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Introduction

The world population of 7.2 billion is projected to increase by almost one billion people
within the next twelve years, reaching 8.1 billion in 2025 and 9.6 billion in 2050 [1]. It has
been foreseen that most of the population growth will occur in developing countries, while
elsewhere no significant changes will be expected. Social, economic and environmental con-
ditions are leading population to worldwide emigration, thus causing dramatic expansions
of cities, and severe damages to the natural ecosystem due to the consumption of natural
resources, disordered changes in land uses, worsening air and water quality.
In such a scenario, the authorities are urgently called to face new challenges in the urban
planning and organization, and in resources management. Therefore, it is of vital impor-
tance the availability of suitable tools to monitor the urbanization process and get reliable
information in populated areas, in order to contribute positively to the urban organization
and strategic decision making, as well as to timely act when the quality of the environment
is in danger. Knowledge about urban dynamics are usually derived from field surveys, aerial
pictures or national censuses, which are costly and time consuming techniques, consequently
leading to delays in maps updates and to lacking of detailed information. Alternatively,
one of the best source of information related to the land cover and land uses changes in
time is represented by the remote sensing, which allow to periodically collect images over
wide areas. However, because of their large spatial and spectral variability, mapping human
settlements is still one of the most challenging remote sensing task.

Observation in the optical band is broadly used to monitor land cover and its changes.
Thanks to the recent launch of satellite equipped with multi-spectral and hyper-spectral
sensors (e.g. WorldView-2, PROBA CHRIS, PRISMA), a significant improvement in dis-
criminating between spectrally similar surfaces is expected, whereas the high and very high
spatial resolution characterizing the acquired images allows to identify small-scale objects.
However, unpredictable long periods of anomalous cloud cover or thick fog hinder regular
use of optical images. Moreover, in case of emergency, the availability of images indicating
the changes undergone by natural surfaces or man-made structures at the earliest conve-
nience is vital, independently of sky conditions and illumination. As a consequence, to
meet the requirements of promptness, timeliness and reliability, use of synthetic aperture
radar (SAR) must be considered.

A crucial step forward in Earth observation has been allowed by the recent (2011)
availability of SARs on the COSMO-SkyMed (CSK) satellite constellation, operated by the
Italian Space Agency (ASI). In fact, the four CSK X-band SAR sensors now in orbit are able
to provide images not only at 1 m spatial resolution, but also with a very short revisit time,
presently down to 12 hours, irrespective of cloud cover and light conditions. To fully profit
from the unique capabilities of the CSK observing system, adequate exploitation of the
information contained by the metric-resolution multi-temporal SAR images is necessary. In
particular, the large amount of data calls for the urgent development of suitable automatic
techniques to manage in near-real time the information on land cover and its changes which
are provided by the SAR observations.

The purpose of this work is to give a substantial contribution to the development of

vii



viii CONTENTS

fast, automatic and accurate algorithms performing the characterization of a sub-urban en-
vironment, through the land cover classification, buildings identification and the detection
of changes, by using VHR SAR X-band images provided by the COSMO-SkyMed constel-
lation. Basically, the features extraction has been carried out through both pixels-based
techniques characterized by a supervised approach, and object-based methods, performed
by unsupervised algorithms.

The thesis is divided into six parts:

Part I: The satellite system
After a general overview on SAR system and data, with a focus on the newest VHR
SAR sensors (Chapter 1), the novelties introduced by the COSMO-SkyMed mission
are described in Chapter 2.

Part II: Algorithms and methodologies
The different approaches adopted for each application are firstly described. Secondly,
each algorithm and methodology, which has been implemented and opportunely tai-
lored in order to perform the features extraction, is discussed in the following chapters.
In particular, the Multi Layer Perceptron Neural Network (MLP-NN) exploited for
the pixel-based classification is discussed in Chapter 3. Then, Chapter 4 is dedicated
to the unsupervised Pulse Coupled Neural Network (PCNN), implemented for the
building detection task. Finally, a common methodology aiming at the extraction of
texture information, that is the computation of the Gray Level Co-occurrence Matrix
(GLCM), is presented in Chapter 5

Part III: Dataset
The test sites are described in Chapter 6. Subsequently, the list of exploited COSMO-
SkyMed images is provided in Chapter 7, together with the characteristics of the data.
The same information is given in Chapter 8 for the Multispectral WorldView-2 and
Quickbird images, which have been mainly used as a ground truth reference, or have
been jointly exploited with the SAR acquisitions in data fusion experiments.

Part IV: Supervised approach: pixel-based classification
A supervised pixel-based approach has been adopted to perform the land cover clas-
sification of VHR COSMO-SkyMed images. In order to define a minimum number
of classes to be discriminated by exploiting single polarized data, several pixels have
been collected over different surfaces. The correspondent backscattering behaviors are
statistically analyzed in Chapter 9. Then the classification exercise is presented in
Chapter 10, where four different sets of input features are tested. Finally, in Chapter
11 the joint use of VHR SAR and optical data is investigated, aiming at the enhance-
ment of the classification of vegetated areas.

Part V: Unsupervised approach: object-based features extraction
The object based approach has been performed by an unsupervised Pulse Coupled
Neural Network based algorithm, which has been implemented to quickly identify
buildings in suburban environments imaged by COSMO-SkyMed SAR sensors. The
description of the developed technique, as well as the attained results, are presented
in Chapter 12.
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Part VI: Change detection
The pixel-based and the object-based approaches have been combined in a novel
change detection algorithm. The technique and the achieved results are shown in
Chapter 13.





Part I

The Satellite System
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Introduction

Synthetic Aperture Radar (SAR) systems have been widely used in many remote sensing
applications for more than thirty years. The discovery and developments of SAR systems
in the 50s and 60s were dominated by military research and use for survey purposes and
man-made target detection. Successively, in the 70s and 80s several airborne systems were
developed for civilian applications.
The first civilian SAR satellite was mounted on Seasat, which was launched in 1978. Since
that moment, a huge step forward has been done in terms of used technology, image qual-
ity, spatial and temporal resolution. While formerly SAR images were mainly interesting
from the science and engineering point of view, the last years have marked an important
transition in the application of SAR. Today the public awareness of the usefulness of radar
remote sensing beyond science is much higher, so that, thanks to their unique imaging capa-
bility, which is independent from daylight, cloud coverage and weather conditions [2], SAR
satellites are meant to perform disaster monitoring, mitigation and damage assessment.

Nowadays more than fifteen spaceborne SAR sensors are being operated; among them,
the recent TerraSAR-X, TanDEM-X, the COSMO-SkyMed constellation and Radarsat-
2 belong to the new generation of SAR satellites, providing very high spatial resolution
imagery. But the research keeps going on, and the launch of more than ten new improved
SAR systems is foreseen within the next five years.

In the following chapters a summary of the SAR principles (§1.1) and SAR images char-
acteristics (§1.2) will be provided. Furthermore, notions about SAR image pre-processing
will be reminded in §1.3 . A general overview about the most recent SAR satellite sys-
tems, which are able to acquire very high resolution imagery, will be addressed in the §1.4.
Finally, a more detailed description of the COSMO-SkyMed mission, and of the second
generation of COSMO-SkyMed (CSG), will be provided in Chapter 2.
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Chapter 1

Fundamentals

A radar (radio detection and ranging) system is an active instrument, which transmits
electromagnetic pulses in the microwave frequencies, and receives the echoes of the scattered
signal in a sequential way. The signal interacts with the Earth surface, and only a portion
of the transmitted power is scattered to the receiving antenna, which can be the same as the
transmitter (monostatic systems), or different (bi- or multistatic systems). In the following,
only monostatic systems will be taken into account, so that the received scattering will be
named backscattering. The amplitude and phase of the backscattered signal depend on the
characteristics of the target, in terms of physical attributes, such as geometry or roughness,
and electromagnetic properties (i.e. permittivity).
An isotropic radiator emits energy, which propagates uniformly in all directions. The non-
directional power density SN at the imaged object located at a distance r from the antenna,
is given by:

SN =
PT

4 · π · r2
(1.1)

where PT is the transmitted power. Radar antennas are normally directional, aiming
at the increase of the power density in the direction of a small beam. Such augment is
represented by the so called antenna gain G:

G =
4 · π ·AA ·Ka

λ2
(1.2)

where AA represents the geometric antenna area, Ka the efficiency of the antenna, and
λ the wavelength of the electromagnetic signal. The directional power density SD at the
target is obtained by:

SD = SN ·G (1.3)

The power backscattered (PR) by the target towards the receiver is a function of both
the power density at the target itself, and the so called Radar Cross Section(RCS) σ:

PR = SD · σ (1.4)

being σ defined as:

σ = 4 · π · r2 · PR
PI

(1.5)

where PI indicates the incidence power. According with the hypothesis of a monostatic
radar, and assuming an equal antenna gain for the receiving and transmitting systems, the
power received at the sensor can be expressed as:

5



6 CHAPTER 1. FUNDAMENTALS

Figure 1.1. SAR imaging geometry.

PE =
PR ·AA ·Ka

4 · π · r2 · L
=
PT ·G2 · λ2 · σ
(4 · π)3 · r4 · L

(1.6)

with L representing a measure for the system losses. The 1.6, which expresses the
mutual relationship between transmitted power (PT ), power backscattered by the target
(PR), and power received by the antenna (PE), is known as radar equation[2].

Both radar and synthetic aperture radar systems have a side looking imaging geometry.
The simplest radar instrument provides a 2-D reflectivity map of the imaged area: high
backscattered signal are identified as bright spots in the radar images, while flat smooth
surfaces as dark areas. The flight direction is known as azimuth and the line-of-sight as
slant range direction. Until the 50s imaging radars, denoted as SLAR (side-looking airborne
radar), could provide from low up to moderate azimuth resolution, due to their specific
operation mode. The azimuth resolution, given by:

δa =
λ

da
· r (1.7)

is the minimum distance between two points targets that can be detected by the radar.
It depends on the signal wavelength λ, on the range distance r from the antenna to the
targets, and it is inversely proportional to the dimension of the antenna da. It means that,
in order to achieve high azimuth resolution, large antennas have to be used for satellite
systems, where the distance to the Earth surface is very large. Such a characteristic of
the SLAR systems has been its main drawback, which led to the development of modern
techniques on which the Synthetic Aperture Radar (SAR) is based.

1.1 Synthetic Aperture Radar (SAR)

A Synthetic Aperture Radar (SAR) is an imaging radar mounted on a moving platform.
Similar to a conventional radar, electromagnetic waves are sequentially transmitted and the
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backscattered echoes are recorded by the radar antenna. Basically, by taking advantage of
the Doppler history of the radar echoes generated by the forward motion of the spacecraft,
the SAR synthesizes a large antenna, which allows high azimuth resolution in the resulting
image.
Fig.1.1 depicts the typical SAR geometry: the platform moves along the azimuth (or along
track)direction; the slant range is the direction perpendicular to the flight path of the radar;
the swath width gives the ground-range extent of the imaged scene, while the length depends
on the time interval in which the radar is turned on.
Given two targets in the same azimuth resolution cell, they can be detected only if their
distance in range direction is larger than the spatial extent of a single electromagnetic
pulse, preventing the overlapping of the echoes from the objects. Basically, the slant range
resolution is limited by the bandwidth (Br) of the transmitted signal :

δr =
c0

2 ·Br
(1.8)

with c0 denoting the speed of light. A wide bandwidth can be achieved by a short
duration pulse. However, the shorter the pulse, the lower the transmitted energy and the
poorer the radiometric resolution. A proper signal processing is typically applied in order
to preserve the radiometric resolution and to optimize the range resolution.
On the other hand, the azimuth resolution δa is provided by the construction of the synthetic
aperture, which is the path length during which the radar receives echo signals from a point
target. The beamwidth of an antenna with dimension da can be approximated by:

Θa =
λ

da
(1.9)

The corresponding synthetic aperture length is (Fig.1.1):

Lsa = Θa · r0 = λ · r0
da

(1.10)

The virtual beamwidth can be expressed as:

Θsa =
λ

2 · Lsa
(1.11)

Hence the azimuth resolution results:

δa = r0 ·Θsa = r0
λ

2 · Lsa
=
da
2

(1.12)

The above equation suggests that a short antenna yields a fine azimuth resolution.
The received echo signal data form a bi-dimensional matrix of complex samples, expressed
through a real and an imaginary part, hence representing an amplitude and a phase value.

Differently from optical images, raw SAR data do not give any useful information on
the scene. The SAR images is obtained only after signal processing (focusing), which in
principle consists of two separate matched filter operations along the range and azimuth
dimensions. The transmitted chirp signals are firstly compressed to a short pulse. Each
range line is multiplied in the frequency domain by the complex conjugate of the spectrum
of the transmitted chirp. The resulting range compressed image gives information about
the relative distance between the antenna and the targets. In the same way, the azimuth
compression is carried out by a convolution of the signal with its reference function, that
is the complex conjugate of the response expected from a point on the ground. While the
range reference function is dependent only on the transmitted chirp waveform, the azimuth
one depends on the geometry and is adapted to the range. After the azimuth compression,
the energy backscattered by a single resolution cell on the ground is compressed in one pixel.
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During focusing, the aforementioned steps are executed on the whole image, to obtain a
complex image (Single Look Complex) where amplitude is related to the radar reflectivity,
and phase to the acquisition geometry and on the ground topography.
However, SAR images are most typically displayed in terms of intensity values, where each
pixel provides information about the reflectivity of a target on the Earth surface. In order
to generate such kind of product, two further processing steps are necessary: calibration
and geocoding. These issues will be addressed in the following §1.3.

1.2 Characteristics of SAR images

Scattering mechanisms

SAR images appear in gray scale tones, where dark and bright pixels represent low and
high backscatter, respectively. In the latter case, a large percentage of energy is detected
by the antenna, while dark features mean a very little amount of backscattered energy
from the target. At a particular wavelength, the backscatter depends on the geometry of
the scatterers within the target area, on their electrical properties and moisture content.
However, the backscattering behavior of an object varies also with the wavelength and
polarization of the SAR signal, and with the observation angle of the system.

The scattering of microwaves from a surface (surface scattering mechanism) is composed
by a mix of specular and Lambertian scattering, depending on the roughness σs with respect
to the wavelength [3]. Theoretically, an infinite large and perfectly smooth surface, with
σs << λ, reflects all the energy in the specular direction. As a result, a flat surface is
represented by a dark area in the SAR image. As much as the roughness increases with
respect to the wavelength, as weaker are the specular components of the scattered energy,
and stronger the Lambertian ones. A rough surface is hence represented by a bright area
in the SAR image.

The backscattering is also a function of the relative dielectric constant εr characterizing
the target material. The lower is εr, the lower is the reflectivity property of the material, and
thus the higher is the penetration of the electromagnetic signal into the medium. Moreover,
depending on the frequency and polarization, waves can penetrate into the vegetation and,
on dry conditions, to some extent, into the soil (for instance dry snow or sand). Generally,
the longer the wavelength, the stronger is the penetration into the target. With respect to
the polarization, cross-polarized (VH/HV) acquisitions have a significant less penetration
effect than co-polarized (HH/VV) ones.

In principle, all the real media (e.g. soil, snow, vegetation) are made of multiple particles
which contribute to the backscattering through a so called volumetric scattering mechanism.

Surfaces inclined towards the antenna will have a stronger backscatter than surfaces
which slope away from the radar, and will tend to appear brighter in a radar image. A
particular scattering mechanism occurs when two surfaces (e.g. streets and buildings in an
urban environment, or soil and trunks in a vegetated area) are lined up in such a way that
the incoming radar pulses are able to bounce off the first surface (e.g. street) and then
bounce again off the second one (e.g. building) and directly back towards the antenna.
Such mechanism, called double bounce, generates very bright features in the SAR images.

Geometric distortions

Since SAR measures the projection of a 3-D scene on the slant-range and azimuth coordi-
nates, the resulting images are typically affected by geometrical distortions. Examples of
such effects are shown in Fig.1.2 e described below.
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Foreshortening. It is a dominant effect in SAR images of mountainous areas. Espe-
cially in the case of steep-looking spaceborne sensors, the projection along the slant-range
direction of two points A and B located on the slope oriented toward the antenna, is shorter
than they would be in flat areas (Fig.1.2(a)). This effect results in a slant-range compression
of the radiometric information backscattered from foreslope areas which results brighter in
the SAR image. Foreshortening effects may be compensated during the geocoding process
(see §1.3) if a terrain model is available.

Layover. If a slope is steeper than the radar beam, targets in the valley have a larger
slant range than related mountain tops, then the foreslope results reversed in the slant
range image. It means that the ordering of surface elements on the radar image is the
reverse of the ordering on the ground. As an example, in Fig.1.2(b) the signal propagating
from the top of the mountain (point C) towards the antenna, is detected before the scat-
tering from the bottom (point B). Generally, these layover zones, facing radar illumination,
appear as bright features on the image, including the backscattering from targets hit in the
valley, in the foreland of the mountain and in part of the backslope, as shown in Fig.1.2(b).
Geocoding (see §1.3) can not resolve the ambiguities due to the representation of several
points on the ground by one single point on the image.

Shadow. When surfaces are turned away from the sensor with an angle that is steeper
than the SAR illumination, they result occluded from the radar beam and no backscattering
is recorded at the sensor (Fig.1.2(c)). SAR shadows appear as dark areas, where fluctuations
from the zero signal are mainly due to system noise, sidelobes, and other effects normally
of small importance. It has to be observed that the shadows of two objects of the same
height are longer in the far range than in the near range.

(a) (b)

(c)

Figure 1.2. Geometric distortions in SAR imagery: a) Foreshortening; b) Layover; c) Shadow.
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Speckle noise

The presence of multiple scatterers randomly distributed within a resolution cell causes the
typical speckle effect, which gives a granular appearance to the SAR images. It is due to
the constructive and destructive interference of the coherent SAR pulse by each elemental
target. Such effect is particularly evident in those areas where the SAR wavelength is
comparable to the surface roughness. The coherent sum of amplitudes and phases of the
scattered waves results in strong fluctuations of the backscattering from resolution cell to
resolution cell; therefore, the intensity and phase in the image are no longer deterministic,
but follow an exponential and uniform distribution, respectively [2]. The total complex
value measured at the sensor is given by:

Φ =
∑
i

√
σi · exp(iφscatti )) · exp

(
−i4π

λ
r0,i

)
(1.13)

where i is the number of scatterer belonging to the same resolution cell. In Fig.1.3,
two examples of constructive and destructive interference are shown. While the former is
associated with brighter pixels, the latter occurs in darker pixels. Although it is common to
refer to the speckle as to a noise effect, indeed it is a physical measurement of the resolution
cell structure at sub-resolution level. Moreover, having a multiplicative behavior, it is not
possible to reduce it by increasing the transmit signal power. In fact, its variance increases
with its intensity. A considerably amount of studies have been carried out with the purpose
of characterize and reduce the speckle phenomenon [4], [5]. Some notions about despeckling
processes will be given in §1.3.

Figure 1.3. Examples of constructive and destructive speckle.

1.3 SAR image pre-processing

In order to make SAR imagery suitable for any remote sensing application, the focusing
phase must be followed by a series of pre-processing operations.

Through the calibration the image pixels values are transformed into the radar cross
section normalized to area σ0. Actually, this processing step involves both internal instru-
ment calibration as well as external SAR calibration by using targets of known reflectivity
[6]. Though uncalibrated SAR imagery is sufficient for qualitative use, calibrated SAR
images are essential to quantitative use of SAR data. Moreover, the radiometric correction
is necessary for the comparison of SAR images acquired under different conditions (e.g. by
using different sensors, or at different times, in different modes, or processed by different
processors).
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A further SAR image pre-processing consists in the geocoding, also known as georefer-
encing, geometric calibration, and ortho-rectification. It ensures that the location of any
pixel in the SAR image (either slant range or ground range geometry) is directly associated
to a map coordinate system. The process can be performed with or without the use of a
Digital Elevation Model (DEM), carrying out an ellipsoidal geocoding or a terrain geocoding,
respectively. In order to properly geocode SAR images, a range-Doppler approach must
be adopted. In fact, SAR systems cause non-linear compressions (in particular in presence
of topography), and thus they can not be corrected using polynomials as in the case of
optical images, where (in the case of flat Earth) an affine transformation is sufficient to
convert it into a cartographic reference system. Through the range-Doppler correction the
relationship between the sensor, each single backscatter element and their related veloci-
ties is calculated, and therefore not only the illuminating geometry but also the processors
characteristics are considered. This complete reconstruction of the imaging and processing
geometry also takes into account the topographic effects (foreshortening, layover) as well
as the influence of Earth rotation and terrain height on the Doppler frequency shift and
azimuth geometry.

As previously asserted, speckle hampers the visual interpretation and image analysis
of SAR acquisitions, even though, being related to the backscattering mechanism of the
illuminated surface, it indirectly contains information about the type of land cover [7], [8].
According with the specific task to accomplish, different despeckling approaches can be
adopted. Generally speaking there are two techniques of mitigating speckle noise: multi-
look process and spatial filtering. The first is used at the data acquisition stage, while
the second only once the data are stored. Any despeckle processing should meet some
conditions, such as the preservation of radiometric information, objects edges and spatial
resolution. Multi-look SAR processing is performed averaging neighboring pixels using a
fixed window with the drawback of worsening the spatial resolution [5]. Alternatively, one
can average different acquisitions taken at different times. In this case it will be the time
resolution to be lowered. On the other side, spatial adaptive filters, such as the well known
Frost, Lee, Kuan, Gamma-MAP, allow at the same time speckle reduction and preservation
of the geometry and texture of the objects within the scene [9].

1.4 Very High Resolution SAR sensors

With the launch of the bi-static SAR satellite TerraSAR-X and TanDEM-X, the COSMO-
SkyMed constellation and Radarsat-2 a new generation of SAR satellites was introduced.
Beside being able to acquire data in all the illumination and weather conditions, the main
peculiarity of such systems is their metrical spatial resolution.

TerraSAR-X and TanDEM-X are two missions developed by the German Aerospace
Center (DLR). The former, launched in 2007, is equipped with a X-band (wavelength 31
mm, frequency 9.6 GHz) SAR, acquiring data with single or dual polarization in four
acquisition modes: High-resolution Spotlight, Spotlight, StripMap and ScanSAR.
TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurements) is a second, very
similar spacecraft launched successfully in 2010. Since October 2010, TerraSAR-X and
TanDEM-X fly in a close formation at distances of only a few hundred meters and record
data synchronously. This unique twin satellite constellation will allow the generation of
global digital elevation models (DEMs) of high accuracy, coverage and quality.

The COSMO-SkyMed mission was born from the cooperation of the Italian Space
Agency (ASI) with the Italian Defence Ministry (MD), to provide an innovative constella-
tion of satellites for the Earth’s observation, conceived for a civilian and military use. The
mission, started in 2007 with the launch of COSMO-SkyMed-1, was completed in 2010 with
the launch of the fourth satellite. Similarly to TerraSAR-X, the constellation is equipped
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with X-band sensors, operating in four different mode and different polarizations. The
Spotlight mode, in particular, allow the acquisition of 1 meter spatial resolution imagery.
Moreover, thanks to the configuration of the system, COSMO-SkyMed provides data of
the same scene within a very short revisit time. More accurate details about the COSMO-
SkyMed mission and the future second generation of COSMO-SkyMed will be given in
Chapter 2

Differently from the aforementioned VHR SAR satellites, the Canadian Radarsat-2 ac-
quires metrical resolution images by operating at C-band microwave frequencies. It supports
multiple polarization modes, including the fully polarimetric. It was successfully launched
in 2007 by the Canadian Space Agency as a follow-on to Radarsat-1. As an evolution of the
Radarsat program, a new mission is planned. It foresees a constellation of three C-band
SAR satellites (Radarsat Constellation) which will provide complete coverage of Canada’s
land and oceans, offering an average daily revisit, as well as daily access to 95% of the
world. The mission development has begun in 2005, with satellite launches planned for
2018.

Nowadays, remote sensing community is still exploring the unique potentiality of VHR
SAR data, whose content of information is expected to be extremely useful to accomplish
several tasks. VHR SAR images have being successfully applied for civilian and security ap-
plications, damage assessment, land use mapping, sea monitoring and so on. However, the
very high spatial resolution, allowing the detection of many small details in the illuminated
scene, makes at the same time challenging the image interpretation of complex environ-
ments, especially when X-band microwave are used. In fact, the shorter wavelengths can
augment the level of interference of the waves reflected from the many elementary scatterers,
with the result of a possible increase of the speckle effect.



Chapter 2

COSMO-SkyMed Mission

Since 2007 a significant step forward for the remote sensing community has been accom-
plished thanks to the new COSMO-SkyMed (COnstellation of small Satellites for Mediter-
ranean basin Observation) mission [10–12]. The project originated from the cooperation
of the Italian Space Agency (ASI) and the Italian Defence Ministry (MD), to provide an
innovative constellation of satellites for the Earth’s observation, conceived for a civilian
and military use. The mission consists of a constellation of four Low Earth Orbit (LEO)
satellites, furnished with X-band (9.6 GHz frequency, 3.1 cm wavelength) Synthetic Aper-
ture Radar (SAR), allowing the whole global coverage in every weather and illumination
condition. Moreover, the possibility of acquiring images with a very high spatial resolu-
tion, as well as the system capability to pass over the same area of interest in few hours,
make COSMO-SkyMed suitable for several applications such as risk management, natural
disaster assessment, cartography updating, vegetation monitoring, sea ice monitoring etc.

Figure 2.1. COSMO-SkyMed constellation.

2.1 The mission

The COSMO-SkyMed mission, started with the launch of the first satellite on 8th June
2007 and completed with the fourth satellite on 6th November 2010, has been conceived to
meet very high level requirement trough:

• Numerous daily acquisitions;

• Global satellite coverage;

13
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• Capabilities of acquisition in all weather and illumination conditions;

• Short System Response Time (time interval between the finalization of the user re-
quest for the acquisition of the area of interest and the delivering of the product);

• Very High spatial and radiometric Resolution, which imply very fine image quality;

• Possibility of image spatial resolution trade-off with size, at most possible extent and
including sub-meter resolution;

• Capability to cooperate with other EO missions and to expand towards other possible
partners with different sensors aiming at the implementation of an integrated system
providing Earth Observation integrated services to large user communities on a world-
wide scale (IEM concept: Interoperability, Expandability and Multi-sensoriality).

