Day 67). In most of the other cases, the variation of TB values at both 

polarizations are too high or too low, to be realistic. It is also worth noticing that the SMOS RFI is highly 

variable both in time and polarization and so even averaging the data do not help much. Ground 

information over some of the Indian forests and few flood plains were available, but due to high RFI 

issues any further analysis on the area had to be forcibly abandoned. 

 

www.cesbio.ups-ttlse.fr/SMOS-blog/tag=rfi
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Figure 4.4: RFI map over India 

 

 
(a) 
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(b) 

 
Figure 4.5: RFI issues over forests (Western Ghats) in India (a) RFI maps at X and Y pol (b)TB at V and H 

pol. vs Julian Days  

4.5 Results and Analysis 

4.5.1 Retrieved Optical Depth 
 

The initial estimate of τ is based on the procedure mentioned in section 4.2.1.1, which has several 

approximations. The algorithm starts from the initial estimate and uses SMOS L1C data in order to find τ 

minimizing cost function for each node.  

4.5.1.1 Global Optical Depth Map 

 
Global maps of optical depth were generated using the data collected from July, 1, 2011 to July, 4, 2011. 

ω was set to 0.08 for boreal forests and 0.06 for tropical and subtropical forests, as inputs to the 

algorithm, as a consequence of the preliminary analysis reported by Rahmoune et al. (2013). The 

algorithm described in Kerr et al. (2012) was used for low vegetation. The resulting map of optical depth 

is shown in Figure 4.6. 

 

As expected, the optical depth in the areas covered by forests is higher than in low vegetation. In general, 

the map shows a correspondence with forest biomass maps available in the literature (FAO 2000 and 

NASA and Jet Propulsion Laboratory 2012). τ values higher than 1.0 are obtained in large part of the 

dense and thick Amazon forest, while a decrease is observed moving towards the subtropical Chaco 

forest, mostly covering Paraguay and Northern Argentina, where the vegetation is less dense. A high 

optical depth is also observed in Indonesia. Moderate values, typically in the range of 0.7-0.9 are obtained 

in Boreal forests of Canada, US, and Siberia. The retrieval is unsuccessful in the Congo forest, where the 

forest is dense and the quality of L1C data resulted to be poor. 
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Figure 4.6: Global Map of Retrieved optical depth 

 

4.5.1.2 SMOS optical depth and AMSR-E LPRM (VUA) optical depth 

 

As mentioned in section 4.3, LPRM is a three-parameter retrieval algorithm (soil moisture, vegetation 

optical depth, and soil/canopy temperature) using passive microwave data and a microwave radiative 

transfer model. The algorithm uses dual polarized channel (either 6.9 or 10.6 GHz) of AMSR-E for the 

retrieval of both surface soil moisture and vegetation optical depth. 

 

 
(a) 
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(b) 

 

Figure 4.7: Optical Depth Maps obtained from (a) SMOS (1-4 July 2011) and  

LPRM (VUA) (1-2 July 2011) algorithms. Colored boxes indicate sites selected for SM retrieval. 

 

Comparison was done between the SMOS retrieved optical depth and LPRM optical depth map under 

different forest fraction (FFO=80%, 40% and 0%). Figure 4.7 (a) and (b), shows the optical depth map 

retrieved from SMOS algorithm and the vegetation optical depth retrieved by the LPRM algorithm (and 

averaged for the period 1st July 2011 and 2nd July 2011). 

 

In general, SMOS retrieval is more sensitive to the presence of forest cover, in comparison to LPRM. 

While L band signatures are fundamentally influenced by branch attenuation, C band signatures are also 

strongly affected by low vegetation or other factors. It is also worth noticing that, although noisy, SMOS 

vegetation optical thickness contains useful information regarding forest cover. 

4.5.1.3 Comparison with an independent data source 

 

Retrieved values of optical depth τ have been compared against tree height estimates obtained by the 

algorithm described in Simard et al. (2011), and made available by NASA Earth Observatory. The 

algorithm used data collected by the Geoscience Laser Altimeter System (GLAS) of  ICESAT satellite, 

with information from  MODIS, additional elevation data from the Shuttle Radar Topography Mission 

(STRM), and climatology information from both the Tropical Rainfall Measuring Mission (TRMM) and 

the http://www.worldclim.org/Worldclim database (Simard et al. 2011). GLAS data, which originally had 

1 km resolution, were re-sampled at ISEA4H9 grid (1.4.2.2). 

 

http://glas.gsfc.nasa.gov/
http://www2.jpl.nasa.gov/srtm
http://trmm.gsfc.nasa.gov/
http://www.worldclim.org/
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Figure 4.8: Retrieved optical depth vs. forest height (m) reported in Simard et al. (2011).  

 

The results of the comparison are shown in Figure 4.8. Height values available in Simard et al. (2011) 

were subdivided into 1 m intervals. For each height interval, all the SMOS forest nodes were considered. 

The average value and standard deviation of τ were computed, and are represented by the continuous line 

and the error bars (respectively). There is a clear increasing trend, indicating an appreciable 

correspondence between the two variables. This is an interesting result, since the data were obtained by 

independent sources. In general, the standard deviation is slightly higher than 0.1. This is not exclusively 

due to an “error” in the strict sense. At L band, the optical depth is mostly dependent on the overall wood 

biomass, which is related to forest height but is also dependent on other forest properties.  

4.5.2 Retrieved Soil Moisture 
 

In general, the theory indicates that with the increase in vegetation biomass, there is decrease in the 

contribution of soil to the total emission, and therefore the SM information contained in the microwave 

signal decreases. This makes the retrieval of SM under forests difficult, since errors in the data and/or in 
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the algorithm can be comparable with the dynamic range of the variations due to SM itself. Some tests 

were done and results are reported in this Section. 

