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Abstract 
 
The extensive vulnerability assessment of the urban settlements is strictly required in 

many Italian regions where, despite the relevant seismic risk, the percentage of 

existent buildings designed without seismic prescriptions is higher than 50%. In this 

thesis are described the methodologies implemented for evaluating the geometrical 

and typological parameters of buildings in selected areas of Avellino (a seismic 

municipality in Southern Italy), using different data remotely acquired by means of 

aerospatial platforms in order to support a suitably extensive estimation of seismic 

vulnerability at urban level, with the goal of creating a Vulnerability Index Map of 

the built-up urban environment. 

The activities have been based on integration of digital photogrammetry and laser 

ranging (LIDAR) techniques devoted to 3-D reconstruction (containing buildings 

geometrical parameters) of selected test areas. In this framework, data acquired by 

LIDAR sensor have allowed to obtain both the ground Digital Elevation Model and 

the buildings heights and shape over entire administrative area of municipality.  

These results were integrated with those derived from multi/hyperspectral techniques 

to achieve information about the structural typology of each building in the test areas 

by means of “data mining” approaches.  

In particular here the structural types of buildings have been estimated with good 

accuracy using information, coming from the different techniques, has allowed to 

produce, for each building within the test areas, useful information in terms of 

geometrical and typological parameters to be used for their extensive vulnerability 

assessment purpose configured Artificial Neural Network.  

In such a way the integrated use of various information, coming from the different 

techniques, has allowed to produce, for each building within the test areas, useful 

information in terms of geometrical and typological parameters to be used for their 

extensive vulnerability assessment. 
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Introduction 

 
Italy is one of the Mediterranean countries mainly susceptible to the seismic risk. In 

the last 2500 years, in fact, over 30.000 seismic events of intensity equal or higher to 

Mercalli IV-V degree have occurred in our Country. Although all the national 

territory has been interested by significant quakes, except the Sardinia island, the 

highest values of seismic strength have been recorded along the Apennine ridge. In 

the southern Apennines, the area including Irpinia and Benevento province represents 

the most stroked zone, with seismic high energy events (Magnitude between 6.5 and 7 

Richter), occurred many times during the last centuries. 

The consequences of a strong earthquake on the human, social, economic, cultural and 

historical tissue of the beaten area is enormous: in fact, besides an high number of 

casualties, in many cases it deeply damages the historical-cultural heritage and the 

economic-social structures. In Italy, the ratio between the damages produced by 

earthquakes and the energy released during the events is much higher compared with 

that of other countries subjected to relevant seismic activity, i.e. California (USA) or 

Japan. 

As an example, the 1997 earthquake in Umbria and Marche Regions has produced 

severe damages (homeless: 32000; economic damage: approximately 10 billions of 

Euro), similar to the 1989 California one (14,5 billions of US$), but characterized by 

an approximately 30 timeslower energy than 1989 event. 

This arise mainly from an elevated settlement density and from the remarkable 

fragility of our real estate patrimony. A study produced by the Italian National 

Seismic Service has evidenced that more than 10% of the buildings patrimony of 64% 

of the Italian municipalities is potentially subject to an elevated vulnerability. Over 

the next 100 years, in 31% of the Italian municipalities at least 10% of the edifices 

could made out of use after a seismic event. A rough evaluation gauges that there 

could be approximately 800 casualties/year and beyond 1 billion of Euros the direct 

damages deriving from probably earthquakes in Italy. 

In this context the assessment of the vulnerability of the built-up patrimony is a 

problem in evidence for the most Italian territory, on which the percentage of rooms 

in buildings designed and realized in absence of anti-seismic prescription exceeds 

largely the 50%. Therefore it turns out very important to implement effective 
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instruments for extensive, timely and repetitive analysis of the existing urbanized 

areas in order to gain for each building its more meaningful geometric/typological 

parameters, which - joined to those of soils - allow effective estimation of 

vulnerability.  

Such information can be used to improve prevention and mitigation methodologies, in 

order to efficiently support the planning policies and post-event management tasks. 