Table 2.1. COSMO-SkyMed launch schedule

Mission Launch date

COSMO-SkyMed 1 June 8, 2007

COSMO-SkyMed 2 December 9, 2007

COSMO-SkyMed 3 October 25, 2008

COSMO-SkyMed 4 November 6, 2010

The fully deployed constellation is able to collect up to 1800 images per day and, at the
same time, the Ground Segment capacity can be scaled in order to archive and process a
large amount of data, according with the Satellite Segment capacity.

2.2 Products

According with the international standards for Earth Observation, the COSMO-SkyMed
Ground Segment can provide products through different standard processing levels, for
several remote sensing applications, based on the direct exploitation of low level products.
The standard processing can be divided into three main steps:

1. Pre-processing;

2. Processing;

3. Image geo-localization.

In the first stage (Level 0, pre-processing) all the necessary preliminary operations for
data analysis and extraction of information are carried out. Processing stage involves ra-
diometric and geometric corrections of the images (Level 1A and 1B processing). As last
elaboration of the processing chain, the image geo-localization consists in projecting the
images on known reference system (Level 1C and 1D processing). More specifically, four
Standard Levels Products are available:

Level 0 (RAW): Raw data consists in unpacked echo data in complex in-phase and
quadrature signal (I and Q) format, to which an internal calibration and an error com-
pensation are also applied. The product includes the required auxiliary data to produce a
higher level image.
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Level 1A (SCS): Single look Complex Slant product is achieved by the focusing in
slant range-azimuth projection of the RAW data.

Level 1B (MDG): Detected Ground Multi-look product is obtained through the de-
tection, multi-looking, projection in zero-doppler ground range-azimuth onto a reference
ellipsoid or on a DEM, and resampling at a regular grid on ground with associated ancil-
lary data.

Level 1C (GEC): Geocoded Ellipsoid Corrected is obtained by projecting the SCS
data onto the Earth ellipsoid in a regular grid obtained from a cartographic reference sys-
tem chosen among a predefined set with associated ancillary data.

Level 1C (GTC): Geocoded Terrain Corrected is obtained by projecting the SCS
data onto a Digital Elevation Model (DEM) in a regular grid obtained from a cartographic
reference system chosen among a predefined set with associated ancillary data.

Figure 2.2. COSMO-SkyMed standard level products.

Higher Level Products are also available, for medium and high level remote sensing
applications. For civilian applications high level products include:

Quicklook: image with a degraded spatial resolution for browsing aims, and integer
pixels values scaled in the range 0÷255. These kind of products allow a fast and easy
visualization of the images, which are ground-projected and geo-located.

Co-registered products: a set of images (a master used as reference, and one or
more slaves) derived from the 1A or 1B processing level, are co-registered for remote sens-
ing applications such as interferometry or change detection. Generally, due to the different
geometry of the imagery, the slave image needs to be re-sampled into the master geometry
to be superposed. The type of data is kept, hence real or complex images produce real or
complex co-registered set of images. The co-registration process is bound by some condi-
tions. For instance, images shall be taken in the same acquisition mode, look side and orbit
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direction.

Mosaicked products: image obtained by merging a set of sub-images (Level 1B, geo-
coded or DEMs) in horizontal direction for large spatial coverage. Sometimes an overlap
between contiguous frames or a gap occur, making not perfect the matching. Hence a
proper feathering on the overlapping zones has to be carried out, as well as the exclusion
or the filling of the gaps. Aiming at the production of high resolution mosaicked products,
no undersampling process is applied to the input data.

Speckle filtered image: although standard level products provide speckle reduction
by a multi-looking approach, it may be not suitable for high-level applications (classifica-
tion, feature extraction, change detection, etc). Speckle filtered higher level data are derived
from post-processing of 1A or 1B standard level products, to which a filter is applied, with
a consequent increasing equivalent number of looks.

Interferometric products: derived by processing Level 1A co-registered images to
generate interferometric coherence map and wrapped interferometric phase. Such prod-
ucts preserve the geometry of the master and slave input data, so they are in a slant
range/azimuth projection. However, due to the interferometric multilooking, pixel spacing
and size are reduced. Moreover, to generate interferometric products, input images must
be co-registrable (acquired on the same subswaths, with the same look side, orbit direction
and polarization).

DEM: it consists of the ellipsoidal height map and the corresponding height error map.
DEM products are obtained by interferometric processing of the SAR Level 1A co-registered
images, hence the same constraints for interferometric products generation also exist for
the DEM generation.

Orbital and Quality Control products belong to the so-called Service Products,
which are only for internal uses. They are exploited as auxiliary data for production chain,
or as tools for further analysis performed on all the described products. In particular,
Orbital data are necessary to perform SAR images geo-location, whereas Quality Control
products are used to assess the quality of SAR imagery derived form standard and non-
standard processors.

2.3 Acquisition modes

The COSMO-SkyMed SAR sensors can operate in different modes, providing images of
more or less wide areas, and characterized by medium or very high spatial resolution.
Specifically the system can work in three main modes of acquisition:

1. Spotlight mode (S2) for very high spatial resolution over small regions. The ac-
quisition is made by means of the antenna steering in the azimuth and the elevation
plane, in order to illuminate the area of interest for a time period longer than the
standard strip side view, enhancing the azimuth resolution through the increasing of
the length of the synthetic antenna. Two different implementations of the Spotlight
acquisition are foreseen:

• SMART (S1): it is only for defense applications.

• Enhanced Spotlight (S2): it allows the acquisition of images over an area of
about 10x10 km2, with a spatial resolution of 1x1 m2 single look. The incidence
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angle can be varied from 20◦ to 60◦, while the signal polarization is selectable
among HH or VV.

2. Stripmap mode for very high and high spatial resolution over areas of tenth of
kilometers. This common acquisition mode is performed by pointing the antenna
along a fixed direction (∼ 20◦÷60◦ incidence angle), so that while the platform moves,
the SAR acquires a strip on the illuminated area. Theoretically, the length of the strip
along the azimuth track is unlimited. However, the SAR duty cycle of about 600 s,
limits the strip length to about 4500 km. Two implementations are allowed for this
mode of acquisition:

• Himage (HI): this type of product is characterized by about 40 km either for
the swath width and the azimuth extension (square frame). Stripmap HI images
reach very high spatial resolutions (i.e. 3x3 m2 single look), and can be acquired
in HH, HV, VH or VV polarization.

• PingPong (PP): is obtained by alternating the signal polarization between
two possible ones: VV, HH, HV and VH. Operating in such way, the synthetic
antenna length is not completely available in azimuth. For this reason the spatial
resolution is reduced to about 15x15 m2 single look). The swath width and the
azimuth extension are both of about 30 km (square frame).

3. ScanSAR mode for images covering large swaths obtained by periodically step-
ping the antenna beam to neighboring sub-swaths, considering an incidence angle
of ∼ 20◦÷60◦. The availability in azimuth of only a part of the synthetic antenna
length, leads to the reduction of the azimuth resolution. Since the acquisition is per-
formed in adjacent strip mode, it is virtually unlimited along the azimuth direction,
but it is actually restricted because of the SAR instruments duty cycle of about 600
s. ScanSAR mode of acquisition can be implemented into two different way:

• WideRegion (WR): acquisitions over three adjacent subswaths are grouped,
allowing a ground coverage of about 100 km in the range direction, equal to the
azimuth extension (100x100 km2 coverage). The image spatial resolution is of
about 30x30 m2.

• HugeRegion (HR): Six adjacent subswaths are grouped, allowing a ground
coverage of about 200x200 km2, with a spatial resolution of about 100x100 m2.

Table 2.2. Characteristics of thee main COSMO-SkyMed acquisition modes.

Spotlight Stripmap ScanSAR

S2 HI PP WR HR

Polarization Single Single Dual Single Single

Swath width
10x10 40x40 30x30 100x100 200x200

(kmxkm)

Accessible swath ∼ 620 km

Geometric
1 3 15 30 100

Resolution(m)

2.4 Orbital configuration

The nominal configuration of COSMO-SkyMed constellation is depicted in Fig.2.4, where
four equi-phased satellites orbit in the same plane, guaranteeing the global Earth access
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Figure 2.3. Three main modes of acquisition of COSMO-SkyMed satellites.

Figure 2.4. Nominal configuration of COSMO-SkyMed constellation.

in few hours, and at least two acquisitions of the same area of interest in one day, under
different angles of incidence. In order to assure the “ground track repeatability”, active
spacecraft maneuvers for constellation geometry maintenance (compensation for the effects
of in-plane and out-of-plane perturbations on the nominal orbit) are necessary to keep a
given accuracy (tolerances of better than ± 1 km) with respect to the nominal ground
track.

Specific remote sensing applications, such as near real time analysis of the dramatic
changes due to environmental disasters (earthquakes, floods), are made possible by the
interferometric configuration, which requires, besides the ground track control (analogous
to the nominal configuration), also the maintenance of the interferometric baseline within an
accuracy of tens of meters. This is made possible by the nominal tandem configuration,
or by the tandem-like configuration, which allows two observations within a 24 hour delay.
The tandem configuration is represented in Fig.2.5, where two satellites fly on different but
close orbits, whose planes are 0.08◦ separated, corresponding to 151 km along-track. In such
a configuration SARs can acquire interferometric pairs of images within a time interval of
20” from each other. The interval of the normal baseline can vary in a range of 100÷3500 m,
with 20% of accuracy, according to the acquisition mode. In the tandem-like configuration
the couple of satellites flies on the same orbital plane, and at a short distance each other
(67.5◦), in order to achieve the required baseline.
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Figure 2.5. Tandem interferometric configuration of COSMO-SkyMed constellation.

Figure 2.6. Current orbital configuration of COSMO-SkyMed constellation.

Currently, in order to optimize the time performance of the system, COSMO-1, COSMO-
2 and COSMO-4 satellites are placed with a displacement of 90◦ while COSMO-2 and
COSMO-3 are positioned in the tandem-like configuration (Fig.2.6). Such a scheme has
been designed with the aim of satisfying the acquisitions requests under various conditions
of emergency. Indeed, three operative modes are foreseen for the constellation: routine,
crisis and very urgent. Consequently, different levels of mission planning are conceived:
Long Term Plan (LTP), Medium Term Planning (MTP) and Short Term Planning (STP).
The LTP and the corresponding coarse schedule cover a mission time period multiple of
16 days repeat cycle of a single satellite, for regional monitoring or routine (low priority)
Programming Requests. The MTP is associated to a coarse schedule, covering a time span
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which varies, according with the number of active satellites, from four days (4-satellites
constellation), to eight days (2-satellites constellation) or sixteen days (1 or 3-satellites
constellation). Finally, STP refers to fine scheduling, for acquisitions within a time interval
of 24 hours.

2.5 COSMO-SkyMed Second Generation

COSMO-SkyMed was designed foreseeing a nominal lifetime of five years (seven years en-
visaged “extended” lifetime) for each satellite of the constellation. Since the mission was
completed in 2010, the space segment has been fully operational for three years (2013). The
processing and delivering of SAR images will be assured even after the satellites disposal,
thanks to the longer lifetime of the ground segment (fifteen years foreseen).

In order to guarantee a continuity with COSMO-SkyMed, and the enhancement of the
SAR services, the COSMO-SkyMed Second Generation (CSG) mission has been planned.
It will be ready for operations timely to replace the previous generation satellites whenever
they are being progressively phased out at the end of their lifetime, starting from 2015
onward. With the deployment of two new satellites, both equipped with more performing
SAR instruments, and the evolution of the existing ground segment, COSMO-SkyMed
Second Generation will meet the requirements of quick response time, security rules, data
confidentiality and type, enhancement of quality and number of images per orbit and per
day [13]. CSG, besides keeping and improving the operative modes of its precursor sensors,
will also support new sensor modes and functionality, not provided by the current COSMO-
SkyMed. As for the first generation, CSG will provide SAR images with different size and
resolution (Fig.2.7), which will be improved by a factor of three in narrow field imagery.
One of the most important novelty of CSG will be the capability of SAR sensors of taking
images at double polarization in each acquisition mode.

The Ground Segment will play a key role to allow a smooth transition from the first to
the second generation, supporting CSG system deployment and qualification, maintaining
at the same time the CSK functionality at operations in both Defence and Civilian different
domains. The combination of CSG Ground Segment and Space Segment increases the sys-
tem performances in terms of number of products, double data volume of a single product,
and global time needed for data processing which will be reduced of 30% - 50% with respect
to the first generation system. Thus, the Ground Segment will require significant upgrades
in order to better manage, control and exploit its enhanced capabilities, as well as take
advantage of the improved overall performance of the CSK-CSG system.
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Figure 2.7. Comparison between CSK and CSG SAR imaging typologies.
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Algorithms and Methodologies
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Introduction

The availability of an increasing amount of VHR SAR data calls for the developing of ef-
fective, fast and as much automatic as possible techniques for the understanding of the
information embedded within the satellite images. Therefore, this work focused on the im-
plementation of algorithms for the features extraction in sub-urban environments imaged
by COSMO-SkyMed X-band sensors. Monitor a sub-urban scenario, which is likely to be
subject to a progressive increase of the settlements density, basically means to know the
land uses and their changes in time. When metrical spatial resolution data are exploited,
the complexity of the imagery, which are characterized by a larger number of details (lamps
along the streets, cars, other small manmade structures), together with the typical speckle
noise, geometrical distortions, multiple backscattering contributions, which commonly af-
fects SAR images, makes harder the interpretation of the scenario. Moreover, as it will be
proved afterward in the Part IV, the exploitation of the only single polarized backscattering
intensity may be not efficient to discriminate different land covers. Hence, further sources
of information, such as the texture parameters stemmed from the computation of the Gray
Level Co-Occurence Matrix (GLCM) [14], should be investigated and possibly productively
exploited by the classification algorithms.
The study of COSMO-SkyMed data has been carried out by applying two different ap-
proaches: pixel-based and object-based (Fig. I).

Figure I. Different approaches and algorithms adopted for the sub-urban environment monitoring.

The pixel-based methods have been performed by the supervised Multi Layer Percep-
tron Neural Network (MLP-NN) algorithm, aiming at the production of thematic maps.
In the following Chapter 3 this classical architecture of artificial neural network will be
described, while the sub-urban classification issue will be addressed in the Part IV. Here
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it will be also shown how the use of textural parameters can enhance the classification
maps in terms of accuracy and number of classes. An overview about the adopted Gray
Level Co-Occurrence Matrix (GLCM) and the most effective textural features which can
be stemmed from them, will be presented in Chapter 5.
Given the particular interest to the urbanization process, an object-based investigation has
been accomplished for the buildings extraction in the satellite images, by adopting an unsu-
pervised procedure called Pulse Coupled Neural Network (PCNN), which will be discussed
in Chapter 4.
Finally, the pixel-based and the object-based approaches have been jointly applied to im-
plement an automatic change detection algorithm (Chapter 13).



Chapter 3

Multi Layer Perceptron Neural
Networks (MLP-NNs)

Since their invention, artificial neural networks (ANNs) have been and are still of great
interest to the scientific and industrial community, finding wide use in various fields, such
as remote sensing, medicine, robotics, economics. Historically, many concepts in neural
computing have been inspired by studies of biological networks, which can be modeled as
an ensemble of relatively simple processing units interconnected each other [15].
The most appealing characteristic of the neural network systems is their ability in solving
even complex problems, by learning the input-output relationship through a number of
examples and regardless of the underlying physical mechanisms, whereas the conventional
procedures require for a deep knowledge of the phenomenon under study and the develop-
ment and implementation of a mathematical model to describe it [16]. In particular, the
versatility of neural networks proves to be very handy for function approximation, control
and signal processing, satellite images classification [17]. The latter has probably been one
of the most investigated neural network applications, due to the possibility of exploiting
multi-dimensional data, irrespective of the knowledge of their probability distributions,
which is instead necessary for the more traditional approaches such as the Bayesian meth-
ods. Moreover, many studies confirmed that neural networks, besides representing a new
and easy way of machine learning, exhibit interesting properties, such as the capability of
capturing subtle dependencies among the data, an inherent fault tolerance due to their par-
allel and distributed structure, and a capability of positively merging pieces of information
stemming from different sources [18].
However, neural networks drawbacks lead sometime researchers to prefer different machine
learning systems, such as the Support Vector Machines (SVM). One of the major prob-
lems to consider when one handles with the ANNs is the possibility of the common back-
propagation learning algorithm of reaching a local minimum. Moreover, the performance of
an ANN depends on its architecture and on the method of presenting the data and carrying
out the training. An ANN correctly implemented generally presents a better performance
than the standard statistical approaches. Nevertheless, a network incorrectly designed or
trained gives poorer results than standard methods such as the maximum likelihood method
[17]. By addressing such issues, some researchers focus their study on the automatic se-
lection of the parameters characterizing the NN algorithm, or on the improvement of the
learning phase [19]. Other authors explore the potential of the ANNs in solving new and
more challenging tasks, that can arise from the opportunity of exploiting data provided by
the newest Earth Observation missions.
In this context, VHR COSMO-SkyMed SAR images have been classified in this work by
using the common feed-forward Multi-Layer Perceptron (MLP) topology [20], which is de-
scribed in the following sections.
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3.1 Neuron structure

The basic element of a NN is the neuron, which can be seen as an information processing
unit, generally characterized by several input and one output [20]. The stimulus coming
from the closest neighbors, or from an external source, is elaborated by the single neuron
in order to provide an output signal, which is propagated to other units. The artificial
neuron (Fig. 3.1) reproduces the biological one by modeling the mechanism through three
components:

• weight vector;

• network function;

• activation function.

Figure 3.1. Artificial neuron scheme: the input vector is combined with the weight vector by the
network function. The activation function is then applied to the resulting signal and the neuron
output is provided.

The weight vectors represent the synapses: higher weights correspond to stronger con-
nections between an input and a unit. The neuron activity is described by the network and
activation functions. The former combines together the inputs by taking into account the
respective weights. A typical network function is the following linear combination:

y =

N∑
i=1

xiwi + θ (3.1)

where y is the network function output, xi the input vector elements, wi the weights
vector, and θ the bias. The latter has been introduced in order to avoid the activation
of the neuron if the cumulative effect of the inputs does not overcome the threshold θ.
The activation function controls the amplitude of the output, whose acceptable values
generally range between 0 and 1, or -1 and 1. The network function output is modified
by the activation function through a linear or non-linear transformation, whose result is
the neuron output. Usually, the activation functions are characterized by saturation at a
minimum and a maximum value, and by being non-decreasing functions.

3.2 Network topology

The Multi Layer Perceptron Neural Network (MLP-NN) takes its origin from the sim-
pler perceptron model proposed in the early 50’s, where a single neuron utilizes a linear
network function and a threshold activation neuron function. However, although such a
model can solve simple information processing functions, it suffers the linear separability
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limitation, which makes it not suitable to more complex problems, such as the pattern
recognition. To overcome the perceptron weakness, the MLP-NN was designed to have
continuous value inputs and outputs, and nonlinear activation functions. The success of
the MLP, which is the most widely used neural network, lies in its high generalization
capability, by approximating an unknown input-output relationship, and hence providing
a nonlinear mapping between its inputs and outputs. The MLP architecture is made of
layers of neurons (Fig.3.2), namely:

• one input layer;

• one or more hidden layers;

• one output layer.

The number of the input and output neurons is directly related to the dimension of the
correspondent input space and desired output space. While the first level merely distributes
the inputs to the internal stages of the network, in the hidden layers the information is
elaborated and propagated to the output layer, which provides the final result.

Figure 3.2. Multi Layer Perceptron neural network scheme.

Each neuron of a layer is connected to all the neurons belonging to the following layer,
and the signal is propagated in only one direction (feed-forward architecture), that is from
the input layer to the output layer. Being feed-forward, the MLP is static, in fact it provides
only one set of output values rather than a sequence of values from a given input. It means
that its response to an input does not depend on the previous network status.

The design of the optimal topology of a MLP-NN is generally a difficult task, consisting
in the choice of the number of hidden layers and neurons, which affects the performance
of the neural network. If the number of units is too small, the input-output associative
capabilities of the network are too weak. On the other side, if a large number of neurons
is used, a lack of generality can be exhibited by networks that are too much tailored to
the training set. Generally speaking, a single hidden layer should be sufficient for most
problems, especially for classification tasks; in fact, a MLP with one layer can approximate
any continuous function. However, a network with two hidden layers may solve some tasks
much more efficiently than a network with only one hidden layer. The majority of the
ANNs used in remote sensing are based upon a single hidden layer MLP but some authors
have reported the use of network with two hidden layers in land cover classification and
retrieval of biophysical parameters [17]. In [21], seven commonly used heuristics to compute
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the optimum number of hidden layer nodes have been evaluated. The authors found that
the majority of the heuristics produced similar results; therefore, they can be taken into
account in order to compute a number that can be used as a starting point for a search
towards the optimum number of hidden layer nodes.
Another approach to identify an efficient network architecture is to remove useless inter-
neuron connections of a network larger than the size normally considered necessary (network
pruning).

3.3 Learning phase

As previously asserted, the success and the interest aroused by the artificial neural networks,
lie in the learning capability of such systems. Specifically, the network learns how to
approximate an unknown input-output relationship and at the end of the training phase,
it is able to generalize the problem, providing a reliable output when it is fed by new input
data. Being the MLP-NN a supervised algorithm, the training set includes both the input
vectors and the desired outputs, which are used to minimize an error function during the
training phase. Usually, the NN performance is evaluated by the Sum of Squares Error
(SSE):

SSE =
∑

p∈patterns

∑
j∈output

(tpj − ypj)2 (3.2)

where tpj is the desired output of neuron j for pattern p, and ypj is its actual output.
In this work, the cost function has been evaluated as the Mean Sum Squared Error (MSE),
defined as:

MSE =
∑

p∈patterns

∑
j∈output (tpj − ypj)2

N
(3.3)

where N is the number of outputs. The minimization of the error is carried out by chang-
ing iteratively the weights of the connections between the neurons through the following
equation:

w (t+ 1) = w (t) + ∆w (t) (3.4)

where ∆w(t) is the correction applied to the weights w (t) at the epoch t. There are sev-
eral algorithms suitable for the minimization of the error, which differ in terms of ∆w(t).
Beside the most known back-propagation algorithm [20], the Scaled Conjugate Gradient
(SCG) ([22]) approach is widely used, as it shows to be effective and faster than the for-
mer. Hence it has been chosen for the image classifications carried out in this study. The
SCG belongs to the class of conjugate gradient methods (CGMs), which are second order
techniques, since they make use of the second derivatives of the error function, whereas the
first order ones, like the back-propagation, only use the first derivative. Differently from
the back-propagation, which proceeds down the gradient of the cost function, the CGM
reaches the minimum by following a direction which is conjugate to those of the previous
steps. Therefore, the CGMs generally find a better way to a (local) minimum than a first
order technique, but at a higher computation cost. However, the SCG method has the
advantage of being faster than the other CGMs, by applying a scaling approach to the step
size.

As the network is trained to minimize the error on the training set, a major issue is
overlearning or overfitting [17]. Overfitting means that the network adjusts to very specific
random features of the training data, that have no causal relation to the target function.
Such problem is more likely to occur when complex network architectures are used, or when
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Figure 3.3. Typical error function trend for the training and validation set.

the learning process is performed for too long, or also when the feeding training examples
are rare [20].

For what concerns the last issue, the selection of a proper number of training samples,
which must be also representative of the correspondent classes, is not a trivial task. The
use of too few training samples in neural networks means that characteristics of the classes
cannot be derived, while the use of a too large a number of training samples requires more
time for learning.
Several rules have been proposed to determine the optimum number of training samples.
For example, in [23] the authors recommend the use of approximately 5÷10% of the image
to train a network with a satisfactory performance. However, it has to be highlighted the
fact that the required size of the training set depends upon the complexity of the network.
Therefore, many techniques have been based on the dimensions of the ANN.
For instance, in [24] the authors derived the choice of the number of training samples from
the number ni of input nodes. They found that 60 · ni(ni + 1) samples allowed a near-
optimal performance.
Another criterion introduced in [25] suggests that the number of training samples should
be about 10 times the number of weights in the network.

Even though the size and representativity of the training data are of considerable im-
portance, also the distribution of the data can affect the accuracy of the results, since the
ANN minimizes the overall error. In the particular case of the images classification, many
studies address the issue by setting the size of the training set per class on the basis of the
extension of the area covered by each class. However, this approach can lead the network
to bias its decision towards the more represented classes, as this allows the algorithm to
lower the overall error, which is much more heavily influenced by the more common cases
[17]. Thus, since the class accuracy depends upon the size of the training set per class, the
data set may need to be modified by replicating the less numerous cases, or removing some
of the samples from the most represented classes [26].

Another critical issue in the use of ANNs is to determine the point at which the learning
process should be terminated before the overfitting occurs.

One of the easier criterion is that training should stop after a set number of iterations.
Another stopping criterion is when the estimated error for the training data is lower than
a user-specified level. However, such approaches require for some a priori knowledge of the
expected minimum error value that the network can achieve.

A second set of criteria is based on the magnitude of the gradient of the error. The
learning phase is stopped when the magnitude of the gradient is small, being zero at the
minimum point. On the other hand, this method could lead to erroneously stop the training
in a local minimum or in a plateau of the error function, since also in these cases the
magnitude of the gradient will be small.