 

The SM data analysis and testing was carried out for the SCANS and BERMS sites, since there are large 

homogeneous areas scarcely affected by RFI problems, and retrieved values of SM can be compared 

against measurements of extensive networks. In a first analysis, all the SMOS nodes surrounding the 

ground observed site (within buffer of 15 Km) were considered and the retrieved SM values, sensed by 

each SMOS node within the buffer, were averaged, algorithm performances obtained using different 

auxiliary data sets for LAI information were compared against each other. Different LAI inputs were 

passed to the forward model, viz., LAI input from ECOCLIMAP database (S6 model) and LAI input from 

MODIS database (S8 model) for the SM estimation. The outputs derived were compared with the ground 

observed SM for 33 SCAN/SNOTEL test sites (SMOS nodes, covering 80% forest cover and 40% forest 

cover) and 2 at BERMS test sites.  In the first analysis, the conditions for filtering SMOS data regarded 

the distance of SMOS node from the axis of the swath (Xswath) and the RFI percentage. Outputs of Level 

1 Prototype Processor (L1PP) have been used to detect and flag the unwanted emissions observed by 

SMOS. L1PP uses multi-angular SMOS data to detect the probable position of RFIs.  A further Flagging 

algorithm has been developed by ESA and Level 2 team so that geolocated pixels are flagged depending 

on the intensity of RFI affecting them. Only pixels with Xswath lower than 300 km and RFI probability 

less than 5% have been considered, or both S6 and S8 model. The considered time interval was from June 

1, 2010 to May  31,  2012. The test was carried out to find the most suitable LAI input into the model.  

 

After that ECOCLIMAP was used as database for giving LAI to the forward model, and the analysis was 

repeated by considering the SMOS node closest to the ground site (node-to-site comparison) rather than 

averaged data. Different cases of Xswath limit and RFI filtering conditions were considered for the 

testing. The rationale behind putting such conditions was to understand the influence of Xswath limit and 

RFI filtering on the SM derived from SMOS data.  

 

In the third analysis, the SM derived from SMOS data was compared with SM from other data sources 

(AMSRE). For this comparison, apart from two forest classes few nominal classes were also considered. 

The time interval considered for node-to-site analysis and comparison with AMSR-E products was from 

June 1, 2010 to May 31, 2011. 

 

Finally an example of global map of SM, generated using ECOCLIMAP as LAI input and averaged 

within 4 days, is shown. 

4.5.2.1 Results obtained by averaging among closest SMOS nodes with two kinds of 
auxiliary data  

 

Tests of the SM retrieval algorithm  were carried out with LAI inputs from different sources (viz., one 

from ECOCLIMAP (S6) and another case with MODIS (S8)) to compute the parameters of the simplified 

ATBD forest model (Kerr 2010) and (Kerr 2012) and to estimate how the SMOS algorithm performs at 

large scale over forests in different independent LAI data source. 

4.5.2.1.1 SCAN/SNOTEL nodes 

 
The SCAN/SNOTEL network includes several nodes in the US, in which multitemporal measurements of 

soil moisture and other environmental variables are available (Schaefer et al. 2007). The outputs of this 

network were successfully used in (Al Bitar et al. 2012) to compare ground measurements with SMOS 

retrieved SM values, mostly collected over agricultural fields. In this work, we have extended the analysis 

to forest nodes. As mentioned above, 33 SCAN/SNOTEL nodes, for which the ground measurements 
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were continuously available and with good accuracy, were selected, for each case of 80% (17 sites) and 

40% (16 Sites) forest fraction. Then, the averaging of the SMOS nodes surrounding the node (within 

buffer of 15 Km) were considered, and the retrieved soil moisture values were averaged. The averaging 

includes from 1 SMOS node up to 7 nodes, for each SCAN/SNOTEL node depending upon the 

availability of ground data. The filtering criteria for SMOS data was, RFI < 1%, retrieved SM > 0, Tau <= 

1.5 and Xswath ± 300. The considered time interval is from June 1, 2010 to May 31, 2012. By 

considering the multitemporal series, for each node we have compared the retrieved and the measured 

values of soil moisture. We have computed the RMS error, the bias and the correlation coefficient. For 

50% of nodes, the RMS error is lower than 0.1 and the correlation coefficient is higher than 0.7. Further 

investigations about nodes with worse performance were carried out, in order to evaluate whether the 

errors are mostly due to noise in SMOS data, or inaccuracies of ground measurements.  

 
As stated above, the testing was carried out by using LAI input, from each ECOCLIMAP (S6) and 

MODIS (S8) for the forward model. The statistical outputs (CC, RMSE and Bias) are shown in Table 4.1 

and Table 4.2 for 40% and 80% forest fraction (FFO), respectively. As can been noticed in both tables, 4.1 

and 4.2 in majority of the cases, the output of S6 was better compared to S8 under different Forest 

fractions on the standards of statistical parameters, however in some cases the RMSE is higher than 0.1. 
 

Table 4.1: Correlation coefficient (CC), Root Mean Square Error (RMSE) and Bias (BA) for different 

SCAN nodes with respect to SMOS nodes averaged over 15Km buffer (with 40% forest) fraction for S6 

and S8 algorithms. 