ENEA was a partner, toghether with the Naples Federico II University and the 

Consorzio T.R.E., of the TELLUS Stabilita Project, funded by the Italian Ministry 

of Instruction, University and Reseach, in which technologies were tested and 

methodologies were developed in order to protect the built-up urban environment 

from earthquakes. 

The activities carried out in this work ere indeed totally integrated in such a project, 

which lasted three years, from January 2007 to December 2009. 
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The study area: Avellino 

 
In this work is described a study conducted in the area of the Municipality of Avellino 

(Fig. 1), in the Campania region, Italy.  

Avellino (40°54′55″N 14°47′23″E, 348m m.s.l., 42Km NE of Naples, Total 

population: 56.700 in 2001, according with the Italian Statistics Insitute) is situated in 

a plain called “Conca di Avellino” and surrounded by mountains: Massiccio del 

Partenio (Monti di Avella, Montevergine e Pizzo d’Alvano) on NO and Monti 

Picentini on SE. Due to the Highway A16 and to other major roads, Avellino also 

represents an important hub on the road from Salerno to Benevento and from Naples. 

Consequently to the 1980 earthquake and trying to regulate the reconstruction 

activities, several specific acts, decrees, zoning laws and ordinance have been issued: 

the first one was the n. 219/1981 Act, that entrusted the coordination of the activities 

to the Campania Region and the urban planning to the damaged Municipalities.  

From 2006 the urban planning issues of Avellino and neighbour areas are regulated by 

two instruments: P.I.C.A. (Italian acronym that stands for Integrated Project for 

Avellino City) and P.U.C. (Urban Plan for Avellino Municipality). 

 
 

 

Figure 1 - Geographic location of the study area: Municipality of Avellino, Southern 

Italy. 
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Chapter 1  Technologies, Instruments and Data 
 
In this work many technologies and methodologies were tested against the project 

needs: amongst them active remote rensing (LIDAR), as well as passive 

(Multispectral, Hyperspectral, High Resolution Panchromatic), Spectral Mixture 

Analysis and Artificial Neural Networks. 

A very huge amount of data was actually gathered in the framework of the TELLUS 

Stabilita Project, as we will show later in this chapter. 

 

Three technologies, one methodology, two instruments and a software in particular 

are taken into account and described in this chapter:  

 

• LIght Detection And Ranging (LIDAR) 

• Hyperspectral remote sensing 

• Artificial Neural Networks (ANN) 

• Spectral Mixture Analysis (SMA) 

• LIDAR sensor (Optech ALTM3100),  

• Hyperpectral sensor (AISA Eagle), both of them airborne, and  

• Data mining suite (Tiberius) 
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1.1 Light Detection and Ranging (LIDAR)  

 
The acronym LIDAR stands for Light Detection and Ranging. Light Detection and 

Ranging basically consists of a laser rangefinder that operates in some form of 

airborne platform (helicopter, plane, or satellite).  

The rangefinder takes repeated measurements of the distance from the platform to the 

ground. The position and elevation of the platform is precisely known by way of 

airborne GPS along with ground control, so the elevation of the ground surface can be 

calculated by subtracting the laser rangefinder distance from the height of the 

platform.  

Compensation must be made for the tilt and pitch of the airborne platform by way of 

gyroscopes and accelerometers in the aircraft’s inertial measurement unit.  

Lidar systems record thousands of highly accurate distance measurements every 

second (newer systems operate at frequencies up to 150 kHz; older systems 30-80 

kHz) and create a very dense coverage of elevations over a wide area in a short 

amount of time.  

Because lidar is an active sensor that supplies its own light source, it can be used at 

night and, thus, avoid routine air traffic, or it can be flown under some types of high 

cloud conditions.  

Most lidar systems record multiple surface reflections, or “returns,” from a single 

laser pulse. When a laser pulse encounters vegetation, power lines, or buildings, 

multiple returns can be recorded.  

The first return will represent the elevation near the top of the object. The second and 

third returns may represent trunks and branches within a tree, or understory 

vegetation.  

Hopefully, the last return recorded by the sensor will be the remaining laser energy 

reflected off the ground surface, though at times, the tree will block all the energy 

from reaching the ground.  