Finally, a more direct and widely accepted way is cross-validation, which consists in
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testing the algorithm on an independent validation set of data. Generally the error function
decreases monotonically towards zero. If the testing error stops dropping, or starts to rise
(Fig.3.3), this indicates that the network is starting to overfit the data. In order to get
the best predictive and fitted model, the training phase should be stopped as soon as the
minimum of the error function of the validation dataset is reached (early stopping rule).
However, it can be misleading to stop the learning process at the point where the first rise
in the error on the validation data occurs, as error usually starts to decrease again after
the first increase. Therefore, determining the best point to stop using cross-validation is
not straightforward, and it requires careful design of the learning process [17].



Chapter 4

Pulse Coupled Neural Networks
(PCNNs)

Pulse Coupled Neural Network (PCNN) is a relatively novel model, based on the implemen-
tation of the mechanisms underlying the visual cortex of small mammals. A first prototype
was designed in the early nineties by Eckhorn et. al [27], but some modifications of the
original model were worked out to fit the PCNN to each specific application. In this regard
in literature several papers dealing with the use of PCNN for satellite images edge detec-
tion [28], segmentation [28–30], object extraction [31–33] or recently for change detection
purposes [34], [35] can be found.

4.1 PCNN model

PCNNs belong to the class of unsupervised neural networks, hence no training must be
carried out.
Differently from the most common neural network architectures, the PCNN model is not
conceived as a multi-layers structure, but it consists of multiple nodes coupled together with
their neighbors within a definite distance, forming a bi-dimensional grid. The schematic
representation of the PCNN is depicted in Fig.4.1. Each pixel of the image to process rep-
resents a neuron of the net, characterized by two input compartments. Indeed the so-called
Feeding compartment receives both an external and a local stimulus, whereas the Linking
partition only receives a local input. A third compartment integrates the PCNN structure:
it is a dynamic threshold which is compared to the internal activity. When the internal
activity, obtained by the combination of the feeding and linking functions, becomes larger
than the threshold, the neuron fires, while the threshold rapidly increases. Afterward it
decays, epoch by epoch, until its value is again exceeded by the internal activity value. As a
consequence, when applied to image processing, the PCNN yields a series of binary pulsing
signals, each associated to one pixel or to a cluster of pixels. From the pulsing neuron
(or group of neurons) an auto-wave emanates, and propagates without any reflection or
refraction property [36].

Formally the PCNN algorithm is described by the following expressions:

Fij = e−αF · Fij [n− 1] + Sij + VF
∑
kl

MijklYkl[n− 1] (4.1)

Lij = e−αL · Lij [n− 1] + VL
∑
kl

WijklYkl[n− 1] (4.2)
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Figure 4.1. PCNN model scheme.

where Sij is the input, i.e. the normalized gray level of the pixel, to the neuron (i,j), Fij
and Lij the values of its Feeding and Linking compartments respectively. As the equations
highlight, each neuron communicates with its neighbors (kl) by means of the weights given
by M and W kernels, which typically refer to the Gaussian weight functions with the
distance. Y represents the output of a near neuron, related to the previous iteration [n-1].
Both the Feeding and the Linking modules have a memory of the previous state, which
decreases in time by the exponent term. VF and VL are two normalizing constants. The
internal activity of the neuron, U, derives from the combination of the feeding and linking
states, through the linking strength:

Uij [n] = Fij [n] · {1 + βLij [n]} (4.3)

The condition to yield a pulse in the neuron is defined by:

Yij [n] =

{
1 if Uij [n] > θij [n]
0 otherwise

(4.4)

The variation in time of the threshold is given by the equation:

θij [n] = e−αθ · θij [n− 1] + VθYij [n] (4.5)

where Vθ is a constant, generally one order larger than the average value of U [36].

The original PCNN algorithm consists of iteratively computing (4.1) through (4.5) until
the user decides to stop.
At the beginning of the image processing F, L, U and Y are set to zero, while θ can be set to
zero or to a larger value depending upon the user’s needs. If it is initialized to zero then any
neurons, having a larger internal activity, will pulse in the first iteration. The consequent
sharp increase of θ value makes necessary several further iterations before they will fire
again. On the contrary, if the threshold is initially set to a high value, first iterations may
not produce any pulses since θ needs to decay, but the frames with useful information will
be produced in the earlier epochs than in the ‘initially 0’ scenario.

The result of a PCNN image processing depends on many parameters, that can be
varied in order to perform a specific task. Specifically, αF and αL control the rate of decay
of the feeding and linking stimulus, respectively. VF and VL can enlarge or reduce the
influence of surrounding neurons. The user can act on VF in order to avoid the auto-wave
to enter any region where the stimulus is null. It is possible by setting VF to zero. However,
there is a range of values that allows the auto-wave to travel within a limited distance [36].
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M and W refer to the mode of inter-connection among neurons in the feeding and linking
receptive field. The values of such matrices determine the synaptic weight strength.

The coefficient β, representing the weight of the linking channel in the internal activity
of the neuron, significantly affects the image segmentation. If much influence from the
linking channel is expected, β should be given larger value.

The time constants, and the offset parameter of the firing threshold can be properly set
to adjust the conversions between pulses and magnitudes. The dimension of the convolu-
tion kernel affects the propagation speed of the auto-wave. The pulse behavior of a single
neuron strongly depends on αθ, which controls the decay of the threshold, and on Vθ, which
affects the height of the threshold increase after the neuron fires. Smaller αθ can make the
PCNN work more meticulous but it would take much time to finish the processing. But if
the neuron is expected to fire only one time, αθ may be set to a large value.

4.2 PCNN properties

The PCNN architecture exhibits a sort of synchronizing behavior, which leads the segments
in the image to pulse together. Such a synchronicity, which is particularly evident in the
first iterations, occurs when the internal activity of a neuron is very close to the dynamic
threshold, but lower than θ, and its neighbor fires. The stimulus coming from the neighbor
causes the U increase thus allowing the neuron to fire prematurely. However, as the itera-
tions progress, the segments tend to de-synchronize. This behavior is particularly evident
in more complex images, due to residual signals. Indeed, during the image processing, since
the neurons begin to receive information indirectly from farther neurons, the behavior of
the net is modified and the synchronicity fails [36].

(a) (b)

Figure 4.2. a) Binary image (200x200 pixels); b) X-band SAR image (200x200 pixels) ( c©ASI).

In Fig.4.3 and Fig.4.6 are shown two examples which clarify the pulsing nature and
the synchronicity property of the PCNN. The first one is the result of a simple binary
image processing (Fig.4.2(a)), while the second one is obtained from a X-band SAR frame
(Fig.4.2(b)), which is typically affected by a strong speckle noise. During the image pro-
cessing, neighbor pixels having very similar internal activity identify segments which pulse
together when U overcomes the local threshold. A sort of synchronicity is evident during
the PCNN processing of the simplest picture (Fig.4.2(a)), whereas the complexity of the
SAR image (Fig.4.2(b)) leads to an earlier lack of synchronicity. Fig.4.4 and Fig.4.7 show
the states of a single neuron, which fires (Y=1) when the internal activity U overcomes the
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dynamic threshold. Afterward, θ undergoes a large growth and it takes several iterations
before the threshold decays enough, allowing the neuron to pulse again.
In order to translate the pulse images into a single vector of information, the time signal
can be computed as:

G[n] =
1

N

∑
ij

Yij [n] (4.6)

It represents the average number of neurons firing at the epoch [n], in an image of N
pixels. Although both the wave signatures which are plotted in Fig.4.5 and Fig.4.8 exhibit
a quite periodic trend, the time signal derived from the binary image is more regular than
that one related to the more complex SAR example. An interesting property of the PCNN
algorithm is the wave signature invariance to changes in rotation, scale, shift, or skew of an
object within the scene. Such a behavior makes the PCNN a suitable tool to handle the
processing, features extraction or change detection of VHR SAR images, where the view
angle of the sensor may play an important role.

Figure 4.3. PCNN processing of the image in Fig.4.2(a). U: internal activity; Y: PCNN output.
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Figure 4.4. Progression of the states of a single neuron referred to the image processing in Fig.4.3.

Figure 4.5. PCNN time signal referred to the image processing in Fig.4.3.

Figure 4.6. PCNN processing of the image in Fig.4.2(b). U: internal activity; Y: PCNN output.
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Figure 4.7. Progression of the states of a single neuron referred to the image processing in Fig.4.6.

Figure 4.8. PCNN time signal referred to the image processing in Fig.4.6.



Chapter 5

Gray Level Co-occurrence Matrix
(GLCM)

Identification of objects or regions of interest in an image, and therefore classification tasks
are normally addressed by investigating on the spectral, textural and contextual features of
the image itself. Spectral information regard the average tonal variation in the electromag-
netic spectrum bands, whereas textural features describe the spatial distribution of tonal
variations over relatively small areas, and the contextual characteristics of an image take
into account the information derived from areas surrounding the one under investigation.
In each specific case of study a class of features can dominate over the others, or it may
occur that all the typology of information are equally effective for the image interpretation.
In the framework of the present research, the only information carried by the backscattered
signal may not be sufficient to discriminate different land uses within single polarization
SAR data. On the other hand, many authors demonstrated that texture features can be
useful for the interpretation of SAR images ([37–41]). This study investigated on the pos-
sibility of exploitation of textural parameter stemmed from the computation of the Gray
Level Co-Occurrence Matrix (GLCM) introduced by Haralick [14] in 1973. In this chapter
the GLCM and the most common textural features stemmed from them will be described.

5.1 GLCM definition

Since its introduction by Haralick, the Gray Level Co-Occurrence Matrix (GLCM) tech-
nique has been widely applied in many different research fields, from biomedical to remote
sensing image interpretation. In [14], Haralick assumes that the texture information in an
image is contained in the overall or “average” spatial relationship, which the gray tones in
the image have each other. The GLCM is the matrix of relative frequencies Pij with which
two neighboring resolution cells (Fig.5.1), having i and j gray tone respectively, and located
at a specified distance d along the direction θ , occur in the image, or in a smaller window
of it.

Let be I an image of dimension Nx ×Ny, and G = 1, 2, ..., Ng the set of Ng quantized
gray tones. The image I can be represented as a function which assigns some gray tone in
G to each resolution cell:

I : Ly × Lx → G (5.1)

where Ly × Lx is the set of resolution cells of the image. Let consider two neighboring
pixels I(k, l) and I(m,n), characterized by i and l gray level, respectively. The spatial
relationship between the resolution cells, in terms of gray tone unnormalized frequencies,
can be defined as:

39
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Figure 5.1. Neighborhood resolution cells.

P (i, j, d, 0◦) = #{((k, l)), (m,n) ∈ (Ly × Lx
× (Ly × Lx|k −m = 0, |l − n| = d, I(k, l) = i, I(m,n) = j}

(5.2)

P (i, j, d, 45◦) = #{((k, l)), (m,n)) ∈ (Ly × Lx
× (Ly × Lx)|(k −m = d, l − n = −d)or(k −m = −d, l − n = d),

I(k, l) = i, I(m,n) = j}
(5.3)

P (i, j, d, 90◦) = #{((k, l)), (m,n) ∈ (Ly × Lx)

× (Ly × Lx)||k −m| = d, l − n = 0, I(k, l) = i, I(m,n) = j}
(5.4)

P (i, j, d, 135◦) = #{((k, l)), (m,n) ∈ (Ly × Lx)

× (Ly × Lx)|(k −m = d, l − n = −d)or(k −m = −d, l − n = −d),

I(k, l) = i, I(m,n) = j}
(5.5)

where # indicates the number of elements in the set. A characteristic of the GLCM
is its symmetry, so that: P (i, j; d, θ) = P (j, i; d, θ). In some cases it could be useful to
normalize the GLCM by dividing the co-occurrence frequencies by R, which is the number
of possible neighbor pixel pairs in a given direction θ, and at a given distance d. If d = 1
(Fig.5.2), the number of nearest neighbor pairs is equal to 2Ny (Nx − 1) in the horizontal
direction (θ = 0◦), 2Nx (Ny − 1) in the vertical direction (θ = 90◦), 2 (Ny − 1) (Nx − 1) in
each diagonal direction by symmetry (θ = 45◦ or θ = 135◦). In Fig.5.2 it is represented an
image of dimension 4 × 4 pixels, as well as the computed GLCM (d = 1, θ = 0◦) and its
normalized form.

5.2 Textural Features stemmed from the GLCMs

In his work, Haralick [14] introduced a set of fourteen textural features which can be derived
from the computation of the GLCM. Some of these parameters describe specific textural
characteristics of the image (i.e. homogeneity, contrast) and possibly reveal the presence of
organized structure within the image. Other features relate to the complexity and nature
of the occurring gray-tone transitions. In many remote sensing applications, and especially
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Figure 5.2. a) Example of 4× 4 image. Each pixel is characterized by a quantized gray tone. b)
GLCM evaluated for d=1 and θ = 0◦. c) Normalized GLCM.

in image classification tasks, eight out of fourteen features are commonly successfully ex-
ploited. However, it is worth noting that not all these parameters are independent each
others [37], hence a careful analysis is necessary to select the most suitable ones, without
any redundancy of information. In the following sections the aforementioned eight textural
parameters will be described by dividing them into three groups:

• Contrast group;

• Orderliness group;

• Stats group.

5.2.1 Contrast group

Contrast

f1 =

Ng−1∑
i,j=0

Pi,j(i− j)2 (5.6)

Contrast is an index of the gray-level variations between two neighbor pixels. The
GLCM derived from a low contrast image presents the highest elements values around
the principal diagonal (|i− j| = 0). A low contrast image is not necessarily character-
ized by a low variance of the gray tones; on the other hand, to keep the contrast low,
it is sufficient to maintain variance low [37]. In addiction, high contrast values imply
high contrast texture. It means that the GLCM contrast feature tends to be highly
correlated with spatial frequencies (i.e. difference between the highest and lowest
values of a contiguous pair of pixels) when the module of the spatial displacement
tends to one.
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Dissimilarity

f2 =

Ng−1∑
i,j=0

Pi,j |i− j| (5.7)

Differently from the contrast feature, in the dissimilarity measure the weights |i− j|
do not increase exponentially but linearly. Contrast and dissimilarity are very similar
parameters, hence strongly correlated.

Homogeneity or Inverse Difference Moment

f3 =

Ng−1∑
i,j=0

Pi,j
1 + (i− j)2

(5.8)

By assuming larger values for smaller gray tone differences, the inverse difference
moment measures the homogeneity of the image. Therefore this parameter is more
sensitive to low contrast, organized texture structures, whose GLCM is characterized
by the presence of near diagonal elements [37], [42]. By their intrinsic meaning, it is
clear that homogeneity and contrast are closely and inversely correlated.

5.2.2 Orderliness group

Energy or Angular Second Moment or Uniformity

f4 =

Ng−1∑
i,j=0

(Pi,j)
2 (5.9)

Energy is a measure of the uniformity of the image texture. When only similar gray
level are present, or there is a small number of gray tone transitions for a given
displacement vector, few elements of the GLCM will be larger than 0 and close to 1,
while most of the entries will be close to 0. Hence, high energy values occur in orderly
images, where the gray level spatial distribution is constant or periodic [42]. For this
reason energy is strongly uncorrelated to first order statistical variables (e.g. contrast
and variance) [37].

Entropy

f5 =

Ng−1∑
i,j=0

Pi,j(lnPi,j) (5.10)

If on one side the GLCM energy measures the uniformity of an image, on the other
side the entropy textural feature estimates its disorder. Maximum values of entropy
occur when the image is characterized by pixels with random gray tones. In fact in
this case the GLCM elements are represented by the same value. As much as the
disorder increases, as much the number of GLCM entries having very small num-
ber becomes larger. Conceptually, entropy and energy parameters are strongly and
inversely correlated [37].

5.2.3 Stats group

Mean

f6 =

Ng−1∑
i,j=0

i(Pi,j) (5.11)
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In the GLCM mean equation, the pixel value is weighted not by its frequency of
occurrence by itself (as in the well known mean equation) but by its frequency of its
occurrence in combination with a certain neighbor pixel value. The Pij value is the
probability value from the GLCM, i.e. how many times that reference value occurs
in a specific combination with a neighbor pixel. It is also worth to notice that, since
the combinations of pixels are different for the horizontal and vertical GLCM, mean
features are different in the two cases.

Variance

f7 =

Ng−1∑
i,j=0

Pi,j(i− µi)2 (5.12)

Variance is a measure of the dispersion of the values around the mean. Given the
symmetry property of the GLCM, this parameter will be the same if i is replaced by
j. In texture measures it performs the same task as does the common descriptive
statistic called variance. However, GLCM variance deals specifically with the disper-
sion around the mean of combinations of reference and neighbor pixels. Moreover it
is strongly correlated to the first order statistical variables such as standard deviation
[37], [43]. In the specific case of a square image, for d = 1 and θ = 0◦ or θ = 90◦,
the first order statistical variance will assume the same value of the GLCM variance
parameter. It has to be pointed out the fact that variance is not correlated to the
GLCM contrast [37]. In fact, when the displacement tends to 1, low spatial frequen-
cies and low contrast value may be associated, at the same time, to either a high or
low variance measure.

Correlation

f8 =

Ng−1∑
i,j=0

(i− µi)(j − µj) · Pij√
σ2i · σ2j

(5.13)

Correlation expresses the linear dependency between the gray tones within the image
[44]. The maximum value, equal to 1, is reached when a linear relationship occurs
between the gray levels of pixel pairs, therefor regardless of pixel pairs occurrence. By
its definition, correlation is independent from either the GLCM energy and entropy,
as well as from the GLCM contrast [37].
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Chapter 6

Test sites

Most of the research activities included into this thesis has been carried out in the framework
of the CAMLAND (Computer-assisted monitoring of land cover and its changes by SAR im-
ages) project, partially funded by ASI (AO project N. 1484, agreement No. I/061/09/03).
The main goal was to develop numerical tools aiming at the extraction of land cover infor-
mation from COSMO-SkyMed images, with particular reference to metric-resolution data
acquisitions. The design of the tools is essentially driven by the endeavor to attain automa-
tion of the image processing for producing land cover and change maps in the suburb of
large cities, in order to monitor the occurring urbanization. The evaluation of the perfor-
mance of the processing tools has been carried out against the high and very-high resolution
multi-spectral QuickBird and WorldView-2 images provided by DigitalGlobe Co. [45], [46].

Because of its current and continuous dramatic conversion of land cover from rural to
urban, the south-eastern outskirt of Rome (Italy) was chosen as a suitable test site for the
validation of the implemented algorithms. A views of the examined scenario, acquired by
the QuickBird satellite is shown in Fig.6.1.

This area, centered on the Tor Vergata University campus, covers residential districts
in the north and west side, as well as industrial and business zones mainly located in the

Figure 6.1. QuickBrid image of Tor Vergata, Rome (Italy). Date of acquisition: 12th April 2011.
c©DigitalGlobe
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Figure 6.2. False color composition of a pair of Stripmap HImage COSMO-SkyMed c©ASI images.
R and G: 20th September 2008; B: 22nd April 2011. The objects in blue represent manmade
structures which have been built up during the three years between the two acquisitions. The
yellow objects mainly identify construction sites. The unchanged areas are made out by white and
dark pixels.
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south, and it extends up to the western countryside of Frascati (Rome, Italy). In such a
scenario, a rather large variety of surfaces and features may be potentially identified by
exploiting very high resolution satellite images. As can be observed in Fig.6.1, the area
of interest is characterized by different land uses and typology of buildings, such as large
structures (e.g. hospital, business buildings with glass walls, industrial constructions whose
roofs are made of different materials, or bus shed, shopping malls), and residential buildings
in high or low density urban environments, as well as isolated smaller houses. Moreover the
road network here consists of large streets, including the motorway that crosses the scenario
represented in Fig.6.1, and narrower ones. In spite of the current and constant urbanization
process that is affecting the Tor Vergata area, wide green spaces are still present: meadows,
cultivated fields, tree-lined avenues, groves, cover a rather big percentage of this outskirt.
Nevertheless, in Fig.6.2 it is pretty evident how the replacement of vegetated zones with new
constructions is going to change rather quickly the scenario. In Fig.6.2 a pair of Stripmap
HImage COSMO-SkyMed imagery acquired at three years apart each other (2008 - 2011)
has been assembled in a false color composite picture. By filtering the old acquisition in the
red and green bands, and the new one in the blue channel, it is possible to observe, besides
white and dark unchanged zones, also blue and yellow objects. The former refer to areas
characterized by high backscattering in the most recent acquisition, and low backscattering
in the old one. Therefore, blue pixels mainly represent new buildings. On the other side,
yellow areas put in evidence the presence of high backscattering from objects in the old
acquisition, which turns into a low backscattering in the new image. Typically these fea-
tures identify areas under construction, where the presence of vehicles, cranes, scaffolding,
containers, can vary continuously during the period of work.

As it will be shown in the following chapters, the use of a lonely single polarized COSMO-
SkyMed image is not sufficient to identify accurately so many different typology of surfaces.
However, it will be proven that the use of more than one image, or the exploitation of fur-
ther information stemmed from the SAR acquisitions, such as textural features and, when
available, the degree of the interferometric coherence, is an effective approach aiming at
the improvement of the land cover and change detection maps, in terms of both accuracy
and number of classes. Hence, being aware of the challenge carried by the very high spa-
tial resolution of COSMO-SkyMed data, and also considering the most typical problems
affecting the SAR products, the objective of the classification exercises in the sub-urban
environment represented by the Tor Vergata area has been set at the identification of at
least three land covers: manmade structures, asphalt and vegetation. Actually, in this work,
four classes have been successfully distinguished by separating the low vegetated areas from
the trees category. Moreover, focusing the study on a cultivated region of the area of in-
terest, and by the joint exploitation of the SAR and optical properties of COSMO-SkyMed
and WorldView-2 sensors respectively, it has been possible to correctly identify up to six
different natural surfaces.

Some assessment of the designed algorithms has been also carried out in the Great
Denver area, Colorado, USA (Fig.6.3). Although the general landscape of this region is
similar to the Tor Vergata site, it is characterized by different specific features. Specifically,
besides the above mentioned four land covers, the class water has been added because of
the large extension of this type of surface in the area.

In the following chapters, a summary of the characteristics of the satellites products
which have been used in this research study will be presented.
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Figure 6.3. c©Google Earth image of the Great Denver area, Colorado, USA.



Chapter 7

VHR X-Band SAR dataset

In principle, the study has been focused on COSMO-SkyMed images (Chapter 2), with
a particular interest for the VHR Spotlight data (1 m spatial resolution). However, the
developed algorithms have been tested also on Stripmap HImage COSMO-SkyMed data (3
m spatial resolution). In the frame of the CAMLAND project, a main requirement was the
availability of an extensive dataset of images of Tor Vergata, acquired as much as possible
frequently and with the same geometry of acquisition, in order to perform a continuous and
automatic monitoring of the urbanization process. In spite of the large amount of raw data
(level 1A) provided by ASI, a smaller set has been selected to assess the performance of the
implemented techniques of Classification (C), Data Fusion (DF), Building Detection (BD)
and Change Detection (CD). It has to be pointed out the fact that, as it will be discussed
in the Chapter 13, the developed change detection system requires a first classification
phase. Therefore, all the pairs of images (Spotlight and Stripmap) exploited for the change
detection study have been also classified at the same time.

All the raw data have been undergone to a pre-processing phase before being used for the
various applications. Specifically, the images have been geocoded by performing the range
Doppler terrain correction and calibration (see §1.3). Afterward, the adaptive Enhanced
Lee filter has been used to mitigate the speckle noise. This method is an adaptation of the
Lee filter and similarly uses local statistics (coefficient of variation) within individual filter
windows. Each pixel is put into one of three classes: homogeneous, heterogeneous, or point
target. Each class type is treated differently. For the homogeneous class, the pixel value is
replaced by the average of the filter window. For the heterogeneous class, the pixel value is
replaced by a weighted average. For the point target class, the pixel value is not changed
[5],[47]. Subsequently, when required by the specific application, pairs of images have been
co-registered.

7.1 Spotlight COSMO-SkyMed images

In Table 7.2 the list of Spotlight COSMO-SkyMed dataset is reported. The images of the
Tor Vergata area, depict the same scenario from June 2010 to October 2011. As it can
be noted, all the used images are acquired by the SAR looking to the right side of the
ascending orbit (RA), and with the same incidence angle (∼ 25.3◦). Moreover, nine out of
eleven images are in HH polarization. Such a choice allowed for the testing of the automatic
classification algorithm, as well as of the change detection technique. On the other side,
the use of images with a different polarization (VV), but same geometry of acquisition, has
been useful in order to enhance the vegetation mapping in a cultivated region of the site
under investigation (Chapter 11). A further Spotlight acquisition has been exploited for
the classification of the Gran Denver area in Colorado (USA).
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Table 7.1. Spotlight COSMO-SkyMed dataset (1 m spatial resolution). Each image has been used
for one or more applications: Classification (C), Data Fusion (DF), Change Detection (CD) and
Building Detection (BD).

SPOTLIGHT COSMO-SkyMed

Site Satellite Date Pol. Orbit Inc. Angle Task

CSK3 08/06/2010 HH RA 24.8÷25.7 C + DF
CSK2 23/06/2010 VV RA 24.8÷25.7 DF
CSK2 09/07/2010 HH RA 24.7÷25.6 C + CD

Tor Vergata, CSK3 10/07/2010 HH RA 24.8÷25.6 C
Rome, Italy CSK3 26/07/2010 VV RA 24.9÷25.8 DF

CSK2 16/12/2010 HH RA 24.9÷25.7 C
CSK3 01/01/2011 HH RA 24.0÷25.7 C
CSK3 02/01/2011 HH RA 24.8÷25.7 DF + BD
CSK2 23/04/2011 HH RA 24.9÷25.8 DF
CSK3 11/06/2011 HH RA 24.8÷25.7 C+ CD
CSK1 08/10/2011 HH RA 24.7÷25.6 DF

Great Denver,
CSK3 11/12/2010 HH RA 25.3÷26.1 C

Colorado, USA

7.2 Stripmap SAR images

A set of five Stripmap HImage COSMO-SkyMed images, four of which taken over the
Tor Vergata district, and one over the Great Denver area, have been used as input to
the classification algorithm (Table 7.2). All of them are acquired in HH polarization,
with an incidence angle ranging in the interval 36◦ ÷ 39◦ (Tor Vergata), and 25◦ ÷ 28◦

(Great Denver). As it can be observed in Table 7.2, the change detection exercise has been
carried out on a pair of images acquired by the SAR system looking to the left along the
descending orbit (LD). A TerraSAR-X acquisition of Tor Vergata has been also included
into the dataset, since it has been used to tailor the PCNN based algorithm to perform
the buildings detection task. Similarly to the others, the considered TerraSAR-X image
was acquired in Stripmap mode (3 m spatial resolution), in HH polarization and with an
incidence angle of about 33.7◦.