 

  S6 (FFO=40%) S8 (FFO=40%) 

SCAN Node Lon Lat CC RMSE BA CC RMSE BA 

2008 -76.67 35.806 0.8125 0.0829 0.0111 0.8405 0.0761 0.0132 

2016 -95.81 30.125 0.7114 0.0766 0.0622 0.6078 0.0714 0.0487 

1133 -109.3 42.8 0.6172 0.0903 -0.0546 0.3721 0.1354 -0.097 

969 -111.37 34.832 0.7295 0.1006 0.007 0.6363 0.1416 0.0099 

1082 -111.03 43.779 0.551 0.11 -0.071 0.528 0.11 -0.064 

387 -107.72 37.709 0.6055 0.1098 0.1031 0.5648 0.103 0.0892 

424 -111.92 44.466 0.7272 0.062 -0.025 0.696 0.077 -0.058 

493 -111.3 42.584 0.453 0.1 -0.001 0.333 0.108 -0.004 

522 -109.99 40.895 0.5842 0.0897 -0.0704 0.4454 0.1366 -0.1171 

707 -117.24 47.764 0.557 0.068 -0.022 0.605 0.066 -0.025 

770 -111.28 42.867 0.95 0.03 0.016 0.94 0.029 -0.01 

2053 -86.52 34.893 0.7316 0.0801 0.039 0.7237 0.0761 0.025 

2059 -86.96 34.908 0.8392 0.1003 0.1 0.8454 0.0952 0.0944 

2064 -88.67 33.639 0.8031 0.0664 -0.0329 0.8061 0.0693 -0.04 

2075 -86.61 34.985 0.6965 0.0482 -0.0077 0.7179 0.0524 -0.0263 

2090 -93.06 35.167 0.5693 0.0901 0.0497 0.5722 0.0782 0.0277 
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Table 4.2: Correlation coefficient (CC), Root Mean Square Error (RMSE) and Bias (BA) for different 

SCAN nodes with respect to SMOS nodes averaged over 15Km buffer (with 80% forest) fraction for S6 

and S8 algorithms. 

 

   S6 (FFO=80%) S8 (FFO=80%) 

SCAN Node Lon Lat CC RMSE BA CC RMSE BA 

312 -115.23 44.3 0.514 0.097 0.06 0.555 0.123 0.107 

515 -120.66 48.72 0.674 0.157 -0.128 0.502 0.184 -0.158 

577 -110.67 44.21 0.689 0.153 -0.004 0.646 0.14 -0.023 

599 -121.08 46.36 0.343 0.11 0.038 0.408 0.085 0.01 

623 -116.27 47.15 0.527 0.105 0.011 0.58 0.099 0.018 

734 -121.06 47.38 0.7 0.062 0.024 0.726 0.05 0.005 

747 -115.74 46.57 0.71 0.072 0.041 0.691 0.081 0.052 

821 -118.43 44.66 0.617 0.105 0.047 0.661 0.096 0.033 

2028 -76.67 40.67 0.374 0.095 0.001 0.302 0.126 0.007 

2036 -77.93 40.72 0.724 0.067 0.031 0.693 0.065 0.028 

2054 -86.1 34.87 0.838 0.091 -0.079 0.813 0.103 -0.08 

2058 -87.05 34.43 0.826 0.105 -0.063 0.91 0.101 -0.072 

2113 -86.8 34.19 0.701 0.073 -0.042 0.901 0.1 -0.071 

2114 -88.2 32.61 0.476 0.121 -0.037 0.416 0.127 -0.04 

2173 -87.99 34.82 0.737 0.063 -0.032 0.781 0.058 -0.036 

2179 -87.46 34.18 0.731 0.126 0.106 0.797 0.14 0.126 

1142 -115.87 46.47 0.811 0.08 0.066 0.754 0.086 0.067 

 
 

  
(a)       (b) 

 

Figure 4.9: Tailor Diagram of S6 and S8 Models for 80% (a) & 40% (b) Forest Cover 

 

The results of overall CC, RMSE and Standard Deviation for the cases of S6 and S8 over 80% FFO and 

40 % FFO are presented in the form of Taylor  diagrams in Figure 4.9 (a) and(b).  The figure shows that 

for both 80% and 40% forest cover cases, LAI input from ECOCLIMAP (S6) map is showing better 
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Correlation and lesser standard deviation with respect to the ground observation as compared with LAI 

input from MODIS into the model. Even the RMSE is lesser for S6 case than S8 for both forest cover. 

Details about the meaning and content of Taylor diagrams are given in Appendix B. 

 

To understand in detail the spatial distribution of error in terms of geographical locations the CC and 

RMSE was plotted for all the nodes for 80% and 40% forest cover of SM obtained from S6 model. The 

results are shown in Figure 4.10 (a) and (b). It was observed that the algorithm works better in the Eastern 

forest nodes (mostly deciduous forests over flat soil) rather than in the Western sites (mostly coniferous 

forests in areas with relief).  

 

  
 

(a) 

 

  
 

(b) 

 
Figure 4.10: Correlation coefficient and Root Mean Square Error S6 Model 

 

4.5.2.1.2 BERMS nodes 

 

Similarly to SCAN nodes, a comparison between S6 and S8 model outputs of SMOS SM was done using 

ground measurements of SM at two BERMS sites (OJP and OBS). At FEN site, SM trend measured on 
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the ground was very flat: For 0-100 Julian days, the range of SM values was 0.06-0.1 and between 101 to 

365 Julian days SM was close to 0.9. This site was not considered for the testing. H02, H75 and H95 were 

also not considered, since all these sites were very close to OJP site, which was falling almost at the 

center of SMOS grid DGG-Id-139040. For OBS site, averaging of two SMOS nodes (Dgg-Id-138014 & 

138526) were done, whereas for OJP site only one SMOS node (DGG-Id-139040) was considered. As 

mentioned above, that for OJP site, the SMOS node and ground site was almost overlapping each other. It 

was found that for both the sites the results of the models were very similar, with a small edge over for the 

S6 model as shown in the Tylor diagrams of Figure 4.11.  