These multiple returns can be used to determine the height of trees or power lines, or 

give indications of forest structure (crown height, understory density, etc.).  

 
Figure 2 shows an example of first return lidar points. 
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Figure 2. An example of first return lidar data 

 
Another feature of an airborne lidar system is the use of mirrors or other technology to 

point the laser beam to either side of the aircraft as it moves along its path. 

Depending on the scanning mechanism, the lidar scans can have a side-to-side, 

zigzag, sinusoidal, or wavy pattern. While the laser itself pulses many thousands of 

times per second, the scanning mechanism usually moves from side-to-side at around 

20-40 cycles per second.  

This scanning, combined with the forward motion of the aircraft, produces millions of 

elevations in a short distance and time. The field of view or angle the scan makes 

from side-to-side can be adjusted by the operator, but is usually set at 30 to 40 

degrees. This creates a swath of around 1 kilometer wide or less.  

Adjacent swaths overlap from 15 to 30% so that no data gaps are left between flight 

lines. The spacing of lidar points on the ground, called “postings,” is a function of the 

laser pulse frequency, scan frequency, and flight height (Baltsavias, 1999).  
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While there is usually a nominal posting spacing specified in a lidar project, actual 

data points have variable spacing that are smaller and larger than the specified 

spacing.  

Mappers need to be aware of these effects when viewing final products that were 

derived from the raw data. The second aspect is that, because the laser scans from side 

to side, it interacts with the ground in different ways, depending on the angle of 

incidence.  

Lidar pulses at the edge of a scan will strike the sides of buildings, whereas pulses at 

the center of a scan will only strike the roof tops. Likewise, pulses at the edges of 

scans will pass through trees at an angle.  

Sometimes this will create “shadows” on the other side where no lidar passes through. 

n addition, less energy will return to the lidar receiver as it reflects away from the 

aircraft.  

This is evident in the intensity images created from the intensity values for each 

return: one can see overall darkening of the intensity at the edges of swaths. Edges of 

swaths appear darker than the returns at centers of swaths. 

Typically a lidar system collect a first and last return from each lidar pulse. From the 

first and last returns, a so-called “bare earth” return is created using classification 

algorithms.  

These classification systems try to sort out non-bare earth returns (tree tops, buildings, 

power lines, automobiles) from bare earth returns. To distinguish bare earth in 

forested areas, differences in elevation between the first and last returns, relative 

changes in elevation, and slope were used. Intensity data were used to identify 

vegetation and man-made materials.  

Sometimes there are some data voids in forested areas due to non-penetration of the 

laser through tree canopy, but these areas are generally easily filled in by 

interpolation. 

Leaf-on conditions and tall crops, such as corn, do not allow easy penetration of the 

laser beam to the ground and should be avoided. 

Lidar data are supplied by the vendor in ASC text format, consisting of n x n 

kilometer tiles with x and y coordinates, z elevations, and intensity values. As an 

example, with a nominal 1 meter posting spacing, some tiles had up to 3.3 million 

points.  

Postings near the center of the flight lines are close to the nominal 1 meter spacing 

(Figure 3a), while toward the ends of scans, the points converge with the start of the 
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next scan (Figure 3b).  

 

 
 

Figure 3, a and b. LIDAR data spacing 

 

While some scans converge, others diverge. Where the scans converge, the points can 

be less than half of the nominal spacing, and likewise, where they diverge, 

they can be twice the nominal spacing.  

Because some points can be as close as 0.5 meters, the tiles are initially interpolated to 

create grids with 0.5 meter resolution, with the idea that no data points should be 

merged or averaged with any other points.  

In this work we desired to create the grids as close as possible to the native resolution 

of the lidar data to evaluate their full potential to represent the smallest surface 

features. 

 

1.1.1 The Optech LIDAR 

 
The sensor used in this work is built from Optech Inc., Toronto, Canada. 