Table 7.2. Stripmap HImage COSMO-SkyMed (3 m spatial resolution) and Stripmap TerraSAR-X
(3 m spatial resolution) dataset. Each image has been used for one or more applications: Classifi-
cation (C), Change Detection (CD) and Building Detection (BD).

STRIPMAP HIMAGE COSMO-SkyMed

Site Satellite Date Pol. Orbit Inc. Angle Task

CSK2 20/09/2008 HH LD 36.2÷38.9 C + CD
Tor Vergata, CSK2 24/05/2010 HH RD 36.1÷38.8 C
Rome, Italy CSK3 25/05/2010 HH RD 36.1÷38.8 C

CSK2 22/04/2011 HH LD 36.1÷38.8 CD

Great Denver,
CSK2 10/12/2010 HH RA 24.9÷28.3 C

Colorado, USA

STRIPMAP TerraSAR-X

Tor Vergata,
TSX 24/11/2007 HH RA ∼ 33.7 BD

Rome, Italy



Chapter 8

VHR Multispectral sensors dataset

Although this work has been developed with the purpose of investigating on the potentiality
of the information embedded within the VHR X-band COSMO-SkyMed product, VHR
multispectral optical data contributed positively to reaching the goal. Indeed, despite the
metrical spatial resolution of the SAR images, their interpretation is still quite tough.
Therefore QuickBird and WorldView-2 [46] imagery have been used to understand the
different coverages of the area of study. Based on their visual interpretation, the ground
truth (GT) has been collected to assess the accuracy of the final products of the building
detection, classification and change detection algorithms. Moreover, taking advantage of
the eight bands of the WorldView-2 imagery [46], data fusion (DF) experiments have been
carried out to enhance the vegetation mapping by jointly exploiting mutlispectral and SAR
data (Chapter 11). A list of the used optical images provided by DigitalGlobe is reported
in Table 8.1.

Table 8.1. Multispectral QuickBird and WorldView-2 dataset. Each image has been used for the
visual interpretation of the scenario, and hence as Ground Truth (GT), or for the Data Fusion (DF)
experiments.

MULTISPECTRAL QUICKBIRD

Site Satellite Date N. Bands Spatial Res. Task

QB 08/12/2008 4 2.4 m GT
Tor Vergata, QB 30/09/2010 4 2.4 m GT
Rome, Italy QB 12/04/2011 4 2.4 m GT

QB 20/05/2011 4 2.4 m GT

MULTISPECTRAL WORLDVIEW-2

Tor Vergata, WV2 04/07/2010 8 2.0 m GT + DF
Rome, Italy WV2 10/10/2011 8 2.0 m GT + DF
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Introduction

The possibility of periodically collecting images over wide areas, makes the remote sensing
one of the best source of information related to the land cover and land uses changes in
time. Particularly complex environments are represented by the sub-urban areas, where
rural zones are progressively enveloped in metropolitan regions, with the consequent deep
transformation and possible severe damages of the original natural ecosystem.

The high performance of the most recent VHR optical and SAR sensors enable a better
management of urban areas. To this aim, satellite images must be transformed into usable
geographic products, through the classification of the different surfaces imaged in the scene.
Remote sensing in the optical band and at very high spatial resolution has proven to be a
useful tool for land cover and change maps production. However, since optical sensors are
affected by the weather and illuminations conditions, the use of SAR imagery can become
necessary, especially in those regions which are covered by clouds for most of the year, or
characterized by long dark periods. In addition, SAR systems represent the best tool in case
of emergency, when the availability at the earliest convenience of images carrying informa-
tion of the changes possibly undergone by natural surfaces or manmade structures is vital.
Metric-resolution SAR data, such as those delivered by the COSMO-SkyMed constellation
[12] or by the TerraSAR-X satellite [48], [49], are expected to foster substantial progress
[50], allowing the detection of small-scale objects in the urban environment (e.g.elements
of residential housing, commercial buildings, transportation systems and utilities). On the
other hand, the very high spatial and temporal resolution capabilities of these space plat-
forms make unextendible the deadline for providing processing tools as much as possible
automatic so as to prevent the accumulation in the archives of never seen data.

The classification of urban and sub-urban environment by using VHR SAR data, is
currently one of the most appealing challenge for the remote sensing community. While in
the previous decametric resolution SAR systems acquisitions the electromagnetic and geo-
metric effects was smeared by the coarser spatial resolution, VHR SAR images are strongly
affected by the complexity and variety of scattering mechanisms, even for a single isolated
building. This behaviour makes the association pixel-class not obvious. Typical classifi-
cation method are based on object-oriented approaches, exploiting texture and contextual
properties [51],[52]. On the contrary, the pixel-based classification of VHR SAR images
has been faced by few authors. In [53] fire scars mapping and suburban/agricultural land
cover classification has been performed by an unsupervised neural network algorithm, the
Textural Self-Organizing Map, based on the textural features of the radar image. In [54] a
complex technique has been implemented in order to classify urban areas acquired by the
VHR TerraSAR-X and COSMO-SkyMed sensors. The algorithm, based on a supervised
approach, combines a finite mixture technique to estimate class-conditional probability den-
sity functions, Bayesian classification, and Markov random fields (MRFs). Moreover, an
improvement in the discrimination of urban areas has been achieved through the inclusion
of the information carried by the textural features extracted by the GLCM.

In this work a supervised pixel-based classification approach based on MLP-NN (Chap-
ter 3) has been adopted to classify Spotlight and Stripmap COSMO-SkyMed images. The
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effectiveness of neural networks for pixel based satellite image classification has been already
demonstrated for both optical images and medium-high resolution SAR images ([41, 55–
58]). Indeed, many authors have reported considerable advantages of ANNs over conven-
tional methods [17]. In particular, since the neural networks set up the recognition of each
class on the characteristics of the whole ensemble of training samples, they have the ability
of performing supervised classification using less training data than the maximum probabil-
ity [59]. Moreover, when properly trained, the NNs are rather competitive if compared with
other techniques, such as the Bayesian or Support Vector Machines [60], and are able to
automatically classify different images, as long as the statistics of these latter is contained
in the training set.

As it has been already mentioned in Chapter 3, the performance of the MLP-NN, and
hence the classification accuracy, mostly depends on the suitability of the input features,
on the quality of the training set and on the neural network architecture.

In principle, the information provided by the input samples must represent the distinc-
tive behaviour of the correspondent class to detect. An intensive analysis of the available
dataset has been performed, aiming at the selection of the most effective ensamble of fea-
tures to be exploited as input to the classifier. Note that most of the new SAR systems
acquires only single polarization images. Since the mere use of the backscattering ampli-
tude is likely to be not efficient to discriminate various surfaces, the lack of multi-band data
can be overcome by adding spatial information, such as morphological [61] or textural [14]
features. This study mainly focused on texture parameters stemmed from the computation
of the GLCM(Chapter 5). Indeed, several papers in literature alreay proved that methods
exploiting the GLCM features in optical and decametric resolution SAR images, are par-
ticularly successful in the urban areas classification [39, 62–67].
In order to take advantage of the unique capability of the Cosmo-SkyMed constellation,
which can acquire images of the same scene with a very short revisit time, multi-temporal
information has been also taken into account. An investigation on the possible improvement
of the maps accuracy has been carried out by exploiting the texture information stemmed
from two acquisitions, as well as the interferometric choerence.

For what concern the selection of the MLP-NN training set, in order to make the pat-
terns as much as possible statistically representative, samples of pixels have been collected
randomly over each land cover by taking in consideration all the different types of surfaces.
A cross-check with optical images allowed the interpretation of each point. The ensemble of
pixels has been successively partitioned, by dedicating about the 60÷ 70% to the training
set, and about the 30÷40% to the validation set, which have been employed for the network
design. A third independent set of pixels has been collected for the final assessment of the
obtained classification maps.

As regards the design of the optimal NN topology, a heuristic approach has been adopted
in each of the experiments carried out in this work. Basically, the number of hidden layers
and neurons has been defined by progressively adding units and evaluating the performance
of the algorithm, through the estimate of the MSE (Chapter 3). The minimization of the
error has been worked out by using the SCG algorithm. The NN implementation has been
carried out by the Stuttgart Neural Network Simulator package [22].

In the following chapters it will be firstly presented the analysis of the data, which
led to the identification of the main types of land covers in the study site (Chapter 9).
Results achieved by exploiting different input features (simple local texture, GLCM textural
parameters, interferometric coherence) will be presented in Chapter 10. Finally multi-
sensor, multi-temporal, and multi-polarization data have been jointly exploited in Chapter
11, where data fusion experiments have been carried out aiming at the enhancement of the
accuracy of vegetation maps.



Chapter 9

Data analysis

The classification task has been carried out by using the MLP-NN algorithm. As already-
highlighted in Chapter 3, the accuracy of the final map is affected by several factors, and
in particular by the quality of the training samples. Depending on the variety of surfaces
within the area under investigation, a crucial issue is the selection of set of representa-
tive pixels which must comprehensively describe each class of land cover. Indeed, a single
category may be represented by surfaces characterized by different geometry, roughness,
orientation with respect to the SAR, or different materials. As a consequence, the range
and distribution of values of the backscattering can vary significantly even within the same
class. In order to investigate on the possible number of land covers, which the only use
of the intensity of the backscattering allows to distinguish, a first data analysis has been
performed by considering the Spotlight COSMO-SkyMed image in Fig.9.1. Bearing in
mind the variety of objects included into the examined region of Tor Vergata (Chapter 6),
several examples have been selected, and their statistics have been computed on a set of
randomly chosen pixels, to analyze all possible behaviors in terms of backscattered signal.
In principle, three main categories of objects can be distinguished:

1. manmade objects

2. asphalted surfaces

3. natural areas

Manmade objects

Regarding the manmade structures, nine buildings, characterized by different shapes,
sizes, materials and environment of settlement, have been identified (Fig. 9.2, Fig.9.3 and
Fig.9.4). Two thousands of pixels have been randomly taken for each building, and the re-
sults of the statistical analysis are shown in Table 9.1. The intensity of the backscattering
from a building, is due to the occasionally joint contribution of all the parts that constitute
it, and eventually of others objects (nearby houses, man-made structures or parking areas)
contained by the area assigned to the building [68]. This fact explains the quite wide range
of values belonging to a single edifice, as pointed out by the standard deviation measures
(Table 9.1).
For a better understanding of the data, the nine objects have been divided into three classes
of similarity: the first includes large buildings, such as the hospital in Fig. 9.2(a), the com-
pany building Fig.9.2(b), and the shopping malls in Fig.9.2(c); the second one is composed
by sheds for industrial or bus garage uses (Fig. 9.3(a) and Fig.9.3(b)); the third group
contains three types of residential houses, that is tall and close to each other (Fig.9.4(a)),
high and separated (Fig.9.4(b)), and isolated smaller houses (Fig.9.4(c)). The histograms
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Figure 9.1. Spotlight COSMO-SkyMed image of Tor Vergata, Rome (Italy). Date of acquisition:
9th July 2010. c©ASI.
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of the backscattering coefficients referred to these three categories are shown in Fig.9.5. As
expected, they show a strong variability of the backscattering values, even within the same
aforementioned category. In particular, the shape of the shopping mall, and its orientation
with respect to the satellite, makes the associated pixels values quite low with respect to
the other buildings (Fig.9.5(a)). Buildings belonging to the second category display similar
backscattering (Fig.9.5(b)). The shift between the histograms is basically due to the dif-
ferent materials of which the sheds are made. While the differences between the residential
buildings are mainly related to the environment in which they are located, backscattering
values are higher in densely urbanized areas, because of the superposition of many contri-
butions, double bounce and trihedral effects (Fig.9.5(c)).

Table 9.1. Statistics of the backscattering coefficient (dB) of a sample of pixels belonging to the
buildings in Fig.9.2, Fig.9.3 and Fig.9.4.

MANMADE OBJECTS

Type Min Max Mean St. dev. N. pixels

Hospital -17.4 22.3 -2.9 5.2 2000

Company -22.1 18.0 -4.7 5.7 2000

Mall -27.8 27.3 -10.3 7.5 2000

Industrial 1 -15.3 13.4 -4.2 3.1 2000

Industrial 2 -24.5 23.1 -10.1 5.2 2000

Bus shed -28.1 15.9 -7.4 5.8 2000

Residential -20.6 28.3 4.5 6.9 2000

Hostel -21.9 21.3 -2.7 5.2 2000

Houses -21.7 14.9 -5.8 5.2 2000

Asphalted surfaces

Completely different behavior is expected by smooth surfaces [3], such as asphalted ar-
eas, that should be characterized by low backscattering and high contextual homogeneity.
However, the analysis of the selected objects in Fig.9.6 has stressed the influence of the
roughness on the return of the X-band SAR signal. Table 9.2 shows that the mean value of
backscattering of most streets is about −17 dB, whereas the motorway is characterized by
higher values, as well as the parking area. But others exceptions occur, such as the smooth
asphalt in Fig.9.6(c) that has low backscattering values. Such differences are probably re-
lated to the state and texture of the surface, more or less smooth, and to the presence of
sidewalks, light poles and vehicles. The behavior of the analyzed various asphalted surfaces
are highlighted by the histograms shown in Fig.9.7, computed by considering 200 pixels
randomly selected in each ROI in Fig.9.6.

Natural surfaces

A similar investigation has been carried out for the natural areas depicted in Fig.9.8
and Fig.9.9, which represent two categories, the former including low o scarcely vegetated
surfaces and bare soil, the second referred to high vegetation coverages. The correspond-
ing analysis based on histograms are shown in Fig.9.10 and Fig.9.10(b). Low vegetation
samples have generally a lower backscattering value with respect to the tall vegetation, as
can be expected, given the larger elements and the more important double bounce effect
in arboreous vegetation. On the other side, the ensemble of the two vegetation classes, on
average, shows backscattering values that fall in a range bounded by those of the buildings
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Table 9.2. Statistics of the backscattering coefficient (dB) of a sample of pixels belonging to the
asphalted surfaces in Fig.9.6.

ASPHALTED SURFACES

Fig. Type Min Max Mean St. dev. N. pixels

a) Bridge -26.2 -9.3 -17.3 2.9 200

b) Motorway -22.3 -5.7 -13.5 2.6 200

c) Toll gate -26.0 -6.9 -18.8 2.9 200

d) Roundabout -26.3 -11.6 -17.7 2.9 200

e) Parking area -24.3 -6.7 -15.5 2.8 200

f) Street -23.3 -10.9 -17.6 2.5 200

class (upper bound) and the asphalted ones (lower bound). Among all vegetation classes,
the tree class displays the highest amplitude value, since scattering from large elements in
the crown can be rather significant. For both low and high vegetation the trend of the
histograms has a behavior relatively close to that of the buildings, with a more regular
distribution around the maximum value. However, at the same time, in the image un-
der investigation the range of measures representing the motorway is very similar to those
recorded over the dig in Fig.9.8(e) and the grasslands in Fig.9.8(d).

Table 9.3. Statistics of the backscattering coefficient (dB) of a sample of pixels belonging to the
low and scarcely vegetated surfaces in Fig.9.8.

LOW VEGETATED SURFACES and BARE SOIL

Fig. Type Min Max Mean St. dev. N. pixels

a) Field -22.9 -4.1 -12.9 2.6 1000

b) Grass -19.4 -2.6 -9.7 2.5 1000

c) Round garden -21.5 -4.5 -12.0 2.9 1000

d) Grass -23.0 -6.1 -14.0 2.8 1000

e) Dig -25.9 -5.5 -13.5 2.8 1000

Table 9.4. Statistics of the backscattering coefficient (dB) of a sample of pixels belonging to the
high vegetated surfaces in Fig.9.9.

HIGH VEGETATED SURFACES

Fig. Type Min Max Mean St. dev. N. pixels

a) Field -21.0 -0.4 -9.2 3.0 2000

b) Grove -22.6 13.9 -9.7 3.8 2000

c) Field -23.0 -2.2 -11.2 2.8 2000

d) Row of trees -26.4 5.7 -9.1 3.7 2000

The preliminary analysis of the land cover has put in evidence the presence of a wide va-
riety of surfaces, even within the same class (manmade structures, asphalt, natural), whose
discrimination, by means of the exploitation of only the intensity of the backscattering,
may be a hard task. To correctly map COSMO-SkyMed imagery, is therefore necessary to
identify and to extract further suitable information from the data.
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(a) Hospital

(b) Company building

(c) Mall

Figure 9.2. Examples of large buildings in a Spotlight CSK image (left) c©ASI, in a WV-2 (right)
image c©DigitalGlobe, and ROI selected over the CSK image (middle).
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(a) Industrial sheds

(b) Bus sheds

Figure 9.3. Examples of sheds in a Spotlight CSK image (left) c©ASI, in a WV-2 (right) image
c©DigitalGlobe, and ROI selected over the COSMO-SkyMed acquisition (middle).

(a) Residential buildings

(b) Student hostel

(c) Isolated small houses

Figure 9.4. Examples of different residential buildings in a Spotlight CSK image (left) c©ASI, in
a WV-2 (right) image c©DigitalGlobe, and ROI selected over the CSK acquisition (middle).
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(a)

(b)

(c)

Figure 9.5. Histograms of the backscattering coefficient of 2000 random pixels belonging to the
buildings selected respectively in: a) Fig.9.2: hospital (cyan), company building (magenta), shopping
mall (red); b): Fig.9.3: industrial 1 (maroon), industrial 2 (dark green), bus shed (purple); c):
Fig.9.4: residential (orange), hostel (blue), houses (green).
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(a) Bridge

(b) Motorway

(c) Toll gate

(d) Roundabout

(e) Parking area

(f) Street

Figure 9.6. Examples of different asphalted surfaces in a Spotlight CSK image (left) c©ASI, in a
WV-2 (right) image c©DigitalGlobe, and ROI selected over the CSK acquisition (middle).
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(a)

(b)

(c)

Figure 9.7. Histograms of the backscattering coefficient of 200 random pixels belonging to the
asphalted surfaces in Fig.9.6: a) motorway (magenta) and toll gate (green); b) motorway (magenta)
and roundabout (maroon); c) parking area (blue) and street (yellow).
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(a) Field

(b) Grass

(c) round garden

(d) Grass

(e) Dig

Figure 9.8. Examples of different low vegetated areas in a Spotlight CSK image (left) c©ASI, in a
WV-2 (right) image c©DigitalGlobe, and ROI selected over the CSK acquisition (middle).
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(a) Field

(b) Grove

(c) Field

(d) Row of trees

Figure 9.9. Examples of different high vegetated areas in a Spotlight CSK image (left) c©ASI, in
a WV-2 (right) image c©DigitalGlobe, and ROI selected over the CSK acquisition (middle).
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(a)

(b)

Figure 9.10. Histogram of the backscattering coefficient of: a) 1000 random pixels belonging to two
different low-vegetated areas (red and blue) and to bare soil (yellow) in Fig.9.8(b), Fig.9.8(d) and
Fig.9.8(e); b) 2000 random pixels collected over a region covered by trees (orange) and a cultivated
field (green) in Fig.9.9(b) and Fig.9.9(c).



Chapter 10

Land cover classification

This chapter addresses the land cover pixel-based classification task, which has been per-
formed by exploiting different type of information embedded within the VHR COSMO-
SkyMed images. The identification of the most suitable input features is not a trivial issue.
As previously mentioned, textural and contextual parameters play an important role for
the interpretation of single polarized SAR images. Hence, they have been considered for
the classification purpose. A first experiment, based on the exploitation of local texture fea-
tures evaluated on sliding windows of pixels, will be described in §10.1. Secondly, in §10.2
an investigation on the possibility of improving the quality of the land cover mapping, es-
pecially in terms of number of classes, will be carried out by taking into account textural
parameters stemmed from the GLCM computation. Finally, in §10.3 it will be shown how
the interferometric coherence retrieved from pairs of images, can positively contribute to
the improvement of the identification of some classes. In each case it will be demonstrated
the efficiency of the neural network approach to correctly and automatically classify new
images, which have not been used during the training samples selection.

10.1 Exploitation of simple local texture

The first classification exercise has been driven by the attempt to develop an efficient and
fast algorithm, to quickly provide a response to particular events that may rapidly change
the land cover of an urban area. Therefore, a limited number of data and information
have been tested. Specifically, the method followed in this study considers partially inde-
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pendent sources of information carried by a single SAR image. Besides the backscattering
amplitude, two local contextual properties have been included into the input vector. The
first feature has been evaluated by averaging the backscattering amplitude in sliding boxes,
whose dimension has been set according with the spatial resolution of the CSK images:
5x5 pixels for the Spotlight images, and 3x3 pixels for the Stripmap acquisitions. The
second contextual parameter, that is the standard deviation, has been calculated on the
same moving windows. Mean and standard deviation values have then been assigned to
the central element of each box.
The classification exercise consisted in mapping asphalted surfaces, natural areas (vege-
tation and bare soils) and manmade structures (buildings and other artificial elements,
such as lamps and guard-rail along the streets). As it has been shown in Chapter 9, a
large variability of surfaces within the same class is likely to occur. However, it can be
assumed that asphalted areas are characterized by low backscattering and high contextual
homogeneity. Hence low backscattering amplitude, mean, and standard deviation values
characterize asphalted surfaces. On the other side, higher variations of local amplitude are
expected over natural areas, whereas pixels with high backscattering are generally associ-
ated with buildings and metallic objects. Nevertheless, manmade constructions imaged by
the VHR SAR system, result from multiple contributions related to the elements belonging
to the building itself, and to different objects (e.g. trees, other manmade structures) in
its immediate surrounding. In addition, the presence of layover, double bounce effect and
shadow, make largely variable the backscattering values associated to the buildings.

Results

Single Spotlight image classification

Fig.10.1(a) shows the optical image of the test area seen by the WorldView-2 VHR in-
strument, while Fig.10.1(b) report the Spotlight COSMO-SkyMed acquisition taken on 8th
of June 2010 [69]. An overall number of 735 pixels has been considered for the training
set, while 315 examples have been collected for the validation set. The optimal neural
network topology chosen for the exercise consisted of two hidden layers of eight neurons
each (3x8x8x3). The training phase took only a few minutes to reach the early stopping
condition that occurred after 600 epochs.
As it can be observed in Fig.10.1(c), the classification result is fairly correlated with the
ground-truth. The confusion matrix in Table 10.1, evaluated considering a random sample
of 861 ground truth points, shows an overall accuracy of 91.3%. In particular, the main
roads and traffic circles are quite well delineated. However, some portions of the streets
are confused with vegetated surfaces, probably because of the presence of trees and bushes
along the roads, or of a particularly rough surface. Moreover, where the bare soil dominates
the dry natural surfaces with respect to vegetation, the classifier erroneously assigned the
pixels to the asphalt class.

Table 10.1. Confusion matrix referred to the classification map in Fig.10.1(c).

CLASS A N MM TOT

A 79.05 5.04 0.00 21.95
N 20.95 94.08 2.05 55.40

MM 0.00 0.88 97.95 22.65
TOT 100.00 100.00 100.00 100.00

Overall Accuracy: 91.30%
K coefficient: 0.86
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(a)

(b)

(c)

Figure 10.1. Tor Vergata area, Rome (Italy) imaged by a)WorldView-2 sensor c©DigitalGlobe
(acquisition date: 4th July 2010) and by b) COSMO-SkyMed operating in Spotlight mode (994x506
pixels), in HH polarization, c©ASI (acquisition date: 8th June 2010). c) Classification map achieved
by using a 3x8x8x3 MLP-NN.
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Single Spotlight image fully automatic classification

To test a fully automatic scheme that does not need the selection of pixels extracted from
the image to be classified, a set of 12600 training samples and 5400 validation pixels have
been randomly selected in two Spotlight images (4230x2500 pixels) acquired on 8th June
2010 and 9th July 2010, respectively [70]. It is worthy to highlight the fact that the latter
image does not differ significantly from the former, and from a third Spotlight acquisition
(Fig.10.2(b)) taken by COSMO-SkyMed on 10th July 2010, which has been used only for
evaluating the features extraction result. Note that all the images were acquired with
the same geometry (Chapter 7) and in the same season. The last aspect should imply
similar distributions of the backscattering values, which is a main requirement for the
automatic classification of different imagery by using trained neural networks. With respect
to the previous classification exercise, in this case a larger area (4230x2500 pixels) has been
considered, aiming at the investigation on the performance of the algorithm in quickly
and automatically providing maps of even more complex environments, characterized by a
larger variety of surfaces. As for the first experiment, backscattering amplitude, local mean
and standard deviation have been included into the input vectors in order to identify three
main classes: asphalt (A), natural surfaces (N) and manmade structures (MM).
A two-hidden layer NN scheme, each one with 9 neurons (3x9x9x3), has proved to be
the best topology in terms of MSE minimization. It has to be highlighted the fact that,
although a huge quantity of data has been elaborated, once properly trained, the NN has
been able to produce in only few seconds and automatically the map shown in Fig.10.2(c).
By the visual interpretation of the result, it is possible to assert that the spatial distribution
of the different types of pixels is highly correlated with the ground-truth represented by
the multispectral WorldView-2 image in Fig.10.2(a). Such statement is confirmed by the
obtained overall accuracy of 80.9%, as computed by a comparison with a randomly selected
sample of 6000 ground-truth pixels. In particular, the delineation of most of the main roads
and roundabouts seems to be rather correctly achieved. However, some confusion can be
again observed between asphalted surfaces and natural areas, but this is explained with the
presence, within the latter class, of sparsely or no vegetated regions, the fraction of which
prevails over that of densely vegetated areas. Moreover, trees are sometimes interpreted as
manmade structures and vice-versa. The detail of the confusion matrix is given in Table
10.2.