 

Overall the results obtained at BERMS sites were better than SCAN/SNOTEL for both S6 and S8 

particularly for RMSE, but the dynamic range of SM values was narrow. 

 

 

  
(a)       (b) 

 
Figure 4.11: Taylor Diagram for S6 and S8 model SMOS retrieved SM vs BERMS ground observed SM 

at OJP (a) and OBS (b) sites. 

 

4.5.2.2 Node-to-site comparison results  

 
In this section a detailed node to site comparison over selected sites for 80% and 40% Forest Fraction 

(FFO), between SMOS and ground measurements was done. Three different cases of Xswath limit and 

RFI filtering were taken. 

 

 SMOS SM, node to site, Xswath< 300 km, RFI< 5% 

 SMOS SM, node to site, Xswath< 300 km, RFI< 10% 

 SMOS SM, node to site, no limitations on Xswath, RFI< 10% 

 

 

The analysis was carried out for both SCAN and BERMS sites. For SCAN/SNOTEL nodes there were 16 

sites for 40% FFO and 17 sites for 80% FFO sites for validation, whereas in case of BERMS,  good 

ground data was available only for two sites (OBS and OJP) (details about OBS and OJP is mentioned in 

section (4.4.2).  
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4.5.2.2.1 SCAN/SNOTEL nodes 

 
Case 1: SMOS SM, node to site, Xswath ± 300 km, RFI< 5% 

 

Table 4.3: CC, RMSE and Bias for the case 1 for 80% and 40% forest fraction 

 

40% 80% 

SMOS-DGG SCAN CC(C1) RMSE(C1) BA(C1) SMOS-DGG SCAN CC(C1) RMSE(C1) BA(C1) 

198946 387 0.23 0.12 -0.07 133834 515 0.95 0.05 0.02 

165631 424 0.4 0.13 0.1 168711 577 0.75 0.12 0.07 

173828 493 0.54 0.11 0.03 141510 599 0.08 0.15 -0.02 

182542 522 0.53 0.11 0.07 138439 734 0.45 0.12 -0.05 

144094 707 0.4 0.08 0.06 153302 821 0.63 0.16 -0.05 

172804 770 0.52 0.1 0.04 150758 747 0.54 0.06 -0.03 

202504 969 0.69 0.09 0.01 151782 1142 0.58 0.07 -0.005 

169733 1082 0.27 0.12 0.06 219620 2028 0.45 0.09 -0.01 

176401 1133 0.7 0.07 0.04 220124 2036 0.66 0.09 -0.03 

246141 2016 0.69 0.07 -0.04 242115 2054 0.6 0.11 0.02 

241088 2053 0.73 0.09 0.07 243647 2058 0.77 0.11 0.07 

240573 2059 0.71 0.09 -0.07 244160 2113 0.66 0.09 -0.01 

244149 2064 0.73 0.1 0.06 248760 2114 0.27 0.14 -0.03 

240575 2075 0.75 0.09 0.06 239541 2173 0.5 0.09 0.06 

          243133 2179 0.66 0.07 -0.01 

 

 
Table 4.3 shows the CC, RMSE and Bias were obtained for each site with respect to ground observation. 

In general it has been found that the correlation coefficient is better in case of 40% forest fraction 

compared to 80% forest fraction sites. The same pattern is observed with the RMSE and Bias.  
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Figure 4.12: Scatterplot of All the SMOS retrieved SM and SCAN node SM obtained from case 1 

 
Figure 4.12 shows the scatter plot of all the samples obtained from case 1 for both FFO. A general 

positive trend is observed, but with dispersion.  In few cases of SM retrieval from SMOS, the retrieved 

values are higher than measured ones.   

 

Case 2: SMOS SM, node to site, Xswath ± 300 km, RFI< 10% 

 

Table 4.4: CC, RMSE and Bias for the case 2 of 80 % and 40% forest fraction 

 

40% 80% 

SMOS-DGG SCAN CC(C2) RMSE(C2) BA(C2) SMOS-DGG SCAN CC(C2) RMSE(C2) BA(C2) 

198946 387 0.12 0.11 -0.06 133834 515 0.47 0.13 0.07 

165631 424 0.32 0.14 0.1 168711 577 0.71 0.13 0.08 

173828 493 0.4 0.13 0.04 141510 599 0.07 0.15 -0.01 

182542 522 0.56 0.11 0.07 138439 734 0.58 0.11 -0.06 

144094 707 0.19 0.12 0.06 153302 821 0.63 0.16 -0.05 

172804 770 0.4 0.11 0.05 150758 747 0.6 0.1 -0.06 

202504 969 0.69 0.09 0.01 151782 1142 0.6 0.08 -0.002 

169733 1082 0.06 0.15 0.08 219620 2028 0.45 0.09 -0.01 

176401 1133 0.7 0.08 0.05 220124 2036 0.66 0.09 -0.03 

246141 2016 0.69 0.07 -0.04 242115 2054 0.6 0.11 0.02 

241088 2053 0.73 0.09 0.07 243647 2058 0.77 0.11 0.07 

240573 2059 0.71 0.09 -0.07 244160 2113 0.66 0.09 -0.01 

244149 2064 0.73 0.1 0.06 248760 2114 0.27 0.14 -0.03 

240575 2075 0.74 0.09 0.06 239541 2173 0.5 0.09 0.07 

     
243133 2179 0.66 0.07 -0.01 
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In case 2, with the increase in the percentage of samples affected by RFI, there is an obvious increase in 

RMSE, BA and decrease in correlation with respect to ground observation. In some specific sites, the 

effect is more severe. A detailed study of those critical sites shows that the fluctuation in the values of TB 

is quite random and varies almost 100 K between horizontal and vertical polarization in a day. All these 

effects are attributed to the RFI issues. 