The model name is ALTM 3100 (Figure 4); such a device is able to handle the laser 

multi-returns from semitransparent tree canopies, thus allowing a more reliable 

estimates also in urbanised areas where the buildings shape is partially occluded by 

trees or vegetation (Figure 5 and 6): 
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Figure 4. The Optech ALTM3100 system 

 

Figure 5. The scan system 
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Figure 6. LIDAR Canopy penetration 
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In figure 7 are shown the main technical features of ALTM3100 versus other Hw 

sensors: 

 

 
 

Figure 7. Optech ALTM3100 Technical specifications 

 
 

SYSTEM ALTM 3100 ALTM 3033 ALTM 1020 TopoSys TopoEye I

Manufacturer Optech Optech Optech TopoSys Saab

Country Canada Canada Canada Germany Sweden

Reflectance Si Si No No Si

Wave lenght 1064 1064 1047 nm 1535 nm 1064 nm

Scan type Pulse Pulse Pulse Pulse Pulse

Flight height 80-3500 265-3000 1000 m 850 m 500 m

Aircraft speed - - - 70 m /s 10-25 m /s

Pulse repetition

rate

33-100 Khz 33 Khz 5000 Hz 8000 Hz 6000 Hz

Scan frequency up to 70 Hz up to 70 Hz 50 Hz 630 Hz 650Hz

FOV Up to 25° Up to 20° Up to 20° 7° Up to 10°

Swath up to 0.93 H Up to 700 m Up to 700 m 230 m Up to 168

m

Operated on Helicopter Helicopter Aircraft Aircraft Helicopter



 22  

1.2 Hyperspectral Imagery (HSI) 

 

1.2.1 Imaging Spectroscopy 

 
Imaging spectroscopy is the science and art of applying the techniques of spectral 

analysis to a set of contiguous pixels. This set of contiguous pixels is, of course, an 

image. The image has been captured by a sensor, termed an imaging spectrometer, 

that records tens or hundreds of bands simultaneously. Each of these bands has a very 

small bandwidth, typically 10-20 nanometers, and is spaced such that there is a slight 

overlap between bands. 

An example of overlap can be seen in data from the NASA/JPL Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS) sensor, which is shown in Figure 8 

(Green 1995). 

 

 

Figure 8: Spectral Response of AVIRIS Channels 

 
Because these bands are narrow and overlapping, the data from a single pixel can be 

plotted to form a continuous spectral plot or profile. An example, again from AVIRIS, 

is shown in Figure 9. Note the parameters plotted on the X and Y axes. The X axis is 

the wavelength of the center of the (narrow) band. The Y axis is a physical parameter 

of the material(s) imaged, which is termed the reflectance. 
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Figure 9: AVIRIS Data in the Spectrum Plot 

 
 
It has, of course, always been possible to plot the data from multispectral sensors. 

Figure 10 shows a plot of data from the Landsat TM sensor. 

 

 

Figure 10: Landsat TM Data in the Spectrum Plot 

 
 
This plot suffers from several inherent limitations. 
 
• The X-axis shows the band number. This is a fairly meaningless designation: band 1 

of the Multispectral Scanner (MSS) is different from band 1 of the Thematic Mapper 

(TM) sensor, and both are different from band 1 of Advanced Very High Resolution 

Radiometer (AVHRR) or SPOT XS sensors. There is no way to intercompare datasets 

using this axis designation. 

• The Y-axis, digital number or DN value, is similarly meaningless. The magnitude of 

this value is a function of not only the particular sensor but also the time of day, day 

of year, cloud cover, etc. Again, we cannot intercompare datasets using this axis 

designation. 

• Across the top of the plot in Figure 11 is the bandpass of each band. This is the 

range of frequencies whose intensity is measured and combined to form each band of 

the sensor. In comparing the bandpass widths with the width of the absorption 

features seen in Figure 11, it is obvious that the TM and similar sensors cannot 

resolve the difference between the materials as well as those seen in Figure 9. 



 24  

 

 
 

Figure 11: Reflectance Spectra 

 
This is not to say that attempts were not made to resolve the difference between 

materials. Indeed, the reason that band 7 falls between bands 5 and 6 on the 

wavelength scale is because band 7 was added late in the TM sensor design due to the 

interest of geologists in that spectral region. 

Similarly, the band ratios developed for quantifying various materials (TM4/TM3 for 

vegetation; TM5/TM7 for clay minerals) were based on the spectral shapes of the 

materials of interest. 