Table 10.2. Confusion matrix referred to the classification map in Fig.10.2(c).

CLASS A N MM TOT

A 64.80 7.00 0.10 23.90
N 34.40 86.50 8.40 43.10

MM 0.80 6.50 91.50 33.00
TOT 100.00 100.00 100.00 100.00

Overall Accuracy: 80.90%
K coefficient: 0.71
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(a)

(b)

(c)

Figure 10.2. Tor Vergata area, Rome (Italy) imaged by a) WorldView-2 sensor c©DigitalGlobe
(acquisition date: 4th July 2010) and by b)COSMO-SkyMed operating in Spotlight mode (4230x2500
pixels), in HH polarization c©ASI (acquisition date: 10th July 2010). c)Classification map achieved
automatically by means of the previously trained 3x9x9x3 MLP-NN.
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Single Stripmap image classification

The approach adopted for the Spotlight images has been tested also on the Stripmap
acquisition in Fig.10.3 taken by COSMO-SkyMed on 24th of May 2010. As in the previous
exercise, the three elements input vector included: the amplitude of the backscattering, its
local mean and local standard deviation computed on sliding windows whose size, given
the lower spatial resolution (3 meters), has been set to 3x3 pixels. The algorithm has
been trained by 735 input patterns, while the performance of the learning phase has been
assessed through 315 validation samples. The optimal neural network architecture has been
found to be made of two hidden layers of eight neurons each (3x8x8x3). The algorithm has
been subsequently applied to the whole image, which has been processed in few seconds,
providing the map in Fig.10.4(b). A visual interpretation of the result put in evidence the
capability of the NN to identify correctly the manmade structures and the majority of the
streets. Yet, most of the wide vegetated areas turns out to be erroneously covered by little
objects classified as asphalt. The reason might be due to the presence of small patches of
bare soil, or shadow in closeness of trees, as well as to the effect of residual speckle. The
qualitative evaluation of the classification has been confirmed by the computation of the
confusion matrix in Table 10.3, obtained by a cross-check with 744 pixels of ground truth
randomly collected in each land cover, and interpreted by means of the WorldView-2 image
in Fig.10.4(a).

Figure 10.3. Tor Vergata, Rome (Italy) imaged by COSMO-SkyMed operating in Stripmap mode
(836x520 pixels), in HH polarization c©ASI (acquisition date: 24th May 2010).

Table 10.3. Confusion matrix referred to the classification map in Fig. 10.4(b).

CLASS A N MM TOT

A 90.00 14.16 0.00 31.85
N 10.00 80.53 0.00 39.52

MM 0.00 5.31 100.00 28.63
TOT 100.00 100.00 100.00 100.00

Overall Accuracy: 88.31%
K coefficient: 0.82
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(a)

(b)

Figure 10.4. Tor Vergata area, Rome (Italy) imaged by a) WorldView-2 sensor c©DigitalGlobe
(acquisition date: 4th July 2010). b) Classification map of the image in Fig.10.3, achieved by means
of a 3x8x8x3 MLP-NN.
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10.2 Exploitation of GLCM textural parameters

Given the promising results achieved in basic land covers discrimination by exploiting single
polarized images and simple local texture, a further effort has been made to improve the
classification in terms of number of classes. By considering the Tor Vergata landscape, the
natural class has been divided into low vegetation (LV) class, including sparse and low vege-
tated surfaces, as well as bare soil, and trees (T) class, which includes tall plants and dense
vegetated areas. The issue has been addressed by carrying out an analysis to investigate
on the possibility of including more complex textural parameters into the input vector of
the MLP-NN algorithm. Specifically, the study has been focused on the selection of the
optimum set of textural features stemmed from the computation of the GLCM.
Such approach requires a proper setting of several key parameters on which the derived in-
dexes depend: the distance between two positions, the distance direction, and the window
considered for the GLCM computation.
The distance may provide a tool to discriminate among textures through the spacing char-
acteristic. Although in coarse spatial resolution SAR images a very small distance can be
sufficient to differentiate various surfaces, a larger parameter should be taken into account
for the classification of VHR imagery.
Direction is particularly important in case of evident anisotropy in the texture of different
land covers [71]. However, when no preferred direction can be observed, a common ap-
proach is the calculation of the mean values of the textural parameters estimated in each
direction.
On the other side, the window size plays a main role in the land cover discrimination ca-
pability. Indeed, it defines the area around a pixel within which it is assumed that texture
patterns are statistically steady. Several authors in literature addressed the problem of the
selection of the best dimension by adopting a trial-and-error method. Most of them con-
clude that larger textural windows lead to lower classification accuracies. However, aiming
at an empirical definition of the relation between window size and classification accuracy
of VHR panchromatic images of urban environments, in [72] it has been demonstrated the
possibility to obtain high classification performances with very wide-area textural windows,
which allow for the detection of even small textural patches in the image. As a matter of
fact, the box dimension is connected to the mean size of textured areas, such as settle-
ments blocks in urban environments [73]. Nevertheless, the block size is usually unknown,
and likely different, for large towns, in different parts of the same urban area. Thus, in
principle, the best and most commonly adopted approach is a trial-and-error method. Al-
ternatively multi-scale analysis, as those suggested in [73] and [74], may be valuable for the
classification of a sub-urban environment.

Assuming that not all the aforementioned eight textural measures (see §5.2) are effective
to discriminate the land cover surfaces, in this work it has been studied the behavior of 5000
pixels collected for each class in the Spotlight image in Fig.9.1. The graphs in Fig.10.5 are
referred to the textural parameters evaluated over windows of five different sizes (7x7, 9x9,
11x11, 13x13 and 15x15), chosen on the basis of the spatial resolution and the dimension
of the main objects within the scene. Each texture image has been obtained by averaging
the pixel values computed considering the 0◦, 45◦ and 90◦ directions, with a spatial shift
equal to 15. As it can be observed in Fig.10.5, the general trend of the mean values of
the parameters stemming from the GLCM computation does not change significantly with
varying dimension of the window. However, in all the cases, only four out of eight measures
appear to be relevant for discriminating the different land covers. Therefore, in addition
to the backscattering intensity, also the mean, variance, contrast and correlation features,
have been identified as the set of most suitable input information for the NN training.

Even if it has been demonstrated that larger windows may lead to more stable texture
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Figure 10.5. Textural parameters mean values evaluated for 5000 pixels collected in each class.
The GLCM has been computed by considering different window sizes: 7x7, 9x9, 11x11, 13x13, 15x15
pixels; the spatial distance has been fixed to 15; the textural features have been firstly estimated in
three main directions, that are 0◦, 45◦ and 90◦, and then the average has been taken into account.
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features, they can cause blurring of edges in VHR SAR images, while smaller cells can make
the objects boundary wrong [74]. To get the appropriate window size, the Transformed
Divergence (TD) [75], [76] has been computed for each pair of classes of interest, in order
to figure out their degree of separability. The TD is defined as follows:

TD(i, j) = 2 ·
[
1− exp

−Di,j
8

]
(10.1)

where Di,j is the divergence between classes i and j. The higher Di,j , the higher is
the separability expressed by TD, the maximum value of which is 2. A pair of classes are
considered well-distinguishable if the Transformed Divergence is larger than 1.9.
Table 10.4 and its corresponding plot in Fig.10.6 show a good separability for each pair of
classes, even when, besides the intensity of the backscattering, the only four most significant
GLCM parameters have been taken into account. In general the separability increases with
the window size, with exceptions for the asphalt-trees pair, and for the asphalt-manmade
one. The latter exhibits a slight decrease in the TD value, starting from the 13x13 dimen-
sion. Notwithstanding, the Transformed Divergence still remains higher than 1.9. On the
other hand, the classes asphalt and trees are less easy to be distinguished, as highlighted
by the graph in Fig.10.7.

Figure 10.6. Class separability as a function of window size.

Table 10.4. Transformed Divergence evaluated for each pair of classes and different window sizes,
based on Intensity, Mean, Variance, Contrast, Correlation pixel values.

7x7 9x9 11x11 13x13 15x15

A/LV 1.9833 1.9959 1.9988 1.9996 1.9998
A/T 1.7875 1.8054 1.8124 1.8172 1.8105
A/T 1.7875 1.8054 1.8124 1.8172 1.8105
A/MM 1.9973 1.9975 1.9974 1.9966 1.9955
LV/T 1.8981 1.9445 1.9610 1.9631 1.9606
LV/MM 2.0000 2.0000 2.0000 2.0000 2.0000
MM/T 1.9691 1.9869 1.9949 1.9979 1.9983

Based on such analysis, the 13x13 window size has been finally selected for the classifi-
cation of Spotlight imagery.
By adopting the same rationale, the textural analysis has been replicated for the Stripmap
images. Consistent outcomes have been achieved in terms of suitable GLCM features and
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Figure 10.7. Mean values of the intensity of backscattering and textural parameters obtained
from the GLCM computation (window size: 13x13 pixels; spatial distance: 15; direction: 0◦, 45◦,
90◦(average of the estimated textural parameters).

relationship between window size and classes separability. Therefore, the same five param-
eters (intensity of backscattering, mean, variance, contrast and correlation) have been used
to train the MLP-NN classifier. Given the coarser spatial resolution of the Stripmap acqui-
sitions, the best set of textural parameters have been obtained by computing the GLCM
on windows made of 11x11 pixels, and considering a distance equal to 13.
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Results

Single Spotlight image classification

The couple of Spotlight data in Fig.10.8(a) and Fig.10.8(b) (9700x5300 pixels), acquired
in a range time of about one year, have been considered for the classification exercise. In
every image, 45825 training pixels and 17625 validation pixels have been randomly selected
in correspondence of each class of interest, taking into account all the possible surfaces
previously statistically analyzed. All these samples, carrying five sources of information
(intensity of backscattering, mean, variance, contrast and correlation), have been used
to train the net and to assess the efficiency of the learning. The topology of the neural
network which better minimizes the MSE has been, for both the images, that one with two
hidden layers containing 12 neurons each (5x12x12x4). The mapping results are shown in
Fig.10.9(a) and Fig.10.9(b).

For the validation phase, the maps have been compared with the two optical images
represented in Fig.10.10, acquired by WorldView-2 on 4th July 2010, and by QuickBird
on 20th May 2011, respectively. A first qualitative interpretation of the results reveals
a fairly good correlation with the ground truth; in particular, manmade structures are
generally recognized with good accuracy, as well as the road network. As for the first
classification experiments, also in these cases some confusion between A and LV classes
occurs, basically due to the large percentage of bare soil whose behavior, in terms of intensity
of backscattering and texture, can be very similar to that of parking lots. As the statistical
analysis has pointed out, the correct classification of the motorway has been hard to achieve,
therefore most of the correspondent pixels have been interpreted as vegetation. Moreover,
the typical geometrical artifacts affecting the SAR images, especially layover and shadowing,
can make the buildings recognition incorrect: flat roofs may be classified as asphalt, and
parts of a single manmade structure may be interpreted as a tree. Such a confusion is
much more evident in high-density urban areas, where the backscattered signal comes from
a variety of elements very close to each other (buildings, other manmade structures, trees,
roads, etc.).
As far as the differences between the two maps are concerned, the main and most visible
one occurs in the percentage of pixels classified as asphalt, which is higher in the July
image. The hypothesized reason of a larger percentage of bare soil or scarcely vegetated
surfaces in the older image, and of the presence of taller lawn in the more recent acquisition,
finds a possible confirm in the analysis of the false color composite optical images and
their respective NDVI maps (Fig.10.10). In fact, the image acquired in 2011 exhibits
wider patches characterized by high reflectivity in the NIR band (represented as bright
red areas), and high NDVI index. However, somewhere the difference between the two
acquisitions, in terms of NIR reflectivity and NDVI value, is not very strong. Yet, the
classifier demonstrated to be able to distinguish the low vegetation from the trees class,
since the SAR backscattering mostly depends on the geometry of the imaged targets.

Through the comparison with 28200 ground truth pixels randomly collected within
each COSMO-SkyMed acquisition, the accuracy of the results has been evaluated equal to
83.34% for the 9th July 2010 acquisition, and to 84.92% for the 11th June 2011 image. The
details of each confusion matrix are reported in Table 10.5 and Table 10.6.
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(a)

(b)

Figure 10.8. Tor Vergata area, Rome (Italy) imaged by COSMO-SkyMed operating in Spot-
light mode (9700x5300 pixels), in HH polarization c©ASI. a) Acquisition date: 9th July 2010. b)
Acquisition date: 11th June 2011.
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(a)

(b)

Figure 10.9. Classification results of the Spotlight COSMO-Skymed images (9700x5300 pixels) in
a) Fig. 10.8(a) and b) Fig. 10.8(b), achieved by means of a 5x12x12x4 MLP-NN.
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Table 10.5. Confusion matrix referred to the classification map in Fig. 10.9(a).

CLASS A LV T MM TOT

A 90.16 23.25 2.37 1.30 29.27
LV 8.30 75.42 6.37 0.62 22.68
T 0.86 0.84 75.59 5.70 20.74

MM 0.68 0.49 15.67 92.38 27.31
TOT 100.00 100.00 100.00 100.00 100.00

Overall Accuracy: 83.34%
K coefficient: 0.78

Table 10.6. Confusion matrix referred to the classification map in Fig. 10.9(b).

CLASS A LV T MM TOT

A 86.85 10.24 1.79 1.02 24.97
LV 9.11 70.62 1.11 0.18 20.25
T 3.91 19.00 87.00 3.59 28.38

MM 0.13 0.14 10.10 95.21 26.39
TOT 100.00 100.00 100.00 100.00 100.00

Overall Accuracy: 84.92%
K coefficient: 0.79

(a) (b)

(c) (d)

Figure 10.10. a) WorldView-2 image (4th July 2010) c©DigitalGlobe (R: NIR1, G: Red, B: Green)
and b) its correspondent NDVI map. c) QuickBird image (11th June 2011) c©DigitalGlobe (R: NIR,
G: Red, B: Green) and d) its correspondent NDVI map.
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Single Stripmap image classification

By replicating the textural analysis previously discussed for the Spotlight images, it has
been found out that the best class separability for the Stripmap acquisitions is obtained
by combining the intensity of the backscattering with the mean, variance, contrast and
correlation information obtained from the GLCM computation, on windows of 11x11 pixels
and considering a spatial shift equal to 13. Hence, a 5-input neural network has been
designed to identify four possible outputs. The best performance of the algorithm has
been achieved by using 7200 training samples (and a set of 3200 validation pixels) to
feed a 5x10x10x4 MLP-NN. The experiment has been performed on the 2800x1800 pixels
Stripmap image in Fig.10.11. The confusion matrix in Table 10.7, which exhibits an overall
accuracy of 92.45%, has been evaluated by means of 4000 ground truth pixels, which have
been randomly selected and interpreted through a comparison with the QuickBird image in
Fig.10.12(a). High performance of the algorithm occurs in mapping almost all the manmade
structures and areas covered by scarce or low vegetation. The result shows again some
confusion between asphalt surfaces and tree-covered areas, but these errors mainly occur
along the tree-lined streets, where it could be very hard to distinguish the land cover pixel
by pixel, so that the training set could include wrong examples.

Figure 10.11. Tor Vergata, Rome (Italy) imaged by COSMO-SkyMed operating in Stripmap mode
(2800x1800 pixels), in HH polarization c©ASI (acquisition date: 20th September 2008)

Table 10.7. Confusion matrix referred to the classification map in Fig.10.12(b).

CLASS A LV T MM TOT

A 87.60 0.80 1.70 0.20 22.58
LV 4.60 97.70 6.70 0.00 27.25
T 7.20 1.50 85.40 0.70 23.70

MM 0.60 0.00 6.20 99.10 26.47
TOT 100.00 100.00 100.00 100.00 100.00

Overall Accuracy: 92.45%
K coefficient: 0.89
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(a)

(b)

Figure 10.12. Tor Vergata area, Rome (Italy) imaged by a) QuickBird sensor c©DigitalGlobe
(acquisition date: 8th December 2008). b) Classification map of the image in Fig.10.11 achieved by
means of a 5x10x10x4 MLP-NN.
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Algorithm robustness tests

The use of textural information derived from the GLCM computation proved to be effective
in improving the quality of the classification maps. However, as previously highlighted, the
ability of the MLP-NN classifier mostly depends on the training set, in terms of size and
representativeness. In order to test the robustness of the algorithm, two different exercises
have been carried out. In the first case, the image has been classified by using MLP-NN
trained by an increasing number of samples, and the accuracies of each result have been
evaluated. The goal of the second test has been to verify the efficiency of the algorithm in
providing maps of a different site, specifically the Greater Denver area, Colorado, USA.

Robustness test on the training set size

As previously asserted, in order to make the net able to correctly distinguish the classes of
interest, it is of crucial importance the exploitation of statistically representative training
patterns. Aiming at the assessment of the sensitivity of the method with respect to small
training sets, an experiment has been carried out by feeding the NN by an increasing number
of samples (from 200 to 1800 pixels per class), randomly collected in correspondence of each
class of interest over the Stripmap acquisition in Fig.10.11. Moreover, to assess the efficiency
of the learning phase, the algorithm has been validated on different and smaller validation
sets (from 80 to 800 pixels per class). Afterward, the trained NNs have been applied to the
whole image and the accuracies of the classification maps have been quantified through the
cross-check with 4000 pixels representing the ground truth, provided by the comparison with
the optical QuickBird image acquired on 8th December 2008 (Fig.10.12(a)). As Fig.10.13
shows, by increasing the training pattern size a slight enhancement in the overall accuracy
can be observed. However, the experiment proved the effectiveness of the neural network
classifier, since a quite precise map has been obtained even by exploiting only 200 training
pixels per class (88.9% overall accuracy), while the best result, for which an overall accuracy
of 92.5% has been evaluated, was achieved by feeding the net by means of 1800 samples
per class.

Figure 10.13. Overall accuracy and K coefficient achieved by increasing the size of the training
set feeding the NN classifier.
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Image classification of a different test site

The pixel classification methodology shown for COSMO-SkyMed Spotlight images acquired
over Rome, has been validated on the Greater Denver area, Colorado, USA (Fig.10.14). In
this case the class of water (W) has been added because of the large extension of this type
of surface in the area. Differently from the analyzed italian site, here the urbanized areas
are mainly characterized by single houses with gardens and yards, all organized in regu-
lar blocks. The identification of each single element in such dense residential settlements
imaged by the VHR SAR, is not a trivial task. Indeed, the only buildings which can be
visually recognized, are the larger and isolated ones, as well as the smaller houses oriented
along the azimuth direction. In this cases, a stronger backscattering results in bright ob-
jects or lines, corresponding to the facades of the buildings.

(a)

(b)

Figure 10.14. Two frames of the Greater Denver area, Colorado, USA, selected from a Spotlight
COSMO-SkyMed acquisition (HH polarization; acquisition date: 11th December 2010) c©ASI. a)
Training image (9428x3563 pixels). b) Image exploited for the fully automatic classification exercise
(9282x4584 pixels).

Regarding the input quantities, backscattering coefficient, plus the four GLCM fea-
tures (mean, contrast, variance and correlation) have been considered. The results for an
image of size 9428x3563 pixels, and for an image of size 9282x4584 pixels, are shown in
Fig.10.15(b) and Fig.10.16(b), respectively. The interpretation of the SAR pixels that have
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been collected to build the training, validation and ground truth sets, has been performed
by exploiting the only available optical source, which has been provided by GoogleEarth.
The training phase has been carried out by feeding a 5x12x5 MLP-NN by means of 29000
samples, and its efficiency has been evaluated by considering 21100 validation pixels ran-
domly collected in each land cover. Note that the classification of the second image has
been carried out in a fully automatic mode, hence no pixels belonging to this image have
been considered in the training phase of the classifying network.
From the figures it can be seen that the class water has been detected with high accuracy in
the first example, while in the second some confusion occurs, likely due to the presence of
different material on the surface. In both the maps the main roads seem to be well classi-
fied, while the narrow streets, crossing the residential blocks, are often confused with trees
or building, because of the layover effect and the presence of vegetation along the avenues.
As expected, the worst performance of the algorithm occurs in the detection of manmade
structures. Actually, single and/or larger buildings are correctly classified, whereas the
residential districts are basically classified as trees. The assessment of the achieved land
cover maps is summarized in the confusion matrices in Table 10.8 and Table 10.9, which
have been computed through a cross-checking with 25000 ground truth samples.

(a)

(b)

Figure 10.15. a) c©Google Map Ground Truth. b)Classification map of the image in Fig.10.14(a)
achieved by means of a 5x12x5 MLP-NN.
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(a)

(b)

Figure 10.16. a) c©Google Map Ground Truth. b) Classification map of the image in Fig.10.14(b)
achieved automatically by using the previously trained 5x12x5 MLP-NN.

Table 10.8. Confusion matrix referred to the classification map in Fig.10.15(b).

CLASS A LV T MM W TOT

A 69.54 7.82 4.58 1.14 4.02 17.42
LV 19.02 81.96 7.02 0.00 0.00 21.60
T 5.68 10.22 84.28 36.84 0.00 27.40

MM 0.00 0.00 4.12 62.02 0.00 13.23
W 5.76 0.00 0.00 0.00 95.98 20.35

TOT 100.00 100.00 100.00 100.00 100.00 100.00

Overall Accuracy: 78.75%
K coefficient: 0.73

Similarly to what has been performed for Spotlight data, a test of the classification on
a different area, again the Great Denver area, Colorado, has been carried out (Fig.10.17).

The result shown in Fig.10.18(b) has been achieved by training a 5x10x10x5 MLP-NN
by using 33800 samples and 14600 validation pixels. A qualitative evaluation of the result
put in evidence a pretty good agreement with the ground truth. In fact the class water
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Table 10.9. Confusion matrix referred to the classification map in Fig.10.16(b).

CLASS A LV T MM W TOT

A 82.42 15.58 1.02 0.52 28.02 25.51
LV 13.08 83.42 20.74 0.00 0.24 23.50
T 2.42 0.76 76.50 34.36 0.00 22.81

MM 0.00 0.00 1.74 65.12 0.00 13.37
W 2.08 0.24 0.00 0.00 71.74 14.81

TOT 100.00 100.00 100.00 100.00 100.00 100.00

Overall Accuracy: 75.84%
K coefficient: 0.70

Figure 10.17. Great Denver area, Colorado, USA imaged by COSMO-SkyMed operating in
Stripmap mode (4676x4087 pixels), in HH polarization c©ASI (date of acquisition: 10th Decem-
ber 2010).

has been correctly classified, as well as the vegetation classes. The main roads have been
detected with a quite good accuracy, whereas some confusion occurs for the narrow streets,
which are hidden because of the SAR geometrical distortions affecting trees and buildings
located along them. The algorithm demonstrated to be able to recognize most of the largest
buildings, and some of the smaller houses belonging to dense urban districts. Yet, the
closeness of the houses, as well as the presence of trees and gardens led the neural network
to erroneously classify the manmade structures as trees. In Table 10.10 it is reported the
confusion matrix computed by using 10000 ground truth samples.
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(a)

(b)

Figure 10.18. a) c©Google Map Ground Truth. b)Classification map of the image in Fig.10.17
achieved by means of a 5x10x10x5 MLP-NN.
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Table 10.10. Confusion matrix referred to the classification map in Fig.10.18(b).

CLASS A LV T MM W TOT

A 82.50 9.30 5.05 2.55 4.85 20.85
LV 15.45 86.70 9.10 0.00 0.85 22.42
T 0.55 0.20 81.45 16.75 0.00 19.79

MM 1.50 0.00 4.10 80.70 0.00 17.26
W 0.00 3.80 0.30 0.00 94.30 19.68

TOT 100.00 100.00 100.00 100.00 100.00 100.00

Overall Accuracy: 85.13%
K coefficient: 0.81

10.3 Exploitation of the interferometric coherence

Although promising results have been achieved by exploiting backscattering and its textural
and contextual properties extracted from a single COSMO-SkyMed image, the algorithm
exhibited some weakness in discriminating between artificial surfaces and natural areas.
In order to increase the accuracy of the classification, the possibility to benefit from the
availability of interferometric images pairs has been investigated. Indeed, when two images
are taken on the same area within a limited time window, the modulus of the degree of
coherence can be added as an additional piece of information besides the backscattering
and texture characteristics. The rationale is based on the observed higher values over
artificial surfaces and objects, such as streets and buildings, in comparison with the degree
of coherence values evaluated over vegetated areas.

The following experiments have been carried out by means of the information stemmed
from two couples of Spotlight and Stripmap images in order to identify three broad classes
(asphalt, natural areas and manmade structures). In addition, a further test has been
performed by using a pair of Spotlight acquisitions for the classification of asphalt, low
vegetation, trees and manmade classes. In the first exercises, the MLP-NN have been fed
by seven elements input vectors, including the degree of coherence and the backscattering
amplitude, local mean and local standard deviation, estimated in both the images. Aim-
ing at the discrimination between four classes, eleven features have been considered. In
fact, besides the interferometric coherence, for each image, the same five features already
exploited in the experiments discussed above, have been included into the input vector.

Results

Three classes mapping by using two Spotlight images and simple local texture.

The first test has been carried out by exploiting the pair of Spotlight images taken on 8th
June 2010 by COSMO-SkyMed 3 satellite and on 9th July 2010 by COSMO-SkyMed 2
[69], [77]. For sake of comparison, the same scene classified in Fig.10.1 has been processed
by training a 7x9x9x3 MLP-NN by using the same set of 735 pixels. The performance of
the learning algorithm has been tested on the same 315 validation samples as well. The
obtained land cover map in Fig.10.19 shows an actual enhancement of the quality of the
classification, which has been assessed by a cross-checking of 861 ground truth pixels.