 

Case 3: SMOS SM, node to site, no limitations on Xswath, RFI< 10% 

 

Table 4.5: CC, RMSE and Bias for the case 3 for 80% and 40% forest fraction 

 

40% 80% 

SMOS-DGG SCAN CC(C3) RMSE(C3) BA(C3) SMOS-DGG SCAN CC(C3) RMSE(C3) BA(C3) 

198946 387 0.2 0.12 -0.07 133834 515 0.33 0.16 0.08 

165631 424 0.3 0.13 0.09 168711 577 0.26 0.37 0.05 

173828 493 0.33 0.13 0.04 141510 599 0.26 0.13 -0.001 

182542 522 0.49 0.13 0.07 138439 734 0.49 0.1 -0.04 

144094 707 0.36 0.1 0.05 153302 821 0.52 0.16 -0.01 

172804 770 0.36 0.12 0.04 150758 747 0.42 0.17 -0.07 

202504 969 0.63 0.09 0.01 151782 1142 0.5 0.09 0.005 

169733 1082 0.01 0.17 0.09 219620 2028 0.4 0.1 0.004 

176401 1133 0.63 0.09 0.06 220124 2036 0.51 0.11 -0.03 

246141 2016 0.55 0.09 -0.05 242115 2054 0.58 0.11 0.03 

241088 2053 0.65 0.1 0.07 243647 2058 0.75 0.13 0.09 

240573 2059 0.66 0.08 -0.05 244160 2113 0.63 0.1 0.01 

244149 2064 0.62 0.12 0.07 248760 2114 0.25 0.14 0.003 

240575 2075 0.7 0.1 0.06 239541 2173 0.21 0.13 0.09 

     
243133 2179 0.6 0.08 0.001 

 
For SMOS, SM retrieval error also depends on the part of the instrument field of view where the data 

were collected. For this reason, any representative overall error budget can only be given as an average 

over the SMOS swath. Study (Meirold-Mautner et al. 2009), has shown that the BA in SMOS retrieval 

depends on the distance of the grid points to the centre of the satellite track (Xswath). In case 3, the 

restriction of Xswath for filtering the data was removed. It was observed that gridpoints within ±300Km 

from the centre of the track shows smaller BA than grid points greater than ±300Km. Also there is 

degradation in the RMSE and CC due to Xswath effect. 

 

Notably the spread in the data diminishes when observing grid points closer to the track. A small distance 

to the track ensures a proximity to bore-sight which has been shown to have the smallest BA in TBs 

(Meirold-Mautner et al. 2009), 

 

Figure 4.13 shows a general comparison between case 1, case2 and case 3 regarding overall correlation 

coefficient, RMSE, Bias, and % of valid samples, obtained by simply dividing the overall number of valid 

samples by the overall numbers of samples with available ground truth. As expected, there is slight 

worsening from case 1 to case 2 and from case 2 to case 3, for both 40% forest cover and 80% forest 

cover. The percentage of valid samples however is significantly increased in case 3.  
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Figure 4.13: Bar charts showing CC, RMSE, BA and % of samples obtained for each case for 40 % FFO 

and 80 % FFO.  

4.5.2.2.2 BERMS nodes 

 
SMOS SM obtained from S6 model is compared with the SM observed at OBS and OJP at BERMS site. 

Similar to SCAN nodes, for BERMS also three cases were considered. The results are shown in Table 4.6. 

There is a good Correlation between the satellite measured SM and ground measured SM for both ground 

sites for case 1. Here, only the results of OBS are mentioned since for OBS site there is a small difference 

between three cases, but for OJP, the difference is huge.  Although this noticeable difference for OJP in 

case 2 and case 3 is mainly due to inclusion of 2-3 major outliers in the SMOS retrieved SM.  
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Table 4.6: CC, RMSE and Bias for three cases at OBS site. 

 

  Case 1 Case 2 Case 3 

BERM 

node 

CC RMSE BA CC RMSE BA CC RMSE BA 

OBS 0.6374 0.0706 0.0273 0.6884 0.0715 0.021 0.6514 0.0758 0.0336 

           

 

 
 

Figure 4.14: Scatterplot of all the SMOS retrieved SM vs BERMS Ground observed SM obtained from 

case 1. 

4.5.2.3 SMOS SM comparison with SM obtained from AMSR_E Data. 

 

In this section comparisons between SM derived from SMOS data and SM derived from AMSR-E 

products (NSDIC and VUA) are shown. SM derived from descending over pass data of AMSR-E was 

processed for the duration from June 1
st
 2010 till May 30

th
 2011. The analysis was carried out for SCAN/ 

SNOTEL sites only. Apart from 40% and 80% FFO nodes, few nodes with low vegetation (nominal 

class) were also taken as a reference. In total 31 sites were considered, viz., 15 nodes with 80% FFO, 14 

nodes with 40% FFO and 2 nodes of low vegetation classes.  

 

All the three SMOS datasets were filtered based on criteria adopted in case 2 of section 4.5.2.2 viz., RFI 

<=10% and Xswath ± 300Km.  