However, there was a large disconnect. The broad-band sensors were collecting 10 or 

fewer bands while the standards being measured in the laboratory were based on 

hundreds of bands. 

With the advent of the imaging spectrometers, it became possible to bring together, 

even intercompare, data from the remote sensor and the laboratory spectrometer. 

Imaging spectrometers also allowed intercomparison of data from different remote 

sensors. While the narrow bandpass characteristics of the imaging spectrometers 

allowed precise intercomparisons on the X-axis (frequency), the Y-axis (intensity) 

proved more complicated. 
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In the laboratory setting, the absorption spectrum of a material of interest is taken 

under tightly controlled conditions. The sample chamber, radiation source, and 

diffraction grating area are all flushed with dry nitrogen to remove the effects of the 

ambient air— particularly water vapor and carbon dioxide. A null, or empty, channel 

is measured simultaneously. The instrument is calibrated prior to each measurement. 

Under such controlled conditions, the measured intensities can be accurately 

converted to primary physical properties such as percent transmission, absorbance, or 

reflectance. Conversion to one of these physical parameters allows intercomparison of 

results taken on different days or in different laboratories.  

Results can be compiled for universal use. 

With data from the remote sensor, correction of the sensor signal to a primary 

physical property has proven difficult. The first step, conversion of the raw DN value 

to at-sensor radiance, can be accomplished using the calibration coefficients of the 

sensor. This step is commonly performed before the data is distributed. 

Alternatively, the sensor calibration coefficients are available from the data source. 

At-sensor radiance, however, is affected by the factors such as: time of day and day of 

year (which control solar illumination), cloud cover (which causes local attenuation), 

and the overall content of the atmosphere. Incoming solar illumination can be 

modeled given knowledge of the date and time of data collection. 

The other parameters are more difficult to model. 

The radiation received by the remote sensor has passed through the atmosphere twice. 

The situation for an airborne sensor is different than for a spaceborne one. An 

airborne sensor is below the ozone layer, may be below the stratospheric clouds, or 

could be below the cumulus clouds. The components of the atmosphere have had 

ample opportunity to absorb and/or scatter the solar radiation. The complexity arises 

because the composition of the atmosphere varies seasonally (winter vs. summer), 

regionally (maritime vs. continental), and locally (Gao et al. 1993). Correcting 

(removing) these atmospheric effects from each scene is required to reduce the scene 

to the physical parameter reflectance. Only then can different images or images and 

laboratory spectra be intercompared. This requirement, Atmospheric Correction, is 

currently a bottleneck in imaging spectroscopy. 

 

1.2.2 Atmospheric Correction 

 
The goal of Atmospheric Correction is to completely remove the absorption and 

scattering effects of the Earth’s atmosphere to allow conversion of the image data to a 
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primary physical parameter: reflectance. The approaches to this fall into two 

categories: atmospheric modeling and empirical. 

 

1.2.2.1 Atmospheric Modeling  

 
The atmospheric modeling approaches attempt to quantify the exact atmospheric 

composition at the time of data acquisition and then calculate the probable effects. 

These models, termed atmospheric transmission codes, have met with considerable 

success. 

For example, the United States Air Force Geophysics Laboratory has steadily evolved 

its code from LOWTRAN (Low Resolution Atmospheric Transmission Code) 

through MODTRAN (Moderate Resolution Atmospheric Radiance and Transmittance 

Model) (Berk 1989) to HITRAN (High Resolution Transmission Molecular 

Absorption Database). A limiting factor in the use of these codes in their pure form is 

the requirement of accurate input of the atmospheric composition at the time of data 

acquisition. Given these inputs, the transmission codes have proven quite accurate in 

predicting the attenuation effects on the image. With the accuracy of the transmission 

codes demonstrated, a next step was to investigate ways to estimate the requisite input 

parameters and evaluate the accuracies attained using these estimates. 

Evaluation of transmission code-based Atmospheric Corrections suggests that these 

corrections may be as good as they can get, given the inevitable variability and 

uncertainty of the real world. In addition, it is being recognized that (transmission 

code-based) Atmospheric Correction is appropriately the responsibility of the data 

vendor. Additionally, imagery from airborne hyperspectral sensors is less easily 

addressed by the transmission codes due to variations in the altitude of flight for each 

data acquisition. 