The confusion matrix in Table 10.11 shows an overall accuracy of 92.91%. In particular,
the main roads and traffic circles are now better delineated. However, since dry bare soil
exceeds vegetation, some confusion can be still observed between asphalted surfaces and
natural surfaces. It has also to be noted that no filtering to remove high spatial frequency
effects (such as small isolated high-backscattering pixels) has been applied to refine the
output map. In fact, if in some cases the very small objects observed in the classified map
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Figure 10.19. Classification map (994x556 pixels) achieved by exploiting the backscattering am-
plitude, the local mean, the local standard deviation and the interferometric coherence derived from
two Spotlight COSMO-SkyMed images acquired on 8th June 2010 and 9th July 2010 over Tor
Vergata, Rome (Italy). MLP-NN architecture: 7x9x9x3.

are artifacts of speckle, in other cases they are in agreement with the real scenario, which
includes the appearance of cars, lamps on the road sides or other discontinuities in the
locally dominating type of surface. An interesting feature is noted in parts of the biggest
roads, where the algorithm is capable of detecting the presence of the small grass and of
the guardrail separating the two ways of direction.

Table 10.11. Confusion matrix referred to the classification map in Fig.10.19.

CLASS A N MM TOT

A 94.76 9.21 0.00 27.99
N 5.24 89.91 2.05 49.36

MM 0.00 0.88 97.95 22.65
TOT 100.00 100.00 100.00 100.00

Overall Accuracy: 92.91%
K coefficient: 0.88

By the analysis of Table 10.12, it is reasonable to assert that the addition of the sec-
ond image and of the interferometric coherence plays a significant role in improving the
discrimination between asphalted and natural surfaces. This is evident in Fig.10.20 which
compares the results of the single-image with that of the double-image algorithm. It can
be observed that the roundabout and the parking area behind the School of Engineer-
ing (Fig.10.20(a)), as well as the parking area near the building of Faculty of Economics
(Fig.10.20(d)), are much better detected by the two images classification. Differently, the
additional information carried by the second image did not alter significantly the perfor-
mance on the built surfaces. In fact, the high backscattering characteristics of this class
seem to make it discernible using only one image.
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(a) QuickBird image (b) Two images (c) Single image

(d) QuickBird image (e) Two images (f) Single image

Figure 10.20. Improvement in the discrimination of the asphalted surfaces using the 2 images
(Fig.10.20(b) and Fig.10.20(e)) instead of the 1-image algorithm (Fig.10.20(c) and Fig.10.20(f)).

Table 10.12. Comparison of per-class accuracies (%) considering the single image and the two-
images schemes.

Per-class accuracies (%)

CLASS 1 IMAGE 2 IMAGES

A 79.05 94.76
N 94.08 89.91

MM 97.95 97.95

Overall accuracies 91.30 92.91

Three classes mapping by using two Stripmap images and simple local texture.

Two Stripmap acquisitions, taken on 24th and 25th May 2010 by COSMO-SkyMed 2 and
COSMO-SkyMed 3, respectively have been considered for a second experiment. As for the
Spotlight case, the same frame classified by exploiting the single image in Fig. 10.3 has been
processed in this exercise. Given the closeness in time of the acquisitions, no significant
variations are present in the second image. The same training and validation set previously
collected has been used to feed a 7x9x9x3 MLP-NN which provided the land cover map
represented in Fig.10.21.

The visual assessment of the result, as well as the confusion matrix computed through
744 ground truth samples (Table 10.13) lead to state and confirm the utility of the backscat-
tering amplitude, its contextual properties, and of the interferometric coherence as an ef-
ficient set of exploitable information carried by two SAR acquisitions. In particular, the
main benefit due to the exploitation of the degree of the interferometric coherence is in the
better delineation of the streets. Moreover, a comparison with the map achieved by using
a single acquisition (Fig.10.4(b)), put in evidence the improvement in the classification of
natural surfaces, where the strong “noise” due to the confusion with the asphalt class has
been definitely mitigated. As a consequence, the overall accuracy increased from 88.31%
to 94.35% (Table 10.14).
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Figure 10.21. Classification map (836x520 pixels) achieved by exploiting the backscattering am-
plitude, the local mean, the local standard deviation and the interferometric coherence derived from
two Stripmap COSMO-SkyMed images acquired on 24th and 25th May 2010 over Tor Vergata,
Rome (Italy). MLP-NN architecture: 7x9x9x3.

Table 10.13. Confusion matrix referred to the classification map in Fig.10.21.

CLASS A N MM TOT

A 92.86 2.65 0.00 27.42
N 7.14 92.04 0.00 43.95

MM 0.00 5.31 100.00 28.63
TOT 100.00 100.00 100.00 100.00

Overall Accuracy: 94.35%
K coefficient: 0.91

Table 10.14. Comparison of per-class accuracies (%) considering the single image and the two-
images schemes.

Per-class accuracies (%)

CLASS 1 IMAGE 2 IMAGES

A 90.00 92.86
N 80.53 92.04

MM 100.00 100.00

Overall accuracies 88.31 94.35

Four classes mapping by using two Spotlight images and GLCM textural fea-
tures.

The experiment has been carried out by considering the pair of Spotlight images of Tor
Vergata, taken on 16th December 2010 and 1st January 2011. The scene under study
is represented in false color composition in Fig.10.22. The image has been obtained by
filtering the former acquisition in the red channel, the second in the green one, and the
coherence in the blue band. As it can be observed, this simple method of visualization
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enhance the interpretation of the SAR image. In fact, because of their high backscattering
values and high degree of coherence, the manmade structures can be easily identified as
white objects. On the other side, the asphalted surfaces, which are characterized by low
backscattering values but high degree of coherence, results in blue pixels. Elsewhere, over
the vegetated surfaces, the degree of coherence is lower and more variable. However, higher
backscattering values, resulting in brighter green/yellow patches, can be mainly associated
to the class trees.

Figure 10.22. False color composite image of Tor Vergata, Rome (Italy)(8298x5822 pixels). R:
Spotlight COSMO-SkyMed image. HH polarization. Date of acquisition: 16th December 2010
c©ASI. G: Spotlight COSMO-SkyMed image. HH polarization. Date of acquisition: 1st January

2011 c©ASI. B: Interferometric coherence image.

The classification task has been performed by training and testing an 11x11x4 MLP-
NN by means of 51000 training samples and 30500 validation pixels. The output map is
shown in Fig.10.23(b). For the result assessment, the closest optical image available was
the QuickBird in Fig.10.23(a), which was acquired more than four months after the second
CSK image. A qualitative comparison reveals a quite high accuracy of the classification.
The exploitation of the coherence information allowed the correct classification of the road
network, and in particular of the motorway, whose recognition has not been successful in
the previously discussed experiments. Moreover, both single large manmade structures, and
buildings located in denser urban environments, have been identified with a good accuracy.
The differentiation among the two natural surfaces seems to be well correlated with the
ground truth. The quantitative assessment of the classification exercise has been carried
out by using 24000 ground control points. The confusion matrix in Table 10.15 agrees to
the qualitative interpretation of the result. An overall accuracy of 87.80% has been reached
in spite of some misclassification between the low vegetation and trees classes, as well as
between the latter and the manmade class.

The achievement is particularly satisfactory if compared with that obtained by using
the single image acquired on December. As it can be observed in Fig.10.24, the exploita-
tion of eleven features, including the GLCM textural parameters and the interferometric
coherence, enhances significantly the correct classification of asphalted surfaces and of man-
made constructions in dense urban areas. Moreover, such an approach has led to a general
increasing of the overall and per-class accuracies (Table 10.16).
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(a)

(b)

Figure 10.23. Tor Vergata area, Rome (Italy) imaged by a) QuickBird sensor c©DigitalGlobe
(Acquisition date: 12th April 2011). b) Classification map achieved by exploiting the intensity of
backscattering, mean, variance, contrast and correlation stemmed from the GLCM computation,
and interferometric coherence derived from two Spotlight COSMO-SkyMed images acquired on 16th
December 2010 and 1st January 2011. MLP-NN architecture: 11x11x4.
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Table 10.15. Confusion matrix referred to the classification map in Fig.10.23(b).

CLASS A LV T MM TOT

A 89.70 6.11 2.97 0.00 24.70
LV 4.12 86.67 9.90 0.00 25.17
T 1.03 6.11 79.21 4.40 22.69

MM 5.15 1.11 7.92 95.60 27.45
TOT 100.00 100.00 100.00 100.00 100.00

Overall Accuracy: 87.80%
K coefficient: 0.84

(a) QuickBird image (b) Two images (c) Single image

(d) QuickBird image (e) Two images (f) Single image

Figure 10.24. Improvements in the classification of asphalted surfaces (Fig.10.24(a)) and of dense
urban environment (Fig.10.24(d)) by using two images (classification details in Fig.10.24(b) and
Fig.10.24(e)) instead of a single acquisition (classification details in Fig.10.24(c) and Fig.10.24(f)).

Table 10.16. Comparison of per-class accuracies (%) considering the single image and the two-
images schemes.

Per-class accuracies (%)

CLASS 1 IMAGE 2 IMAGES

A 81.08 89.70
LV 73.42 86.67
T 76.45 79.21

MM 79.98 95.60

Overall accuracies 77.73 87.80

10.4 Conclusions

Aiming at the monitoring of land cover in suburban areas by using VHR Spotlight and
Stripmap COSMO-SkyMed imagery, the presented study has been focused on the devel-
opment of an automatic processing chain based on neural networks. The analysis of the
several surfaces belonging to a complex scenario, such as that which characterizes the Tor
Vergata area, put in evidence the necessity of addressing the issue of investigating on further
possible sources of information to be derived from single polarized SAR data.
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A first attempt concerned the exploitation of simple local texture (local mean and
standard deviation) in order to achieve thematic maps, in which were possibly identified
three main classes: asphalt, natural surfaces and manmade structures. High accuracies
(larger than 80 %) have been obtained for both the Spotlight and Stripmap products.

Afterward, the analysis of the information carried by the textural feature stemmed from
the computation of the GLCM, led to the selection of four parameters (mean, variance, con-
trast and correlation) which have been included into the input vector of the MLP-NN. Such
approach allowed the enhancement of the classification maps, especially in terms of num-
ber of recognized land covers. In fact, the algorithm proved to be able to discriminate
four classes: asphalt, low vegetation surfaces, trees and manmade structures. Generally
speaking, the achieved maps reproduce the ground-truth patterns, reaching overall accu-
racies higher than 80%. However, some confusions occurred in the discrimination between
scarcely vegetated areas and asphalted surfaces. The reason might be due to the presence
of a large percentage of bare soil whose backscattering and textural characteristics may be
similar to those of relatively rough streets.
Tests on the generalization capability of the MLP-NN based algorithm have been carried
out by applying the trained neural networks to new images, which have not been used for
the learning phase. It has to be noted that, since such experiments provided promising
results in a fully automatic way, the neural network approach seems to be valuable to-
wards the implementation of fast and effective processing chain to perform the land cover
classification of a large amount of SAR data, without any human intervention.

Tests on the robustness of the algorithm have been also accomplished. By increasing
the size of the training set, and by evaluating the accuracies of the achieved classification
maps, it has been proved the capability of the algorithm in providing high quality products,
even when only few hundreds of samples are exploited.
Moreover, besides the sub-urban area of Tor Vergata, a different type of urban environ-
ment has been taken into account for the classification task. Specifically, single polarized
Spotlight and Stripmap COSMO-SkyMed images of the Great Denver area have been clas-
sified by feeding the MLP-NNs by means of the same five input features (intensity of the
backscattering, plus four GLCM textural parameters: mean, variance, contrast and correla-
tion). Differently from the previous exercises, the human settlements are mainly represented
by dense residential areas, organized in blocks of lined small houses surrounded by gardens;
moreover, the investigated scenario included a number of lakes, which made necessary to
add the class water into the output vector of the classifier. The results showed a good
interpretation of the main road networks, wide vegetated areas and water surfaces. The al-
gorithms proved to be still able to identify large or isolated manmade constructions, whereas
the multiple backscattering contributions occurring in high density residential districts, led
the net to mis-interpret the buildings, which have been classified as trees.

Thanks to the configuration of the COSMO-SkyMed constellation, the availability of
interferometric pairs of acquisitions led to the investigation on the possibility of employ-
ing the coherence information to improve the discrimination among artificial and natural
surfaces. Actually, it has been demonstrated the effectiveness of such approach which es-
pecially allowed the enhancement of the asphalt and natural (or low vegetation) classes
accuracy.

To conclude, it is worth to highlight the fact that the developed computational tool can
readily and effectively incorporate additional information stemming from images taken at
different polarizations or by other kinds of sensors, in order to improve the discrimination
of several land covers.



102 CHAPTER 10. LAND COVER CLASSIFICATION



Chapter 11

Data fusion

The recent development of new-generation satellite systems equipped with VHR SAR and
optical sensors, leads scientists to explore the potentialities of the use of the combined in-
formation contents. While optical remote sensing has proven its usefulness in land cover
and change detection maps production, SAR images have the advantage of high confi-
dence/certainty in observing the scene. Data fusion is expected to be a suitable tool both
to overcome the limitations of single sensors (mainly due to the difficult interpretation of
SAR images, especially if acquired in single polarization, and to the optical sensors depen-
dency on weather and lighting conditions),and to enhance identification and monitoring of
various land covers.

This study mainly regards the synergy of different sensors in discriminating within veg-
etated landscapes, i.e., within a single land cover type. Different combinations of Spotlight
COSMO-SkyMed data, either at HH or at VV polarization, and WorldView-2 multispec-
tral images have been tested in order to evaluate the mapping improvement brought by the
fusion of the information, in comparison with the single kind of data. Combining optical
and microwave features is expected to yield enhanced land cover maps, with higher overall
accuracy and increased number of vegetation classes.

Below, the exploited multi-data images will be described, as well as their necessary
pre-processing. Afterward, the experiment will be explained and the results discussed.

11.1 Vegetation mapping by combining VHR SAR and op-
tical data

The benefits from fusing SAR and optical observations has been already confirmed by
several authors [78–82]. In particular, Pierdicca et al. [82] found that the separability of
agricultural classes was enhanced by simultaneous use of optical (AVNIR-2 and SPOT) and
microwave (COSMO-SkyMed, PalSAR, ERS-2) sensors.

The rationale is that different plants may be characterized by different geometries of
vegetation canopies, though having close water and chlorophyll content. Hence, the similar
spectral response would not allow discrimination by optical imaging. Instead, SAR images
carry the differentiating information, being the microwave backscattering sensitive to the

Part of this chapter’s contents is extracted from:

1. C. Pratola, G. A. Licciardi, F. Del Frate, G. Schiavon and D. Solimini, Fusion of VHR
Multispectral and X-band SAR data for the enhancement of vegetation maps, Proc. IEEE,
International Geoscience and Remote Sensing Symposium , IGARSS 2012, pp. 6793-
6796, 2012.

:
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geometry of scatterers. On the other hand, different plants may happen to have quite
similar geometric characteristics, but a diverse spectral response. In this case, microwave
imagery would not be able to discriminate, whereas optical observations would carry the
useful information.

In the example in Fig.11.1 three different natural surfaces acquired by CSK in HH and
VV polarizations, and by WV2 in multispectral mode have been analyzed. As it can be
observed, the SAR sensor operating in VV polarization is able to differentiate overhead
trellis vineyard from shrubs, whereas the optical signatures appear very similar, hindering
the discrimination between the two land covers. On the other hand, shrubs and bare soil
exhibit, in this particular case, a similar VV backscattering, probably due to the speckle, the
Bragg effect, the roughness, or to the soil moisture; however the multispectral information
may make easier their classification. In HH polarization, the less penetration into the
canopies of the X-band signal, does not permit to distinguish shrubs from vineyard, while
it is possible to discriminate between both of them and bare soil. When different natural
surfaces show at the same time similar backscattering values and spectral signature, the
classification task requires for the identification of further suitable features, such as texture
parameters, vegetation indexes etc...

(a) (b)

(c) (d) (e)

Figure 11.1. a)Example of backscattering behavior and b) multispectral signature recorded by
CSK and WV-2 respectively, of three different natural land covers: c) shrubs (yellow), d) vineyard
(red) and e) bare soil (cyan).

Fusing optical and SAR metric images, such as those acquired by CSK and WV2, is
still an open issue, particularly in urban environments ([83], [84]), where the localization
effects of the substantially different acquisition features make the co-registration arduous
at the pixel level. However, this effect becomes negligible over flat areas essentially covered
by vegetation.

Image pre-processing has been necessary towards the joint exploitation of the available
multi-sensors dataset. Hence each SAR acquisition has been orthorectified, geocoded, cali-
brated and filtered to reduce the speckle noise. Because of the different spatial resolution, a
further processing step was required to co-register the images, so that the higher COSMO-
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SkyMed spatial resolution of 1 m was degraded to the lower 2 m resolution of the optical
acquisitions. Finally, to enhance the information content of the SAR data, textural images
derived from the GLCM computation [14] have been produced. Also based on previous
experience [41], the best discrimination between the classes of interest has been achieved
by using mean and homogeneity textures, derived from the GLCM with a window size of
3x3 and 7x7 pixels, respectively. The joint use of multi-sensor data in vegetation mapping
has been tested over an area in the southeast outskirts of Rome, where cultivated fields
(overhead trellis or rows vineyards and olive yards) alternate with pastures, bare soil and
shrubs (Fig.11.2).
The data set consists of the multi-temporal optical and SAR acquisitions reported in Table
11.1. The multispectral WorldView-2 set includes two images taken on the 4th of July 2010
and on the 10th of October 2011. Six Spotlight-mode COSMO-SkyMed images, covering all
the seasons, have been jointly exploited. Four SAR images are acquired at HH polarization
(8th June 2010, 2nd January 2011, 23rd April 2011 and 8th October 2011), while the others
at VV polarization (23rd June 2010 and 26th July 2010).

(a) (b)

Figure 11.2. a) WV2 image of the area of interest (acquisition date: 4th July 2010) c©DigitalGlobe;
b) Ground Truth: Overhead trellis vineyards (Red); Row vineyards (Green); Olives (Blue); Shrubs
(Yellow); Bare Soil (Cyan); Pastures (Magenta).

Table 11.1. Dataset

Image Sensor Date Polarization Information

A WV2 04-07-2010 - 8 bands

B WV2 10-10-2011 - 8 bands

C CSK 08-06-2010 HH Mean+Hom

D CSK 23-06-2010 VV Mean+Hom

E CSK 26-07-2010 VV Mean+Hom

F CSK 02-01-2011 HH Mean+Hom

G CSK 23-04-2011 HH Mean+Hom

H CSK 08-10-2011 HH Mean+Hom



106 CHAPTER 11. DATA FUSION

11.2 Results

As for the previously discussed pixel-based classification experiments, also the vegetation
mapping has been carried out by the commonly used MLP-NN, and the efficiency of the
training has been evaluated by the MSE function. A few thousands (9925) of training pixels
representing the two types of vineyards (VT: cultivated in overhead trellis; VR: cultivated
in rows), olive groves (O), shrubs (S), bare soil (BS) and pastures (P), as well as a smaller
validation set (5950 pixels), were randomly collected over known areas to train the net and
to evaluate its generalization capability during the learning phase. It has to be noted that
the net topology was tailored to each combination of images chosen for the classification
task. Once properly trained, the neural network has processed the images, and the accuracy
of the result has been assessed by cross-checks with the ground truth shown in Fig.11.2(b).
It has to be pointed out that no significant changes in land covers occurred between the
dates of acquisition, with the only exception of bare soil which somewhere became covered
by grass. Such varying areas have not been included into the training/validation set, nor
into the ground truth.

In a first experiment, data acquired in summer 2010 have been considered, by joining
the information embedded within one multispectral WorldView-2 image (A in Table 11.1),
with four textural features extracted from two Spotlight CSK acquisitions at HH and VV
polarization (C and D in Table 11.1).
A similar exercise has been repeated for a set of acquisitions taken in autumn and winter
2011, by stacking in a twelve-components vector the previously co-registered B, F and H
images (Table 11.1).

A third classification has been performed through the fusion of the twenty-eight features
derived from the whole available dataset.
As a comparison, two more experiments have been carried out: in one case only mean and
homogeneity textures extracted from the HH and VV CSK data (C and D in Table 11.1)
have been taken into account, while in the second one the information content embedded
within the eight bands of the single multispectral image A (Table 11.1) has been exploited.

In Fig.11.3 the means of the normalized values of the features exploited for the neural
network training put in evidence how the joint use of multi-temporal data, SAR derived
textural parameters and multispectral information can be useful to improve the discrim-
ination between some natural surfaces. In particular rather different values of mean and
homogeneity, even considering a single polarization SAR image, allow the identification
of overhead trellis vineyard and shrubs. Note that, since in all the exercises it has been
observed that the exploitation of the amplitude of the backscattering did not bring any
significant contribution to the discrimination between the classes, it has been neglected
with the advantage of a lower computational cost.
Fig.11.4 shows the vegetation maps resulting from each classification experiment [85]. Com-
parison with the ground truth confirms the benefits brought by the joint use of multi-sensors
data.

The map in Fig.11.4(a), characterized by a general confusion among all the natural
surfaces (bare soil is missing), puts in evidence the lack of suitable information content in
the textural features extracted only from a pair of SAR images.

On its side, exploiting a single multispectral image yields a better result (Fig.11.4(b)),
but confusion occurs between overhead-trellis vineyards and shrubs, as well as between
pasture and bare soil.

The classification results shown in Fig.11.4(c) and Fig.11.4(d), obtained by fusing SAR
and optical data acquired in different periods of the year, exhibit a slight further improve-
ment, in spite of some misclassification of the pasture areas, mainly attributable to mixed
pixels. In Fig.11.4(d), relative to the winter-autumn 2011 acquisitions, we note the correct
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(a) C+D (b) A+C+D

(c) A (d) B+F+H

(f) A+..+H

Figure 11.3. Means of the normalized values of the features exploited as input to the neural
network classifier.

identification of newly planted olive trees in the area adjacent to the already existent olive
grove.

Finally, the highest correlation with the ground truth appears in the map of Fig.11.4(e),
obtained by including into the classifier all the features in eight multi-sensors images.

It has to be mentioned that an urban class has not been included into the classification
exercises. When data refer to manmade structures, the classifier attributes the built surfaces
mainly to the shrub or bare soil classes. This error does not affect the accuracies of each
class reported in Table 11.2. In general, increasing the input vector dimension by adding
information carried by both SAR and optical acquisitions, enhances the vegetation mapping
in terms of both producer and overall accuracies. The highest overall accuracy, larger than
90%, is attained by processing the twenty-eight features image by a 28x40x40x6 MPL. The
classification result is also quite accurate for each class. The lowest producer’s accuracy, less
than 84%, occurs for the olive grove class and is probably caused by the different geometric
acquisition features of the satellite systems.

11.3 Conclusions

This study has been carried out aiming at the enhancement of vegetation mapping, attain-
able through the fusion of COSMO-SkyMed X-band VHR SAR images and multispectral
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WorldView-2 data. Different combinations of the multi-sensors data have been investigated,
and the results have been compared with those obtained by single-sensor acquisitions. The
classifier has been implemented by an MLP-NN algorithm, fed by the eight values of spec-
tral reflectivity provided by the optical sensor and/or by mean and homogeneity textural
parameters derived from the SAR images. The checks of the classification results against
the ground truth highlight the benefits from the data fusion, generally resulting in a rather
significant improvement of the producer’s and overall accuracies. As expected, widening the
data set by including different acquisition systems and dates, enhances the vegetation map-
ping, up to accuracies over 90%. Such results look promising towards a possible continuous
monitoring of agricultural surfaces by the available different multi-sensor products.

Table 11.2. Comparison of the producer accuracies (%) related to the maps achieved by the use
of: CSK HH and VV imagery (C+D); single WV2 image (A); CSK and WV2 summer acquisitions
(A+C+D); CSK and WV2 winter-autumn acquisitions (B+F+H); fusion of the whole multi-sensors
dataset (A+..+H). VT: overhead trellis vineyards; VR: vineyards in rows; O: olive groves; S: shrubs;
BS: bare soil; P: pastures.

Ex. C+D A A+C+D B+F+H A+..+H

Input
4 8 12 12 28

neurons

Hidden
2x16 2x20 2x24 2x24 2x40

neurons

VT 86.40 81.12 91.25 92.31 87.12

VR 57.51 87.22 95.67 95.09 97.84

O 20.92 59.76 82.56 71.57 83.40

S 41.11 48.56 75.45 80.33 84.06

BS 0.00 57.89 55.84 83.1 88.61

P 60.01 88.03 83.99 78.45 90.59

OA 60.89 81.96 87.56 85.43 90.86

K 0.46 0.75 0.83 0.80 0.87
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(a) (b)

(c) (d)

(e)

Figure 11.4. Vegetation maps achieved by combining different multi-sensors and multi-temporal
data. a) C+D; b) A; c) A+C+D; d) B+F+H; e) A+B+C+D+E+F+G+H.
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Introduction

Very high spatial resolution satellite images are a powerful tool for the urban areas moni-
toring and planning or for the characterization of settlements. Moreover, the capability of
COSMO-SkyMed SAR sensors of acquiring a huge amount of images over the same area
with a short revisit time, irrespective of weather and light conditions, makes such data
particularly useful for the near real-time assessment of damages occurring after natural
disasters or human conflicts. For these reasons the development of automatic, fast and
effective algorithms for buildings detection is an important and active research field. How-
ever, reaching such a goal can be rather difficult when dealing with VHR SAR images.
Actually, the appearance of typical urban structures depends on several variables. For in-
stance, materials of the walls, shapes and dimensions of the buildings, typology of roofs,
affect the backscattered signal, which generally results from multiple contributions related
to the elements belonging to the construction itself, and to different objects (e.g. trees,
buildings) in its immediate surrounding. The viewing angle of the antenna, as well as the
orientation of the buildings with respect to the SAR, has a strong impact on the objects
imaging. Moreover, the geometry of acquisition of the system leads to typical distortions
such as layover and shadowing. In very dense urban environments, buildings can be com-
pletely or partially hidden by the shadow caused by the presence of others close manmade
structures.