 

For AMSR-E products the following filtering conditions were applied: 

 

Successful retrieval and SM >=0 for VUA retrieval results; 

Successful retrieval and SM>=0 for NSIDC retrieval results. 
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Figure 4.15 (a), (b) and (c), shows the results of comparisons between SM data products and ground 

measurements as scatter plots for different forest fractions. Red (square), black (diamond) and blue (plus) 

symbols represents SM data of SMOS, VUA and NSIDC respectively. Figure 4.15 (a), (b) and (c) shows 

results for 40 % FFO, 80 % FFO and low vegetation class nodes respectively. As expected, the effect of 

vegetation thickness and frequency is quite visible on the performance of the three algorithms. The 

performance tends to worsen when the forest fraction increases and/or the frequency of the receiving 

channels increases. The results indicates that, in all the three cases, SM derived from SMOS data is better 

correlated with the ground data as compared with UVA or NSDIC outputs. Improvement in correlation 

for UVA and NSIDC with respect to ground observations is noticed as we move towards low vegetation 

conditions (viz., 40 % FFO and low vegetation class). For forest pixels, a high dispersion of SM values 

retrieved by LPRM is observed. Soil moistures retrieved by the AMSR-E L2b algorithm (X band) show a 

very low dynamic range, when compared to variations of measured SM.  

 

Another study was done to see the total number of successful SM retrievals, before and after applying the 

filters on SMOS and UVA data. This was useful to understand the total available data and amount of data 

discarded due to problem of RFI and Xswath (in case of SMOS) and unsuccessful retrieval and SM <=0 

(in case of UVA). Since the results of NSIDC data (as seen from figure 4.15 (a), (b) and (c)) were not so 

good, therefore for this analysis, it was not considered. In most of the cases of both 40 % and 80 % FFO 

along with low vegetation classes, the number of retrievals for UVA is higher as compared to SMOS. 

SMOS data and UVA data, were picked up for the same duration (same Julian days) for calculating 

statistical parameters. 

 

 

 
(a) 
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(b) 

 

 
(c) 

 

Figure 4.15: Comparison of Soil Moisture Retrieved from different algorithms vs. SCAN/SNOTEL 

Ground Observation over different forest land covers (40% forest (a), 80% forest (b) and low vegetation 

(c)). Results are given in form of a global scatterplot, including all nodes considered in tables 4.3 (40 and 

80 % FFO and two nodes of low vegetation. 

 
The percentages of available samples (total available samples and successful retrieved sample) are higher 

in case of UVA, whereas for SMOS the percentage is lower, Table 4.7 and 4.8 summarize the results. 
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Table 4.7: Correlation coefficient (CC) and Root Mean Square Error (RMSE) for each node of SMOS 

node under different forest fractions covered area with respect to the ground observed SM. 

 

40% 

SCAN GD SMOS (Total) SMOS (After Filter) % of Samples CC RMSE BA 

387 350 124 40 32.25806 0.12 0.11 -0.06 

424 262 147 55 37.41497 0.32 0.14 0.1 

493 365 143 50 34.96503 0.4 0.13 0.04 

522 365 134 46 34.32836 0.56 0.11 0.07 

707 362 202 74 36.63366 0.19 0.12 0.06 

770 365 144 49 34.02778 0.4 0.11 0.05 

969 365 177 67 37.85311 0.69 0.09 0.01 

1082 363 140 48 34.28571 0.06 0.15 0.08 

1133 365 126 38 30.15873 0.7 0.08 0.05 

2016 350 211 47 22.27488 0.69 0.07 -0.04 

2053 334 217 84 38.70968 0.73 0.09 0.07 

2059 312 216 48 22.22222 0.71 0.09 -0.07 

2064 338 215 81 37.67442 0.73 0.1 0.06 

2075 336 220 84 38.18182 0.74 0.09 0.06 

80% 

SCAN GD SMOS (Total) SMOS (After Filter) % of Samples CC RMSE BA 

515 365 137 45 32.84672 0.47 0.13 0.07 

577 365 140 48 34.28571 0.71 0.13 0.08 

599 365 138 50 36.23188 0.07 0.15 -0.01 

734 365 138 48 34.78261 0.58 0.11 -0.06 

821 296 142 27 19.01408 0.63 0.16 -0.05 

747 365 171 59 34.50292 0.6 0.1 -0.06 

1142 365 150 50 33.33333 0.6 0.08 
-

0.002 

2028 365 199 86 43.21608 0.45 0.09 -0.01 

2036 338 191 68 35.60209 0.66 0.09 -0.03 

2054 338 211 84 39.81043 0.6 0.11 0.02 

2058 337 218 82 37.61468 0.77 0.11 0.07 

2113 311 219 76 34.7032 0.66 0.09 -0.01 

2114 165 217 42 19.35484 0.27 0.14 -0.03 

2173 279 216 68 31.48148 0.5 0.09 0.07 

2179 335 215 86 40 0.66 0.07 -0.01 

Low-Vegetation 

SCAN GD SMOS (Total) SMOS (After Filter) % of Samples CC RMSE BA 

2018 365 209 41 19.61722 0.6 0.06 0.03 

2160 365 141 37 26.24113 0.6 0.09 0.05 
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Table 4.8: Correlation coefficient (CC) and Root Mean Square Error (RMSE) for each node of LPRM 

node under different forest fractions covered area with respect to the ground observed SM. 