There have been a number of correction algorithms based on the transmission codes. 

These algorithms attempt to estimate some of the requisite parameters either from the 

data itself or through interaction with the analyst. The ATmosphere REMoval 

program (ATREM) was developed by the Center for the Study of Earth from Space 

(CSES) at the University of Colorado for use with AVIRIS imagery (Gao et al. 1996). 

ATmospheric CORrection (ATCOR) was developed by the German Space Agency 

(DLR) in conjunction with ERDAS in Germany (Richter 1996). Atmospheric 

CORrection Now (ACORN) was developed by ImSpec, LLC using MODTRAN 4. 

Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) was 

developed in part by the Air Force Geophysics Laboratory (Alder-Golden et al. 1998). 
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Regardless of whether the model-based correction is done by the data vendor or 

subsequently, given real-world variability and uncertainty, it can never be perfect. It 

has been clearly and eloquently shown by Roger Clark (USGS, Denver) and others 

that minor adjustments using ground control, applied after transmission code-based 

Atmospheric Correction, enable superior results. 

 

1.2.2.2 Empirical  

 
A second category of approaches to Atmospheric Correction is those based on ground 

truth inputs. These algorithms rely on the use of one or more spectral control points. A 

spectral control point is a pixel (or collection of pixels), identifiable in the image, for 

which the analyst has a library spectrum of that pixel’s material composition without 

atmospheric effects. 

The best way to get such spectral control points is to collect them in the field with a 

handheld field spectrometer. Alternately, the analyst may have a Spectrum Library 

from which an approximate spectrum can be selected if the material in the pixel is 

known. When the spectral control point(s) are identified, they can then be used to 

correct the entire image. Again, some assumptions are being made. 

Several problems present themselves. Every pixel is a mixed pixel at some level and, 

due to sensor trade-offs (largely data volume), hyperspectral pixels tend to be 

relatively large: commonly 10-30 meters. At this scale, it is difficult to find pure 

pixels, especially of naturally occurring materials. This suggests that human-made 

features such as parking lots, building roofs, or golf courses should be used. 

Another assumption is that the material from which the control spectrum is taken is 

identical to the material being imaged in the pixel. Natural materials are incredibly 

variable. This can greatly limit the applicability of the compiled Spectrum Libraries 

and also contributes to the development of specialized libraries, such as SPECMIN 

from Spectral International, Inc. 

Once the issue of defining the spectral control points has been addressed, several 

similar algorithms exist.  

An approach has been proposed for instances in which the analyst has absolutely no 

auxiliary information. This is the IARR algorithm. 

This algorithm requires several major assumptions and is therefore limited to cases 

where those assumptions strictly apply. Use of this approach where those assumptions 

do not apply can lead to very erroneous results. major assumption underlying many of 

the imaging spectroscopy algorithms is that of linear mixing.  
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1.2.2.3 Linear Mixing 

 
A major assumption underlying many of the imaging spectroscopy algorithms is that 

of linear mixing. This assumption postulates that the brightness (DN at each 

wavelength) of an image pixel is a linear combination of the percentage of each 

endmember and the brightness of a pure sample of that endmember or, 

mathematically: 

 
DNb  =∑fnEMnb 

 
(Source: Adams et al. 1986) 

 

This assumption is, perhaps, analogous to the assumption of Gaussian distribution 

which underlies many of the traditional classification algorithms such as Maximum 

Likelihood and Mahalanobis Distance. While it may be of questionable validity, 

without it progress is difficult. 

The linear mixing model is not strictly applicable for a variety of reasons. This is 

particularly true in the VNIR and SWIR regions. In the TIR region, the linear 

assumption has been shown to be significantly more valid (Ramsey et al. 1998). 

Linear mixing assumes that each photon interacts with only one material. However, 

multiple-scattering effects in the ground environment are possible, even likely. Photon 

scatter between vegetation and the ground or within the vegetation layer is common. 