In last decades, the interest of remote sensing community for buildings detection yielded
a variety of methods, exploiting both optical and SAR imagery.
Focusing the attention on the latter kind of data, the majority of works in literature is
based on the analysis of the information carried by interferometric SAR data or by multiple
polarimetric images. In order to identify urban structures, a typical approach concerns the
detection of edges for the building footprints reconstruction [86]. In [87] a proper edge
detection algorithm is applied to multiple PolSAR data. The Hough transform is also
taken into account to characterize the retrieved edges and generate footprints hypothesis.
A further approach consists on the shadow areas analysis, which can give information
about the building dimensions [88]. In [89] the authors developed an iterative technique
for buildings reconstruction, achieved by the identification of the combined occurrence of a
bright line (high backscattering value) and a shadowed region in an elevated area.

The interpretation of urban environments by exploiting a single VHR SAR image is
more challenging, and few related works have been published so far. In [90] the under-
standing of built-up area is carried out by means of a stochastic geometrical model and
a-posteriori probability maximization. An integration of the concepts of basic features ex-
traction and their composition to buildings candidate, by considering the semantic meaning
of the extracted features, is carried out in [91]. Different object extractors are fused with
a coarse-to-fine approach in [51], where an image segmentation is followed by the selec-
tion of bright and dark lines; finally the interpretation of the urban area is performed by
considering contextual knowledge.

The following chapter concerns the implementation of an unsupervised object-based
technique to automatically detect buildings in VHR SAR images, acquired in a sub-urban
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environment. The algorithm, which is based on the Pulse Coupled Neural Network model
(see Chapter 4), has been originally developed for the identification of buildings in TerraSAR-
X images. However, in the following sections, it will be demonstrated its efficiency in
handling COSMO-SkyMed imagery, as well. The performance of the algorithm, which is
described in Chapter 12, has been tested on three examples of VHR SAR images acquired
on different areas in the Tor Vergata district, where the buildings are not very close each
other, but differ for shape, dimension and orientation. In §12.1, the result obtained by test-
ing the implemented technique on a Stripmap TerraSAR-X image (3 m spatial resolution),
is showed and discussed in comparison with the output achieved by using another known
edge detection method, based on Roberts convolution filter. Afterwards, two higher spatial
resolution Spotlight COSMO-SkyMed images (1 m spatial resolution) have been exploited
to confirm the capability of the algorithm to automatically identify buildings in a sub-urban
scenario.



Chapter 12

Automatic PCNN based algorithm
for buildings detection

As previously asserted, the PCNN architecture demonstrated to be a suitable tool for
several remote sensing applications, mainly providing image segmentation or edge detection.
However, even if the original model is based on an unsupervised approach, it requires the
human intervention to establish when to stop the image processing, and to identify the best
PCNN output, according with the specific goal to reach. In this study, the simultaneous
analysis of the time signal G and of the resulting pulsing images, led to the formulation of
an “automatic stopping” rule.

As highlighted in Chapter 4, the less complex is the image, the longer is the net progress
period in which the synchronization property is kept, allowing the simultaneous pulsing
of clusters of similar and close pixels (segments). Generally, X-band SAR imagery are
very complex and affected by a strong speckle noise, which can drastically reduce the
performance of the algorithm. Hence, as first step of the chain of processing, the adaptive
despeckle filtering has to be applied, achieving smoother and more homogeneous objects.

A crucial point of the PCNN algorithm lies on the proper parameters setting. Since the
PCNN is a complex and non-linear system, whose relationship between model parameters
and network outputs is rather hard to understand, an empirical approach has been adopted
to establish the most suitable variables. Finally it has been observed that a quite accurate
buildings edge detection is performed by setting the PCNN parameters in Table 12.1.

The mode of inter-connection among neurons has been performed thorough two identical
3x3 feeding and linking kernels, whose elements values decrease with the distance from the
central node. They are described by the following matrix:

Part of this chapter’s contents is extracted from:
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Table 12.1. PCNN parameters setting.

PCNN parameters Value

αF 0.5

αL 1.0

αθ 0.2

VF 0.5

VL 0.5

Vθ 20.0

β 0.1

M = W =

 1
r 1 1

r
1 1 1
1
r 1 1

r

 (12.1)

where r is the euclidean distance from the central neuron.
At the beginning of the PCNN processing all the functions, included the dynamic thresh-

old, are initialized to zero. Therefore, for each neuron, the first iteration of the algorithm
provides an internal activity only depending on the local stimulus, derived from the pixel
value which is previously scaled in the [0÷1] range:

Fij [n = 1] = Sij (12.2)

Lij [n = 1] = 0 (12.3)

Uij [n = 1] = Sij (12.4)

Being the local threshold equal to zero, all the neurons will fire at the first epoch.
Afterward, θ increases up to Vθ. As the PCNN progresses, only the neurons with the
highest internal activity, larger than the local threshold, will generate a pulse.

Such design of the PCNN scheme demonstrated to be suitable for the buildings detection
in SAR images. Actually, since the manmade structures are represented by backscattering
values which are in general higher than those coming from the background or different
objects, the related pixels correspond to the first and more frequently pulsing neurons.
Indeed, as the iterations progress, the autowaves emanate from the original pulse regions
and the shapes of the buildings evolve through the epochs due to the pulsing nature of the
PCNN. After few iterations, the net is able to detect the edges of the objects of interest.
However, to make the chain of processing fully automatic a further analysis has been carried
out. By analyzing the pulsing signature G of several examples, it has been observed that
the best output image is always achieved in a moment between the epoch in which the
time signal starts to increase from the zero value (t0) and its first maximum value (tmax)
(Fig.12.1). It has also been noted that from t0 to the first G inflection point ti (Fig.12.1),
not significant changes occurs in the output images. On the basis of such observations the
rule for the automatic PCNN stopping has been established.

Summarizing, the implemented PCNN method runs until the time signal reaches a
maximum. Then the inflection point is evaluated, and the output achieved at the first
iteration where G assumes a value greater than its mean, calculated within the interval [t0
÷ ti], is taken as the best output (tb). The resulting image identifies the edges of the objects
of interests. However, some mistakes can occurs, mainly due to the presence of artifacts
within the SAR image, or caused by the high backscattering values of tall vegetation.
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Figure 12.1. General trend of the PCNN time signal. Excluding from the analysis the first
processing iteration, when G exhibits the highest possible value, t0 is the first iteration in which
G is larger than 0, tmax is the number of the epoch in which G reaches the first maximum value,
ti is the moment in which the G function presents an inflection point, and finally tb represents the
number of the iteration in which the best PCNN output is achieved.

In order to improve the accuracy of the output, the resulting PCNN image is filtered to
remove those elements with perimeter values smaller than a certain threshold, viewed as
not significant. The average dimension of ground truth objects has been taken as reference
to this end. Finally, a region growing technique, using as seed points the pixels belonging
to the edges of the survived objects, has been used to refine the previous results. Note that
that this region growing technique has been applied considering the backscattering values
of the despeckled SAR image. The whole chain of processing is schematised in Fig.12.2.

Figure 12.2. Fully automatic building detection algorithm.

In next section, the effectiveness of the technique will be demonstrated by showing and
assessing the results obtained by exploiting Stripmap TerraSAR-X (3 m spatial resolution)
and Spotlight COSMO-SkyMed (1 m spatial resolution) images.
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12.1 Results

Building detection in a Stripmap TerraSAR-X image

A first experiment has been carried out by applying the fully automatic building detection
algorithm to the Stripmap TerraSAR-X image shown in Fig.12.3(a). The SAR acquisi-
tion resulted to be hardly interpretable by a simple visual analysis. Actually, despite the
despeckle processing, a residual noise affects the image. However, to avoid a loss of in-
formation concerning the buildings footprints, no further image enhancement method has
been applied. Moreover, very high resolution effects, which include double bounces, lay-
over, shadows, as well as the presence of other artificial objects (e.g. cars, lamps, guard
rail), make challenging either the human interpretation and the automatic building detec-
tion. Therefore, the ground truth, represented by red ROIs in Fig.12.3(c), has been roughly
taken on the Google Earth optical image in Fig. 12.3(b), where big buildings correspond-
ing to shopping malls, business centers and science department of Tor Vergata University
appear together with small houses in a mainly extra-urban landscape with large bare soil
or uncultivated areas.

After the speckle filtering, the image has been processed by the PCNN algorithm, by
setting the parameters as in Table 12.1. The progression of the net has been stopped
after 100 iterations, and the wave signature has been plotted (Fig.12.4), while the pulsing
outputs have been analyzed. The behavior of the time signal exhibits an almost periodic
trend, providing cyclic similar outputs (Fig.12.5). However, as the PCNN progresses the
pulsing objects synchronicity runs out and the resulting binary images do not contribute
to any significant information. Nevertheless, by analyzing the results in Fig.12.5, it is
possible to observe that buildings are identified after few iterations, before the first G peak
is reached.

For the considered TerraSAR-X image, the algorithm implemented in this work auto-
matically stopped after 22 iterations, identifying the best output at the 17th epoch. Hence,
the aforementioned post-processing has been carried out, finally providing the result in Fig.
12.6(a).

Building extraction employing PCNN has also been compared with another known
edge detection method, based on Roberts convolution filters [92] made available within the
ENVI software processing libraries. In this case, the automatic PCNN processing module
has been replaced with the non-automatic edge detection by the Roberts filter, while the
pre-processing and post-processing steps were the same of the automatic algorithm. Fig.
12.6(b) represents the final building extraction.
In both the achieved results the main built structures in the scene are detected. A more
quantitative evaluation of the accuracy of the algorithms can be carried out by comparing
the output with the ground survey in terms of objects. In fact, a pixel-based analysis of
the PCNN based technique is likely to give a low value of the overall accuracy, as most of
the firing neurons, identifying an edge, are those characterized by a strong backscattering
especially due to a double bound effect. Such an effect is usually stronger over some parts
of man-made features and not over the entire buildings. It can be seen that, as far as the
detection of the actual ground truth objects is concerned, the performance of the PCNN
(58 out of 64 detected buildings) is comparable to that of the benchmark algorithm (61 out
of 64 detected buildings). However, the difference of the results is significantly in favor of
the PCNN if the number of false alarms is considered (Table. 12.2).
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(a)

(b)

(c)

Figure 12.3. (Tor Vergata area, Rome (Italy) imaged by a) TerraSAR-X operating in StripMap
mode (395x248 pixels), in HH polarization (date of acquisition: 24th November 2007). b)
c©GoogleEarth optical image.c) Ground truth.
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Figure 12.4. Time signal G referred to the PCNN processing of the TSX image.

Figure 12.5. PCNN outputs. Red: last iteration of the automatic building detection algorithm.
Yellow: PCNN iteration to which corresponds the G inflection point. Green: best PCNN output
automatically selected.
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(a)

(b)

Figure 12.6. Building detection results achieved by: a) the automatic PCNN based algorithm, b)
the non automatic Roberts filter based technique.

Table 12.2. Comparison of the performance of the automatic PCNN based algorithm and the
non-automatic technique based on Roberts edge detector.

1 PCNN 2 Roberts

True positive 58 61
False positive 6 3
True negative 6 48

TOT detected 70 114
Ground truth 64 64
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Building detection in Spotlight COSMO-SkyMed images

The fully automatic algorithm has been tested on different regions within the sub-urban
area of Tor Vergata, represented in Fig.12.7(b) and Fig.12.7(c).

As a first exercise, the area in Fig.12.8(a) has been selected. It includes the Engineering,
Letters and Business colleges of the Tor Vergata University of Rome.
After 21 epochs the PCNN processing stopped automatically, identifying the 17th binary
image as the best result. Actually, other small objects are detected, many of which rep-
resent different man-made structures, such as lamps and guard-rail along the roads, or a
metal railing along the underpass on the top right of the picture. After the post-processing
filter and the region growing step, many of such “false alarms” have been removed, finally

(a)

(b) (c)

Figure 12.7. Tor Vergata, Rome, Italy imaged by a) COSMO-SkyMed operating in Spotlight mode
(date of acquisition: 2nd January 2011, dimension: 9700x5300 pixels). c©ASI. Rectangles represent
the regions processed by the automatic PCNN based algorithm for buildings detection, and showed
in the QuickBird frames in b) and c) (date of acquisition: 30th September 2010) c©DigitalGlobe.
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achieving the result in Fig.12.9(c). In spite of some residual errors (37 false alarms), basi-
cally due to the established filtering threshold, whose choice has been based on a trade-off
between accuracy of buildings detection and number of false alarms, the objects based as-
sessment puts in evidence the effectiveness of the algorithm, since all the constructions have
been automatically, quickly and correctly identified.

(a) (b)

(c)

Figure 12.8. Tor Vergata University Campus imaged by a) COSMO-SkyMed, date of acquisition:
2nd January 2011 (1091x924 pixels) c©ASI; b) ground truth; c) building detection result.

A second test has been carried out by considering the region represented by the COSMO-
SkyMed acquisition in Fig.12.9(a), including the complex of buildings of the Science Faculty
of Tor Vergata University (top left), shopping malls (middle-bottom left) and a residential
area (middle right). 22 PCNN iterations have been necessary to identify the 18th output
as the best result. Given the variability of the buildings dimension, it has been necessary
to set a smaller threshold in order to allow the identification of the smaller houses. In spite
of the complexity of the scenario, such an approach led to the efficient detection of 57 out
of 57 objects (Fig.12.9(c)). Nevertheless, larger number of false alarms (126) affected the
overall accuracy of the final result.
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(a) (b)

(c)

Figure 12.9. Tor Vergata area imaged by a) COSMO-SkyMed, date of acquisition: 2nd January
2011 (1730x1730 pixels) c©ASI; b) ground truth; c) building detection result.
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12.2 Conclusions

In this chapter, the results obtained by using a PCNN technique for building detection
have been presented. The efficiency of the PCNN model has been tested on different VHR
satellite images acquired by either TerraSAR-X and COSMO-SkyMed. The performance
of the implemented algorithm is interesting under different points of view if compared
with standard alternative approaches. Firstly, the PCNN significantly increases the level
of automation in the processing scheme, due to its unsupervised nature. Secondly, the
accuracy of the results can be recognized as better, or at least comparable, with that of
other suitable edge detection techniques. Indeed, in all the experiments more than the
90% of the buildings has been correctly detected. However, few residual objects have
been also identified. Such false alarms, that mainly corresponds to different manmade
structures or artifacts, depend on the dimension threshold, which has to be set in the post-
processing phase in order to filter the smallest objects. Additionally, it has to be noted
that the performance of the PCNN does not seem to be affected by the spatial resolution
of the elaborated satellite SAR image. In fact, investigations carried out on a Stripmap
TerraSAR-X (3 m spatial resolution) and two Spotlight COSMO-SkyMed images (1 m
spatial resolution) showed that the PCNN approach owns good properties of robustness.
Finally, the processing time is rather short, requiring only a few seconds for the buildings
extraction.





Part VI

Change detection of sub-urban
areas
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Introduction

Social, economic and environmental conditions are leading to worldwide relocation of hu-
man populations, thus causing dramatic expansions of cities, with accompanying increased
consumption of natural resources, disordered changes in land uses, worsening air and water
quality and exposing people to severe dangers both of natural and of human origin. In
such a scenario, the monitoring of land cover changes in urban areas has become a major
problem for land management and security authorities. Satellite images offer quite effec-
tive monitoring means, thus providing valuable support for decision-making processes. As
already highlighted, although remote observations in the optical part of the spectrum are
generally used to monitor land cover and its changes, in order to meet the requirements of
promptness, timeliness and reliability, use of SAR must be considered.

To take advantage of the unique capabilities of the CSK observing system, adequate
exploitation of the information contained by the metric-resolution multi-temporal SAR im-
ages is necessary. In particular, the large amount of data contained in each image calls for
the urgent development of suitable automatic techniques to manage in near-real time the
information on land cover changes which are provided by the SAR observations.
In such a context change detection in multi-temporal acquisitions can be basically per-
formed through two different approaches: supervised and unsupervised.
The algorithms based on a supervised approach are post-classification techniques, exploit-
ing the knowledge of the area of interest to provide multi-temporal thematic maps, which
are subsequently compared to identify modifications in land cover [93], [94]. The change
detection accuracy strongly depends on the performance of the supervised classifiers, as
the analysis of land cover transition must be preceded by the implementation of effective
classification algorithms. Errors in the supervised detection of changes may be mainly at-
tributed to unexploited pieces of temporal information contained in the images of the same
area acquired at two different times. To overcome this problem, several authors propose
multi-date supervised classification techniques, which simultaneously take into account re-
lated features in both images ([95], [96]), or they exploit the temporal correlation in a
compound mapping [97] to directly identify the transitions from a type of land cover to
another.
Regarding the most common unsupervised change detection methods, procedures can vary
from the simple subtraction (or log-rationing in case of SAR data [98]), on a pixel basis,
of two images acquired at different times, to more sophisticated techniques, such as those
based on a Markov Random Field (MRF) approach [99], or on a combination of the use of
a MRF and a maximum a posteriori probability (MAP) measure to achieve enhancement
in change detection accuracy [100].

When dealing with VHR SAR data, change detection is more difficult due to the layover
and shadowing that typically affect the accuracy of the co-registration of multi-temporal
images. Moreover the speckle noise, which is particularly strong in the X-band VHR im-
ages, may produce false alarms in the change map. To overcome these problems, in [101]
the authors apply a feature-based approach to correct the map of transitions previously ob-
tained by an area-based method. In [102] an adaptive technique was developed to identify
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modifications in VHR SAR images. On one hand, the method models the spatial-context
information by considering homogeneous parcels and, on the other, it allows the analysis
of changes in complex objects by exploiting theoretical similarity measures. In recent work
[103] the authors addressed change detection in VHR COSMO-SkyMed images, by com-
bining undecimated discrete wavelet transform (DWT), MRF and generalized Gaussians,
resulting in an accuracy improvement in spite of the presence of speckle noise. Coherent
change detection is another approach that exploits the magnitude of the complex cross
correlation of a pair of interferometric images to identify changes. A coherence threshold
is usually applied to highlight changed and unchanged areas. However, due to a bias in the
coherence estimate, changed regions in COSMO-SkyMed images do not exhibit a complete
loss of coherence [104]. As a consequence, setting the optimal threshold may be a difficult
task.

In this chapter, a novel change detection method, based on the joint use of different
neural networks architectures is presented and discussed. The effectiveness of neural net-
works (NNs) in classifying optical and SAR satellite images is confirmed by several authors
[55–57, 105], and previously demonstrated in this thesis (see Chapter 10). Given the sat-
isfactory performances of NNs, a simple post-classification comparison can provide change
detection maps with an appreciably high accuracy [41]. Further improvement has been
achieved through a more sophisticated architecture, called NAHIRI (Neural Architecture
for HIgh Resolution Imagery) [106], where three MLP neural networks provide respectively
the master land cover map, the slave land cover map, and a change mask. The last one is the
output of a multi-temporal-information fed NN and is instrumental to correct the change
map, stemmed from the classified master-slave comparison. Although NAHIRI was demon-
strated to be an effective tool for VHR optical images, its structure might be less suitable
for the analysis of changes in VHR SAR urban imagery. Indeed, first of all, the informa-
tion in Spotlight and Stripmap COSMO-SkyMed images is carried by a single polarization,
then the aforementioned layover and shadowing in urban environment acquisitions, as well
as the strong speckle, join to make hard the attainment of high classification accuracies.
Use of log-ratio of the intensity of backscattering and of the textural features ([39–41, 70]),
or the inclusion of the coherence information into the input vector [69], is generally not
sufficient to overcome the errors caused by the pixel misregistration in correspondence of
buildings. Moreover, in a suburban environment, where built-up areas alternate with more
or less wide vegetated zones, the degree of interferometric coherence ( [69], [107]) may lead
to confusion among changed and unchanged land covers.

Given the above drawbacks, Pulse Coupled Neural Networks have been addressed in this
study, and an investigation has been carried out on the possibility of inserting them into the
change detection scheme. Indeed, PCNNs are commonly applied in image segmentation,
edge detection [28–30] or objects extraction [31], [32], but they were found to perform
successfully also in VHR optical images change detection [34]. In principle, the algorithm
generates, step by step in an iterative scheme, a specific signature of the scene, depending
both on the values associated with single pixels and on the contextual information. A
measure of the correlation between the preceding and the subsequent signatures is able to
suggest intervened changes. On this background, a novel algorithm based on the combined
use of MLP-NNs and of unsupervised PCNNs has been designed, implemented and tested
on VHR COSMO-SkyMed images to monitor changes in land cover. The more traditional
Post Classification Comparison (PCC) technique has been considered as a benchmark for
the performance analysis. The implemented algorithm, which has been applied to three
examples referred to one Stripmap image acquisition, and two Spotlight frames, will be
described in the following chapter. Results achieved after each step of the chain of processing
will be showed and discussed in next sections.



Chapter 13

Automatic change detection
algorithm

In this work a novel change detection algorithm has been designed to investigate on the
changes occurred in a suburban environment, exploiting VHR multi-temporal data delivered
from COSMO-SkyMed constellation.
The architecture of the presented change detection algorithm has been derived from the
NAHIRI model developed in [106], which proved its efficiency on VHR optical imagery
processing. However, the idea of running multiple neural networks has been modified to
work with the VHR SAR data exploitation. Actually, although the MLP-NN may be still
a valuable method for the land cover characterization, its usefulness may decay when the
desired output is a change mask. In this case the net could erroneously associate to changed
regions those areas which are affected by a non perfect co-registration of the old and new
images, or vegetated surfaces which are characterized by low values of the interferometric
coherence, or artifacts which are rather common in CSK images. For these reasons the third
MLP-NN of the NAHIRI model has been replaced by a double image processing performed
by the automatic and unsupervised PCNN algorithm. A scheme of the implemented change
detection system is showed in Fig.13.1.

The input to the whole scheme consists of a couple of images, acquired at two different
times, which are previously orthorectified, despeckled by means of an adaptive filter, i.e.
the enhanced Lee filter, and co-registered. Basically four image processing NN algorithms
run in a parallel way: two of them are aimed to the production of land cover maps on
a pixel basis, while the others provide the localization of “hot spots” [34], where changes
probably happened.
More in detail, a supervised approach is adopted to obtain the old and the new thematic
maps, called MAP1 and MAP2 respectively. To this end the training and validation pat-
terns must be collected within each image, forming the sets of input vectors (I1 and I2),
that will successively feed the MLP-NNs. Since the considered acquisitions are taken over
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Figure 13.1. Flowchart of the change detection algorithm. The old and new images are firstly
orthorectified, despeckled and co-registered.

the same area of interest by the same kind of SAR sensor and with the same polarization
and view angle, the topology of both NN1 and NN2 is identical, having an equal number
and type of input features and output classes. A simple post-classification step follows: a
comparison between the achieved MAP1 and MAP2 puts in evidence the changes in land
uses. However false alarms, caused by the aforementioned limits of the X-band VHR SAR
images, are likely to occur.
The duty of the second unsupervised module is the reduction of these errors and the en-
hancement of the accuracy of the change detection map. Such a compartment includes two
PCNNs, one for each image (PCNN1 and PCNN2), whose neurons receive the intensity
of the backscattering of the corresponding pixels of the image as external signal Sij . As
explained in Chapter 4, the PCNN yields binary outputs, with a pulsing behavior of the
neurons, depending on several parameters. By focusing on the possible changes in built-up
areas, a preliminary study has been carried out, aiming at the research of the best config-
uration of the variables, which may make the PCNN able to identify objects within VHR
X-band SAR images. The mode of inter-connection among the neurons has been performed
through two identical 3x3 feeding and linking kernels, whose elements values decrease with
the distance from the central node. They are described by the following matrix:

M = W =

 1
r 1 1

r
1 1 1
1
r 1 1

r

 (13.1)

An empirical approach has been adopted by varying the parameters values and assessing
the PCNN object detection performance. Once all the variables have been properly set
(Table 13.1), the PCNN was ready to be used for the change detection of every pair of
VHR X-band SAR images, without any further human intervention.

The idea of identifying significantly changed regions by exploiting the PCNN model,
originates from the measurement of the similarity between the PCNN signals associated
to the old and new image respectively. To this end, it is necessary to convert the pulse
imagery into a single component information, which is the time signal G, defined by the
expression (4.6). In the developed scheme, the time signals G1 and G2 are evaluated over
a certain number of iterations, and a measure of the similarity between the PCNN1 and
PCNN2 pulsing behavior is given by the correlation value.
When a significant change occurs, the combined use of the PCNNs allows to catch those
areas, as they exhibit low correlation values. In Fig.13.2 two examples of changed and
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Table 13.1. PCNN parameters setting.

PCNN parameters Value

αF 0.1

αL 1.0

αθ 0.2

VF 0.5

VL 0.5

Vθ 20.0

β 0.1

θn 1

non changed scenes are showed. The pulsing imagery yielded by the PCNN algorithm
has been converted into the time signal G, whose trend is plotted in Fig.13.3. While
the pulsing behavior of the images in Fig.13.2(a) is rather different form the very first
epochs (Fig.13.3(a)), the trend of the G functions in Fig.13.3(b) is almost identical. This
is confirmed by the computation of the correlation value between the time signals related
to the old and new acquisitions. For the “hot spots” example, it quickly decays in about
30 iterations, reaching a value lower than 0.7. When no changes occur, the correlation
value does not vary significantly, being in the 0.96÷1 range. Several tests over changed and
unchanged scenes, sampled from different datasets (VHR SAR and optical multi-temporal
acquisitions [34]), confirmed that a correlation value lower than 0.75 occurs in presence of
“hot spots”.

(a)

(b)

Figure 13.2. Examples of two test sites imaged at two different times (left: old, right: new). a)
“Hot spot” area where a changed occurred. b) Non changed area.