 

40% 

SCAN GD LPRM (Total) LPRM (After filter) % of Samples CC RMSE BA 

387 350 347 139 40.05764 -0.3188 0.5157 -0.4313 

424 262 347 165 47.55043 0.349 0.1056 -0.0737 

493 365 347 171 49.27954 0.38889 0.2007 -0.1481 

522 365 347 167 48.1268 0.0709 0.1445 0.0946 

707 362 347 8 2.305476 -0.0228 0.2392 0.275 

770 365 347 165 47.55043 0.2359 0.1437 -0.0893 

969 365 347 161 46.39769 0.3006 0.2052 0.1751 

1082 363 347 171 49.27954 -0.3076 0.236 -0.1608 

1133 365 347 195 56.19597 0.0597 0.1631 0.1215 

2016 350 347 237 68.29971 0.1493 0.0921 -0.0367 

2053 334 347 194 55.90778 0.6577 0.1621 0.1441 

2059 312 347 208 59.94236 0.4583 0.1033 -0.0267 

2064 338 347 237 68.29971 0.6238 0.237 -0.1993 

2075 336 347 194 55.90778 0.6938 0.1581 0.1406 

80% 

SCAN GD LPRM (Total) LPRM (After filter) % of Samples CC RMSE BA 

515 365 347 174 50.14409 -0.2093 0.6943 -0.6532 

577 365 347 150 43.22767 -0.2514 0.3769 -0.3318 

599 365 347 241 69.45245 0.0236 0.2231 -0.1079 

734 365 347 226 65.12968 -0.0395 0.3977 -0.282 

821 296 347 210 60.51873 0.0548 0.3773 -0.2743 

747 365 347 252 72.62248 -0.1626 0.7526 -0.7199 

1142 365 347 254 73.19885 -0.2935 0.6382 -0.582 

2028 365 347 88 25.36023 0.2407 0.1895 0.1804 

2036 338 347 242 69.74063 0.5776 0.3124 -0.1819 

2054 338 347 233 67.14697 0.5565 0.2769 -0.1922 

2058 337 347 223 64.26513 0.5166 0.1298 0.087 

2113 311 347 216 62.24784 0.5632 0.0865 0.0256 

2114 165 347 152 43.80403 -0.2354 0.2513 0.2332 

2173 279 347 257 74.0634 0.7027 0.2893 -0.2629 

2179 335 347 224 64.55331 0.5434 0.1642 -0.1201 

Low-Vegetation 

SCAN GD LPRM (Total) LPRM (After filter) % of Samples CC RMSE BA 

2018 365 365 244 66.84932 0.65 0.06 0.05 

2160 365 365 176 48.21918 0.74 0.14 0.11 
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4.6 Conclusion 

Results obtained using the prototype SMOS L2 algorithm have been described. Two algorithms were 

tested, one with the input of LAI from ECOCLIMAP (S6) and the other from MODIS (S8). S6 algorithm 

was found to work slightly better with respect to S8 algorithm in more than 80% of the total samples 

selected for the tests at SCANS (US) and BERMS (Canada). For 50% of nodes, the RMS error is lower 

than 0.09 and the correlation coefficient is higher than 0.7. It was observed that the algorithm works better 

in the Eastern forest nodes (mostly deciduous forests over flat soil) rather than in the Western sites 

(mostly coniferous forests in areas with relief) over the forests in US. However the interpretation of this 

result needs further investigations. 

 

The optical depth map obtained from SMOS data processing are compared with optical depth map 

provided by LPRM (VUA). Differences are important, since SMOS is mostly sensitive to forest cover, 

while AMSR-E is also influenced by low vegetation.  

 

The global map of optical depth has been compared with the tree height using LIDAR data shows a clear 

increasing trend, indicating an appreciable correspondence between the two variables.  

 

Finally the results of SM obtained from SMOS are compared with LPRM and NDICS SM. The 

performance of LPRM algorithm (C and X band) is inferior with respect to SMOS one (L band) over 

most of the pixels. The worsening however is moderate over low vegetation, and becomes strong when 

the forest fraction increases. For forest pixels, a high dispersion of SM values retrieved by LPRM is 

observed. Soil moistures retrieved by the AMSR-E L2b algorithm (X band) show a very low dynamic 

range, when compared to variations of measured SM. This problem is observed for all forest fractions. 
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Appendix A 
 

Radiative Transfer Equation (RTE) 

The specific intensity of radiation is the energy flux per unit time, unit frequency, unit solid angle and unit 

area normal to the direction of propagation. 

 

The radiative transfer equation states that the specific intensity of radiation I during its propagation in a 

medium is subject to losses due to extinction and to gains due to emission: 

 

 . .
x

dI
I j

d


       (A.1) 

 

Where,  x is the co-ordinate along the optical path,  is the extinction coefficient, ρ is the mass density 

j is the emission coefficient per unit mass. First to understand the simple case of the radiative transfer 

equation where there is no scattering effect, local thermodynamic equilibrium and the medium is 

homogeneous. In general, the extinction coefficient  includes both the absorption coefficient  and 

the scattering coefficient s , of both the gas and the aerosols present in the gas: 

 

 
gas gas aerosol aerosols s           (A.2) 

 

In case of of a pure gas atmosphere with no-scattering a simple expression is obtained: 

 

 
gas

       (A.3) 

 

In absence of scattering and for local thermodynamic equilibrium (LTE), the source function is equal to : 

 

 . ( )j B T     (A.4) 

 

where  is the absorption coefficient (equal to the emission coefficient for the Kirchhoff's law) and 

( )B T  is the Plank function at frequency σ and temperature T. 

 

So, for an atmosphere with no scattering and in LTE the radiative transfer equation is reduced to: 

 

 . . ( )
dI

I B T
dx


        (A.5) 

 

Losses and gains must obey the second law of thermodynamics. For any term that introduces a loss there 

must be a term that introduces a gain. In the propagating beam a change of intensity is caused by the 

difference between the intensity of the source I that is being attenuated and the intensity of the local 
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source ( )B T . An analytical integral expression of the differential equation of radiative transfer can be 

obtained for a homogeneous medium. 