If a photon interacts with more than one material, the process becomes nonlinear 

(Farrand and Harsanyi 1995). 

It has been shown that a system of nonlinear mixing can be linearized (Ramsey and 

Christensen 1998). This is commonly done by converting the at-sensor radiance to 

single scattering albedo (Resmini et al. 1996). Shadow introduces nonlinearity (Olsen 

et al. 1997) and yet shadow is so ubiquitous that it must be included as an endmember 

within the overall endmember list for most images. 

Endmembers are not constant even within a single scene. As the endmember changes 

within the scene, its spectrum changes. This mismatch between the defined 

endmember and its actual form on the ground leads to errors within the matching 

algorithm. It is commonly assumed that the percent contribution of an endmember to 

the overall radiance of a pixel is a measure of the pixel-fill of that endmember—this is 

not a proven conclusion (Shipman and Adams 1987). Many analytical metrics assume 

that the pixel compositions are uncorrelated—this is not a strictly valid assumption. 
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1.2.3 Endmembers  

 
The use of endmembers in estimating the composition of an image pixel is analogous 

to their use in constructing ternary (or higher order) diagrams to explain the variable 

composition of mixed systems. Consider the ternary system ABC in Figure 12. 

 

 

Figure 12: Ternary Model 

 
This theoretical system is composed of three pure materials: A, B, and C. These are 

the endmembers of this system. A member of this system composed of 100% material 

A would plot at the apex of this pyramid; a member with 100% B would similarly plot 

at point B. Any mixture of these three materials, such as X, falls somewhere within the 

triangle with %A, %B, and %C determining exactly where. In Figure 12, mixture X is 

10% endmember A, 20% endmember B, and 70% endmember C. 

In imaging spectroscopy, we have a somewhat analogous situation. We have a 

number of pixels, mixtures (mixed pixels) such as X in Figure 12, and we would like 

to know some or all of the endmembers (A, B, and C) and the percentage of some or 

all of the endmembers in each pixel. Clearly, the identity of the endmembers is crucial 

to this analysis. 

Selecting endmembers for natural systems is exceedingly difficult due to the inherent 

variability in nature. Consider a geologically oriented analysis. In theory, one would 

like a spectrum of each pure mineral for the endmember spectra. However, pure 

minerals rarely occur in nature. Cation and /or anion substitutions are common 

depending on the origin of the sample. Even with identical composition, the spectrum 

is affected by the degree of crystallinity for each sample. 

Particle size distribution affects the exact shape of the absorbance curve. As the 

particle size decreases, the absorption bands flatten out and tend to merge with the 

continuum. For this reason, the USGS, Jet Propulsion Laboratories (JPL), and 
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Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

Spectrum Libraries give spectra of the same mineral at different particle sizes. 

Other naturally variable factors such as associated phases and degree of weathering, 

presence or absence of water, and degree of transparency all affect the resultant 

spectrum. 

A similar list of variables can be compiled for vegetation spectra. 

Variables such as rainfall, presence or absence of minerals in the soil, phase of the 

growing cycle, sun-leaf orientation, etc. cause changes in the recorded spectrum. 

In addition to the various endmember species, there is generally a dark endmember 

that represents the shade/shadow areas within the scene. The shade endmember is 

nonzero due to atmospheric scattering. This endmember is variable with terrain relief, 

vegetation type and density, and viewing geometry. As it has a large scattering 

component, the illumination is shifted toward the blue spectral range. 

The central wavelength and relative depth of absorption features are the major 

diagnostic features in spectral analysis. However, these are not constant for given 

specie, but vary with a number of factors. 

Band shape and depth depend on illumination and viewing geometry, particle size, 

and even the spectral response functions of the sensor itself. The actual signature 

measured by the sensor is affected by atmospheric and geometric conditions as well as 

noise. 

Thus, the signature of a uniform material can have significant variation. Atomic 

substitutions in the lattice of minerals cause changes to the shape and/or position of 

the spectral bands. This fact is exploited to measure the distribution of cation 

substitutions in minerals (Roger Clark, USGS). 