Aiming at a finer but fast detection, a PCNN approach based on the pursuit of changed
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(a) (b)

Figure 13.3. PCNN signals of the images acquired at two different times, and trend of the G
correlation value. a) “Hot spot” example; b) Non changed area example.

areas is carried out. This is possible by running the PCNN on sub-images extracted by a
moving window, whose dimension has to be established according to the spatial resolution
of the images and the kind and/or extent of changes to be detected. Afterward, the boxes of
pixels which exhibit a correlation measure lower than the established threshold are classified
as “hot spot”, which are located in a correlation mask. Finally, only the objects that are
identified by the change map and, at the same time, totally or partially included within
these “hot spots”, are highlighted in the resulting change detection map.

13.1 Dataset

The designed change detection system has been tested on pairs of VHR X-band COSMO-
SkyMed images acquired at different times on Tor Vergata site (Fig.13.4).

In this work Stripmap (3 meters spatial resolution) and Spotlight (1 meter spatial
resolution) pairs of images have been exploited.
As regards the former, the available data were acquired on 20th September 2008, and on
22nd April 2011 by CSK-2. Both the images were taken in HH polarization and with the
same geometry of acquisition (see Chapter 7). In Fig.13.5 the processed test site, is shown
in a false color composition image, together with the ground truth, which is highlighted on
a couple of temporally consistent optical images. The false color composition in Fig.13.5(a)
highlights the changes which occurred during the considered time interval. In principle,
transition from natural areas to artificial surfaces appear in blue, whereas the opposite
changes result in yellow objects.
The Spotlight dataset consists of two frames shown in Fig.13.6 and Fig.13.7, respectively
extracted from an image acquired on 9th July 2010 by CSK-2, and from a more recent one
taken on 11th June 2011 by CSK-3, both in HH polarization and looking on the left side
on the descending orbit (see Chapter 7). Again, the false color composition images allow a
prompt identification of the occurred changes within the scenes.

13.2 Results

In this section there will be shown the achievement of the application of the designed
processing chain on the 3 meters spatial resolution Stripmap images, and the 1 meter
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Figure 13.4. WorldView-2 image of Tor Vergata, Rome, Italy. Date of acquisition: 4th July 2010,
c©Digital Globe. Rectangles refer to the sites of interest selected for the change detection algorithm

test (Yellow: Stripmap frame; Red: Spotlight frames).

spatial resolution Spotlight ones. The photo-interpretation of multi-temporal optical images
allowed to identify those areas where changes occurred within the considered time intervals.
Consequently, the sub-image in Fig.13.5, and two frames in Fig.13.6 and Fig.13.7, have been
selected for the first and second exercise, respectively. Since the urbanization process mainly
led to the replacement of natural surfaces with built-up areas, the study has been focused
only on such land-use modifications.

In the following paragraphs the change detection scheme is divided into three modules:
the supervised pixel-based classification, the unsupervised identification of “hot spots” by
the PCNNs, and the final mapping of changes.

Change detection by exploiting Stripmap COSMO-SkyMed images

Pixel-based classification by means of MLP-NNs

The goal of the pixel-based classification phase is to discriminate between four classes:
asphalt (roads and parking areas), low vegetated surfaces (including short grass and bare
soil), trees (also including tall plants, vineyards, olives and shrubs) and manmade structures.
On the basis of the analysis already discussed in Chapter cap: classification, the land cover
identification has been performed by feeding the MLP-NNs by a set of input features taking
into account, besides the intensity of the backscattering, also textural parameters stemmed
from the Gray Level Co-occurrence (GLCM) matrices computation.

Since the land cover classification plays an important role within the change detection
chain of processing, a particular attention has been given to the MLP-NN training phase.
On the basis of the outcome of the experiments already illustrated in §10.2, both the NN1
and NN2 of the change detection algorithm have been trained by the 1800 samples per class.
The topology of the neural network optimal with respect to the MSE minimization has been,
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(a)

(b) (c)

Figure 13.5. COSMO-SkyMed Stripmap dataset c©ASI (810 X 900 pixels ): a) False color compo-
sition: R and G: 20th September 2008 acquisition; B: 22nd April 2011 acquisition; b) 8th December
2008 QuickBird image c©Digital Globe; c) 12th April 2011 QuickBird image c©Digital Globe. Red
circles represent the ground truth of changed objects.
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(a)

(b) (c)

Figure 13.6. First COSMO-SkyMed Spotlight dataset c©ASI (1546 X 1156 pixels ): a) False color
composition: R and G: 9th July 2010 acquisition; B: 11th June 2011 acquisition. b) 4th July 2010
WorldView-2 image c©Digital Globe; c) 20th May 2011 QuickBird image c©Digital Globe. Red
circles represent the ground truth of changed objects.
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(a)

(b)

(c)

Figure 13.7. Second COSMO-SkyMed Spotlight dataset c©ASI (4319 X 2083 pixels ): a) False
color composition: R and G: 9th July 2010 acquisition; B: 11th June 2011 acquisition. b) 4th July
2010 WorldView-2 image c©Digital Globe; c) 20th May 2011 QuickBird image c©Digital Globe. Red
circles represent the ground truth of changed objects.
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for both the images, the one with two hidden layers containing 10 neurons each(5x10x10x4).
The so trained NN1 and NN2 have been successively fed by the whole images, providing
the MAP1 and MAP2. After the selection of the test site in Fig.13.5, the manmade class
has been extracted from each map, and a comparison has been worked out to produce
the change map in Fig.13.8. It has to be noted that the test site is characterized by a
dense built-up area. Here the complexity of the received backscattering signal, arising from
multiple contributions coming from different elements (buildings, roads, trees, gardens)
which are very close each other, makes the understanding of the scene particularly hard.
Hence misclassification errors are likely to occur. Moreover, in such urban scenario, the
layover and shadowing effects decrease the precision of the co-registration. As a consequence
a large amount of errors can be observed in the post classification change detection.

Figure 13.8. Change map referred to the Stripmap images pair in Fig.13.5(a).

“Hot spots” identification by PCNNs

As previously asserted, the goal of the unsupervised PCNN module, is the enhancement of
the pixel-based change map, through the reduction of the number of false alarms. To this
end, each image has been processed by the PCNNs, applied to sliding windows, whose size
of 45x45 pixels has been established according to the CSK spatial resolution (3 meters), to
the extent of the possible changes, and to the dimension of the buildings.
According with the phenomenon of the loss of correlation between the time signals generated
by the PCNNs, a threshold of 0.75 has been established to select the “hot spots”. The
correlation mask depicted in Fig.13.9 is the output of the automatic and unsupervised
module of the change detection chain of processing.

Change detection map

The last step of the change detection chain of processing is concerned with the combination,
through the logical operator “and”, of the change map and thecorrelation mask, resulting
from the supervised processing and the unsupervised one respectively. It means that all
the objects identified by the change map, which are completely or in part included into



140 CHAPTER 13. AUTOMATIC CHANGE DETECTION ALGORITHM

Figure 13.9. Correlation mask achieved by setting the threshold value of the G function correlation
to 0.75.

the “hot spots”, are classified as changes, while the others are removed. The comparison
between the change map and the changed areas is represented in Fig.13.10(a). A post-
processing has been also carried out to filter the single scattered pixels or the smallest
objects (Fig.13.10(b)). The assessment of the result has been carried out on an object
basis, by means of a cross-check against the ground truth highlighted in the red circles in
the QuickBird images in Fig.13.5. The final change detection map in Fig.13.10(b) proves
that this technique is suitable to enhance the accuracy of the change detection, in fact 6
out of 9 real changes have been recognized, while the amount of false alarms is drastically
decreased to 38 objects. Note that, if the same filtering was directly applied to the simple
PCC result, the number of false positives would remain quite high, equal to 98.

The analysis of the three missing objects showed in Fig.13.11 puts in evidence the
reasons which led to the error of the algorithm. The change in Fig.13.11(a) is recognized
by both the change map and the correlation mask, being the correlation value equal to
0.65. However, because of the object dimension, it has been removed from the detection
map after the post-processing. By analyzing the other two examples, a non significant
difference in terms of backscattering value and texture can be observed between the old
and new acquisition. Such a behavior has led to rather correlated pulsing signals during
the PCNN processing. Indeed the objects in Fig.13.11(b) and Fig.13.11(c) are included in
a box characterized by a correlation value of about 0.83 and 0.92, respectively. This is the
reason why their “hot spots” have been excluded from the correlation mask, and therefore
from the final change detection map.

Change detection by exploiting Spotlight COSMO-SkyMed images

Pixel-based classification by means of MLP-NNs

As far as concern the pixel-based classification of the pair of Spotlight images, the results
already discussed in § for the 9700x5300 pixels imagery, have been considered to generate
the change maps of the frames under investigation.
In spite of the rather good correlation between the manmade class and the ground truth
provided by the optical acquisitions, some confusion can be observed especially in corre-
spondence of the tall vegetation. Moreover a slight spatial shift between the old and new
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(a) (b)

Figure 13.10. a) Change map (red) and Correlation mask (white) comparison. b) Change detec-
tion map. Red circles put in evidence the correct changed objects.

(a)

(b)

(c)

Figure 13.11. Three missing changes (a-c) in the change map achieved by exploiting the Stripmap
images pair. QuickBird and COSMO-SkyMed images are distributed in columns in a temporal
order.
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images yields false alarms, as can be noted in Fig.13.12 and Fig.13.13, where the edges of
the most of the buildings are classified as changes.

Figure 13.12. Change map referred to the Spotlight images pair in Fig.13.6(a).

Figure 13.13. Change map referred to the Spotlight images pair in Fig.13.7(a).

“Hot spots” identification by PCNNs

According to the very high spatial resolution of the data (1 meter), and considering the
extent of the changed objects, the PCNN algorithm has been applied to sub-images by
means of a sliding window of 100x100 pixels, identifying “hot spots” of the same dimension
when the G function correlation value is lower than 0.75.

Change detection map

The comparison between the change map and the changed areas, followed by a post-
processing, provided the change maps represented in Fig.13.14 and in Fig.13.15. The object
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based assessment of the results confirmed the rather good performance of the change de-
tection system. Actually, in both the examples, the algorithm recognized all the changes,
considerably reducing the amount of false positives. It should be noted that both the ana-
lyzed areas include construction sites (top left in Fig.13.6 and middle left in Fig.13.7), where
the presence of vehicles, cranes, scaffoldings, containers, can vary continuously during the
period of work; for this reason all the little changes detected by the algorithm might be
correct. Elsewhere, in the middle and bottom right of Fig.13.7, there are several parking
areas, where the presence or absence of cars produces a positive output in the final map of
changes. Moreover, because of the strong speckle noise, some errors in land cover maps, as
well as artifacts (especially visible in Fig.

Figure 13.14. Change detection map referred to the Spotlight images pair in Fig.13.6(a). Red
circles put in evidence the correct changed objects.

Figure 13.15. Change detection map referred to the Spotlight images pair in Fig.13.7(a). Red
circles put in evidence the correct changed objects.
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Table 13.2. Number of false alarms detected by the PCC and by the implemented change detection
algorithm.

Types of
PCC

MLP+PCNN
image pair Change detection

Stripmap 98 38
Spotlight Ex.1 66 28
Spotlight Ex.2 1157 227

13.3 Conclusions

This work aims at developing fast, automatic and accurate algorithms for detecting changes
of land cover from VHR SAR X-band images, such as those provided by recent Earth
Observation missions.
The method is based on two different NN architectures: a supervised MLP-NN provides
the land cover map for each acquisition, whereas an unsupervised and automatic PCNN
model allows identifying “hot spots” by measuring the correlation value between the pulsing
signature of the signals generated from each image. A comparison between the change map
obtained by a post-classification analysis and the correlation mask produced by the PCNN
module yields the final change map. Further post-processing is useful to enhance the
accuracy of the resulting product.

The change detection scheme has been tested on the urbanization process occurring
in the Tor Vergata University area. To this end a first experiment has been carried out
on an area imaged at 3 meters spatial resolution by the COSMO-SkyMed X-band SAR in
Stripmap mode at a time interval of about three years. The exercise has been repeated on
two different portions of two COSMO-SkyMed Spotlight images acquired at 1 meter spatial
resolution in 2010 and 2011, respectively.
Six out of nine true changes have been detected from the pair of Stripmap images, while
all the transitions into the manmade class have been identified from the Spotlight data. It
is worth highlighting that the inclusion of the PCNN into the change detection processing
chain resulted in enhanced robustness against co-registration errors.

Among the advantages brought by joining the MLP and PCNN modules, it has to be
especially mentioned the reduction of the number of false alarms (mainly caused by mis-
classification, misalignment, artifacts and speckle) if a comparison with the standard PCC
is performed (Table 13.2). In addition, it has to point out that the end-to-end algorithm
is quite fast and the whole processing chain can be readily designed for a fully automatic
implementation of the change detection between pairs of any land cover classes.



Conclusions

The recent advent of the last generation of VHR SAR systems opened new challenges
in remote sensing field. In particular, the unique capabilities of the COSMO-SkyMed
constellation of acquiring images at metrical spatial resolution and with a very short revisit
time, make this system especially appealing as a possible efficient tool for many Earth
Observation applications, from risk management, to damage assessment or environment
monitoring. However, the novelties brought by COSMO-SkyMed are leading the scientific
community to intensively investigate on the most suitable methods to retrieve information
from the still partially unknown X-band SAR data, by addressing the issues related to
the very high spatial resolution, as well as to the availability of single polarized images.
Moreover, the large amount of data calls for the urgent development of efficient automatic
techniques to manage in near-real time the information on land cover and its changes, which
is of vital importance in case of emergency.

In such a scenario, this study has been carried out with the aim of providing a significant
contribution toward the development of fast, automatic and accurate algorithms performing
the characterization of a sub-urban environment, through the land cover classification,
building identification and detection of eventual changes. Basically, the features extraction
has been worked out through both pixels-based techniques characterized by a supervised
approach, and object-based techniques, performed by unsupervised algorithms.

A pixel-based approach has been adopted for the classification of single polarized Spot-
light and Stripamp COSMO-SkyMed images of the Tor Vergata outskirt of Rome, Italy.
The method, based on the MLP-NN model, makes use of the backscattering information
content, as well as contextual and/or textural properties of the explored types of surfaces.
As a matter of fact, even the exploitation of simple local texture, such as the local mean
and local standard deviation evaluated on small boxes of pixels, proved to allow the discrim-
ination between asphalted surfaces, natural areas, and manmade structures. On the other
hand, it has been demonstrated the benefit of considering more complex textural features,
such as those derived from the GLCM computation, which results in the enhancement of
the thematic maps, in terms of number of recognized classes. Indeed, the exploitation of
the GLCM mean, variance, contrast and correlation yielded the identification of four classes
(asphalt, low vegetation, trees and manmade), and overall accuracies higher than 80%. Such
results have been proved to be attainable, even when only few hundreds of training pix-
els are exploited. On the other side, some errors occurred in the classification of natural
surfaces, in which a wide presence of bare soil might have caused the confusion with the
asphalt class.
Thanks to the configuration of the COSMO-SkyMed constellation, close interferometric
pairs of acquisitions are available, providing further sources of information which might
be valuable for a better understanding of the imaged scenes. Within the framework of the
presented research, the possibility of improving the discrimination among artificial and nat-
ural surfaces by employing the interferometric coherence estimates, has been investigated.
Actually, it has been demonstrated the effectiveness of such approach, which especially
allowed the enhancement of the asphalt and natural (or low vegetation) classes accuracy.
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An important achievement has been reached by applying previously trained MLP-NNs to
new images, to perform the classification task in a fully automatic way. High accuracies, at
least comparable with those achieved on the training images, have been obtained in all the
experiments, proving the good generalization capabilities of the MLP-NN based algorithm.

Tests on a different kind of urban environment, represented by the Great Denver area,
still gave reason to the effectiveness of the exploited sources of information, in identifying
large and relatively smooth asphalted surfaces, as well as natural areas, and big and/or
isolated buildings. However, the correct classification of dense residential settlements is
a topic that should be addressed in future researches, bearing in mind the limits due to
the SAR system of acquisition. Actually, the orientation of the buildings with respect to
the azimuth direction, as well as their geometry and the presence of many artificial and
natural elements in the neighboring area, may completely hinder the detection of a single
construction. In these contexts, the developed MLP-NN schemes erroneously associated
the manmade pixels to the trees class.

Moving the interest on the enhancement of the vegetation mapping, a set of experiments
have been carried out by exploiting VHR COSMO-SkyMed and Multispectral WorldView-
2 images, as input data to a MLP-NN based classifier. Indeed, the multi-sensors, multi-
temporal and multi-polarization data fusion allowed the improving of the producer’s and
overall accuracies, which have been evaluated higher than 90%. Such results look promising
towards a possible continuous monitoring of agricultural surfaces by the available different
multi-sensor products.

As far as concern the unsupervised object-based features extraction, the PCNN model
has been properly adjusted in order to perform the edge detection task, as a crucial step of
the fully automatic processing chain, which has been implemented for the buildings detec-
tion in VHR X-band SAR images. Originally developed for handling TerraSAR-X imagery,
the algorithm succeeded also when applied to Spotlight COSMO-SkyMed acquisitions. The
performance of the implemented technique is interesting under different points of view if
compared with standard alternative approaches. Firstly, the PCNN significantly increases
the level of automation in the processing scheme, due to its unsupervised nature. Secondly,
the accuracy of the results can be recognized as better, or at least comparable, with that
of other suitable edge detection techniques. Indeed, despite the identification of few false
alarms, basically corresponding to different manmade structures or artifacts, in all the ex-
periments more than the 90% of the buildings has been correctly detected. Additionally,
it has to be noted that the performance of the PCNN does not seem to be affected by the
spatial resolution of the elaborated satellite SAR image. In fact, investigations carried out
on a Stripmap TerraSAR-X (3 m spatial resolution) and two Spotlight COSMO-SkyMed
images (1 m spatial resolution) showed that the PCNN approach owns good properties of
robustness. Finally, the processing time is rather short, requiring only a few seconds for
the buildings extraction.

The last objective of the work aimed at developing fast, automatic and accurate al-
gorithms for detecting changes in sub-urban areas, where the replacement of natural sur-
faces with new constructions frequently occurs, with the possible consequent worsening of
the quality of the environment. The method makes use of both the partially supervised
pixel-based approach, and the unsupervised object-based one. Basically, two different NN
architectures are jointly applied: a supervised MLP-NN provides the land cover map for
each acquisition, whereas an unsupervised and automatic PCNN model allows identifying
“hot spots” by measuring the correlation value between the pulsing signature of the signals
generated from each image. A comparison between the change map obtained by a post-
classification analysis and the correlation mask produced by the PCNN module yields the
final change map. The change detection scheme provided rather accurate results. In fact,
six out of nine true changes have been detected from the pair of Stripmap images, while
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all the transitions into the manmade class have been identified from the Spotlight data.
It is worth highlighting that the inclusion the PCNN into the change detection processing
chain resulted in enhanced robustness against co-registration errors. Among the advantages
brought by joining the MLP and PCNN modules, it has to be especially mentioned the re-
duction of the number of false alarms (mainly caused by misclassification, misalignment,
artifacts and speckle) if a comparison with the standard PCC is performed.

In conclusion, it is worthwhile to highlight the fact that each single task which has been
discussed in this study, has been performed by an algorithm conceived as an independent
module of a fast and automatic chain of processing, where the human intervention may
be limited at the selection of representative training and validation samples for the first
training of the MLP-NN classifier. Actually, once properly trained, the neural networks are
able to automatically process stacks of data acquired at different time. Simultaneously, the
unsupervised PCNN algorithm would identify the objects of interest, and/or scan pairs of
images with the purpose of detecting “hot spots” for the following change detection task.
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Appendix

With the advent of the new generation of VHR SAR sensors, perspective and objectives
of the analysis of the acquired imagery have been revolutionised. The investigation on the
potentiality of such data extends from the global study of the main scattering mechanisms
and texture properties of patterns of urban settlements, to the analysis of the scatter-
ing properties of individual buildings. In this work it has been proved the potentiality
of COSMO-SkyMed imagery to characterize urban scenarios by providing information in
2-D thematic maps. However, one of the future and most appealing applications of VHR
SAR data, concerns the possibility of interpreting a single object from a 3-D point of view.
Although the very high spatial resolution allows the identification of many details, the com-
plexity of the urban areas, and of the multiple backscattering mechanisms which tipically
occur in such environments, make the task rather challenging. In fact, even a simple isolated
building may appear as an ensemble of many architectural details and it may be surrounded
by gardens, trees, roads, social and technical infrastructure and many temporary objects.
In Fig.A1 and Fig.A2 are shown two examples of buildings imaged by COSMO-SkyMed
operating in the Spotlight mode (1 m spatial resolution), and by the Multispectral sensor
of WorldView-2 (2 m spatial resolution).
The typical layover effect due to the SAR systems (see §1.2) is visible in both the images.
Specifically, all the three buildings belonging to the Faculty of Engineering of the Tor Ver-
gata University (Fig.A1a) display few dotted-lines of high backscattering lying parallel to
the brightest continuous line. This is particularly visible in the yellow circle where two
dotted-lines can be clearly distinguished (Fig.A1b). The explanation for such a backscat-
tering behavior is that a significant trihedral corner-reflector mechanism occurs in each
window on the walls facing the satellite, so that the aligned windows result in a bright
dotted line. This means that the number of dotted-lines for each object might be associ-
ated to the number of floors in each building, and hence to their vertical dimension. Such
assumption is confirmed by the picture in Fig.A1d.
Fig.A2 shows how the phase of the measured signal can produce additional information on
the viewed object, which, in this case, is the Tor Vergata University sport center under
construction. In Fig.A2a the interferometric phase is superimposed onto the backscatter-
ing intensity, whereas Fig.A2b shows how the interference fringes denote the 3-D structure,
while in Fig.A2c it can be observed that the high degree of interferometric coherence carries
information on the metallic structure.

This simple analysis of the COSMO-SkyMed images puts especially in evidence the po-
tentiality of the VHR SAR data, which can be exploited for the interpretation of manmade
structures. The scientific community is already working on the development of techniques
for the backscattering mechanisms interpretation in urban scenarios, aiming at the accu-
rate 3-D reconstruction of buildings [108]. Promising studies based on the exploitation of
the interferometric information will allow the retrieval of the third dimension of manmade
structures ([109–111]). Such knowledge is expected to contribute significantly to the urban
planning, illegal building monitoring, risk management or damage assessment of manmade
constructions.
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(a) (b)

(c) (d)

Figure A1. a)Spotlight COSMO-SkyMed image representing the buildings of the School of Engi-
neering of the Tor Vergata University c©ASI. The yellow circle indicates the building whose details
are showed in the zoom in b). The bright dotted lines correspond to the windows characterizing
each floor of the building. In c) the same view is taken by the Multispectral sensor of WorldView-2
c©DigitalGlobe. d)Photograph of the building under study.
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(a) (b) (c)

(d) (e)

Figure A2. Tor Vergata University sport building under construction: a) superimposition of the
interferometric phase to backscattering intensity of a spotlight COSMO-SkyMed image c©ASI; b)
interferogram over the same frame. The fringes denote the 3-D structure of the construction; c) co-
herence image. The highest degree of coherence occurs over the metallic structure. d) Multispectral
WorldView-2 image of the building c©DigitalGlobe; e) Photograph of the structure under study.
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A Asphalt class

ANN Artificial Neural Network

ASI Agenzia Spaziale Italiana

AVNIR Advanced Visible and Near Infrared Radiometer

BD Building Detection

BS Bare Soil class

C Classification

CAMLAND Computer-Assisted Monitoring of Land cover

CD Change Detection

CGM Conjugate Gradient Method

CHRIS Compact High Resolution Imaging Spectrometer

COSMO-SkyMed COnstellation of small Satellites for Mediterranean basin Observation

CSG COSMO-SkyMed Second Generation

CSK COSMO-SkyMed

DEM Digital Elevation Model

DF Data Fusion

DLR Deutschen Zentrums für Luft und Raumfahrt

EO Earth Observation

ERS European Remote Sensing satellite

GEC Geocoded Ellipsoid Corrected product

GLCM Gray Level Co-Occurence Matrix

GTC Geocoded Terrain Corrected product

HI HImage mode

HR Huge Region mode
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IEEE Institute of Electrical and Electronics Engineers

IEM Interoperability, Expandability and Multi-sensoriality

LEO Low Earth Orbit

LTP Long Term Plan

LV Low Vegetation class

MAP Maximum a posteriori Probability

MD Defence Ministry

MDG Detected Ground Multi-look product

MLP-NN Multi Layer Perceptron Neural Network

MM Manmade class

MRF Markov Random Fields

MSE Mean Sum Squared Error

MTP Medium Term Planning

N Natural class

NAHIRI Neural Architecture for HIgh Resolution Imagery

NDVI Normalized Difference Vegetation Index

NN Neural Network

O Olive class

OA Overall Accuracy

P Pasture class

PalSAR Phased Array type L-band Synthetic Aperture Radar

PCC Post Classification Comparison

PCNN Pulse Coupled Neural Network

PP Ping Pong mode

PRISMA PRecursore IperSpettrale della Missione Applicativa

PROBA Project for On-Board Autonomy

QB QuickBird

RADAR RAdio Detection And Ranging

RCS Radar Cross Section

S Shrubs class

S2 Spotlight mode
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SAR Synthetic Aperture Radar

SCG Scaled Conjugate Gradient

SCS Single look Complex Slant product

SLAR Side-Looking Airborne Radar

SLC Single Look Complex

SNR Signal to Noise Ratio

SSE Sum of Squares Error

STP Short Term Planning

SVM Support Vector Machine

T Trees class

TanDEM-X TerraSAR-X add-on for Digital Elevation Measurement

TD Transformed Divergence

TSX TerraSAR-X

VHR Very High Resolution

VT overhead Trellis Vineyard class

VR Vineyards cultivated in Rows class

W Water class

WR Wide Region mode

WV2 WorldView-2
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