 

The differential equation is at point x and we want to obtain the integral from x1 and x2 . 

 

 
 

This can be formally obtained by multiplying both terms of the differential equation by (i.e. the 

attenuation from x1 to x 
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 (A.6) 

 

An expression is obtained that can be integrated from x1 to x2. 
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 (A.7) 

 

In the integral expression of radiative transfer 

 

 2 1 2 1( ) ( )

2 1( ) ( ). ( ).(1 )
x x x x

I x I x e B T e  

  

   
    (A.8) 

 

the first term is the Lambert-Beer law which gives the attenuation of the external source and the second 

term gives the emission of the local source.  

 

The modelling of radiative transfer is made more complicated by, scattering, non-LTE and variable 

medium. In presence of scattering (2.27) becomes s      and the differential equation equals to  

 

 . . . ( ) .
dI

I s I B T s J
dx


              (A.9) 

 

Where, .s I  is the loss and .s J  is the gain due to scattering and the and the solution over an 

homogeneous path from x1 to x2 is equal to: 

 

 2 1 2 1( ).( ) ( ).( )

2 1

. ( ) .
( ) ( ). .(1 )

( )

s x x s x xB T s J
I x I x e e

s
       

 

 





     
  


 (A.10) 

 

Radiative transfer is an exchange of energy between the radiation field and the energy levels of molecules 

and atoms (which are defined by the Boltzman temperature). We are in local thermodynamic equilibrium 
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(LTE) when the Boltzman temperature is in equilibrium with the kinetic temperature. Of course LTE does 

not imply a complete equilibrium that includes the radiation field. When an equilibrium exists between 

the radiation field and the local black-body emission no energy exchange and no radiative transfer occur. 

The Boltzman temperature is controlled by chemical reaction, radiation absorption and thermal collisions. 

When the collisions are not frequent enough the Boltzman temperature can be different from the kinetic 

temperature and we are in non-LTE conditions. When in non-LTE conditions we must consider the 

different components of the medium and define for each of them their individual temperature T(i) and 

absorption coefficient ασ (i). In the case of non-LTE conditions, the differential equation of radiative 

transfer equation is : 
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 (A.11) 

When the optical and physical properties of the medium are not constant along the optical path, the 

absorption coefficient ασ (x) and the local temperature T(x) depend on the variable of integration x. In 

general, for a non-homogeneous medium the differential equation cannot be analytically integrated. The 

general integrated radiative transfer equation for non-homogeneous medium is 
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 (A.12) 

  

( )I L is the spectral intensity observed at L, 
(0, )L

e  is the transmittance between 0 and L. 

(0, )
(0)

L
I e 




represents the absorption term and 

(0, )
( , )

0
( ( ))

L
x L

B T x e d







 


 represents the emission 

component. 
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Appendix B 
 

Taylor Diagrams 

 

Taylor diagrams (Taylor 2001) provide a way of graphically summarizing how closely a pattern (or a set 

of patterns) matches observations. The similarity between two patterns is quantified in terms of their 

correlation, their centered root-mean-square difference and the amplitude of their variations (represented 

by their standard deviations). These diagrams are especially useful in evaluating multiple aspects of 

complex models or in gauging the relative skill of many different models. 

 

Figure 48 is a sample Taylor diagram which shows how it can be used to summarize the relative skill with 

which several global climate models simulate the spatial pattern of annual mean precipitation. Statistics 

for eight models were computed, and a letter was assigned to each model considered. The position of each 

letter appearing on the plot quantifies how closely that model's simulated precipitation pattern matches 

observations. Consider model F, for example. Its pattern correlate on with observations is about 0.65. The 

centered root-mean-square (RMS) difference between the simulated and observed patterns is proportional 

to the distance to the point on the x-axis identified as "observed." The green contours indicate the RMS 

values and it can be seen that in the case of model F the centered RMS error is about 2.6 mm/day. The 

standard deviation of the simulated pattern is proportional to the radial distance from the origin. For 

model F the standard deviation of the simulated field (about 3.3 mm/day) is clearly greater than the 

observed standard deviation which is indicated by the dashed arc at the observed value of 2.9 mm/day. 

 

 
Figure 48: Sample Taylor diagram displaying a statistical comparison with observations of eight model 

estimates of the global pattern of annual mean precipitation. 

 

The relative merits of various models can be inferred from Figure 48. Simulated patterns that agree well 

with observations will lie nearest the point marked "observed" on the x-axis. These models will have 
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relatively high correlation and low RMS errors. Models lying on the dashed arc will have the correct 

standard deviation (which indicates that the pattern variations are of the right amplitude). In Figure 48, it 

can be seen that models A and C generally agree best with observations, each with about the same RMS 

error. Model A, however, has a slightly higher correlation with observations and has the same standard 

deviation as the observed, whereas model C has too little spatial variability (with a standard deviation of 

2.3 mm/day compared to the observed value of 2.9 mm/day). Of the poorer performing models, model E 

has a low pattern correlation, while model D has variations that are much larger than observed, in both 

cases resulting in a relatively large (~3 mm/day) centered RMS error in the precipitation fields. Note also 

that although models D and B have about the same correlation with observations, model B simulates the 

amplitude of the variations (i.e., the standard deviation) much better than model D, and this results in a 

smaller RMS error. 

 

In summary, the Taylor diagram characterizes the statistical relationship between two fields, a "test" field 

(often representing a field simulated by a model) and a "reference" field (usually representing “truth”, 

based on observations). Note that the means of the fields are subtracted out before computing their 

second-order statistics, so the diagram does not provide information about overall biases, but solely 

characterizes the centered pattern error. 
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