Because of these variations and distortions, search and detect algorithms that are 

highly sensitive to the target spectrum (signature) are compromised or even 

ineffective. Candidate endmembers must be chosen so as to ensure that their 

distribution is unimodal and well separated from other endmembers. In practice, it is 

probably best if endmembers are sampled from the dataset under analysis. 

The discussion of endmembers has been largely directed toward the idea of an 

endmember as a single material such as a mineral (chemical compound) or distinct 

vegetation species. For some systems or analyses, however, a scene endmember might 

be a combination of singular materials. For example, in the analysis of a littoral scene, 

one endmember might be beach. The beach endmember could be 80% silica sand, 

15% marine carbonates (sea shells), and 5% vegetable material (seaweed and algae). 
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For another analysis, an airport runway endmember might be defined as 85% cement, 

14% tire rubber, and 1% a strong absorption band from spilled aviation fuel. Either of 

these compound endmembers could be defined by a single spectrum and represent a 

component of the system. 

 

1.2.4 Spectrum Libraries 

 
Spectral signatures are required for analysis of hyperspectral images. They provide 

the endmembers, Target Detection, and Material Mapping signatures, and input 

materials for Material Identification. The spectral signature is the information that is 

used in classifying a pixel. 

Because of this primary role of spectral signatures, efforts have been made over the 

past decade to compile databases, termed Spectral Libraries, of the spectra of known 

materials (Clark et al. 1993b). 

These libraries include human-made materials, pure minerals, site specific minerals, 

pure vegetation stands, and various mixed composition spectra. Libraries have been 

compiled of laboratory signatures taken with spectrometers under tightly controlled 

conditions, handheld field spectrometers in both natural and controlled areas, and 

from remote sensing images (scene-derived spectra). Many of these libraries are 

available to the public or selected researchers. 

1.2.5 High Resolution Imagery (HRI) 

 
To supplement the HyperSpectral Imagery (HSI) display, HSI systems usually include 

a high-resolution (HRI) black-and-white, or panchromatic, camera. This camera is 

mounted adjacent to the HSI sensor to enable both sensors to capture the same 

reflected light. 

The HRI sensor uses a pushbroom approach just like the HSI camera. It has a similar 

lens and slit arrangement to limit the incoming light to a thin, wide beam. However, 

the HRI camera does not have a diffraction grating to disperse the incoming reflected 

light. Instead, the light is directed to a wider CCD to capture more image data.  

Because it captures a single line of the ground image per frame, it is called a line scan 

camera. 

An HRI CCD is usually several thousand pixels wide and one pixel high. It operates 

at a frame rate that is much faster than that of the HSI sensor—typically several 

hundred frames per second.  

The combination of more imaging pixels (several thousand) and the faster frame rate 
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(several hundred Hz) results in a finer resolution that is on the order of a few inches 

per pixel. 

This high resolution adds the capability for a human operator to visually evaluate 

detected objects on the system display. 

 

1.2.6 An application of Hyperspectral Imagery to urban areas 

 
Following the terrorist attacks of September 11, 2001, HSI technology was used to 

assess the distribution of materials and dust from the World Trade Center (WTC) in 

New York City. Using spectral signatures for such things as concrete, cement, and 

gypsum wall board, the dispersion of debris could be tracked using hyperspectral 

imagery.  

An hyperspectral image of the WTC area is shown below in Figure 13. This image 

was acquired by satellite five days after the attacks. 

 

 
 

Figure 13. Analysis of Materials from Destruction of the World Trade Center in New 

York City, USA 
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1.2.7 The AISA Hyperspectral sensor 

 

Within this work an airborne hyperspectral sensor owned and operated by Helica Srl, 

an OGS spin-off firm, was used. This sensor is designed, build and sold by Spectral 

Imaging Ltd from Oulu, Finland. 

His head is coupled with a GPS/INS unit and with an HR CCD camera (fig. 14-18) 

 

 

Figure 14. The AISA Eagle Sensor Head 

 

 

Figure 15. AISA Eagle Operation principles 
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Figure 16: AISA Eagle ground pixel sampling vs flight altitude 

 
 
 
 
 
 

 

Figure 17. AISA Eagle FOV vs flight altitude 
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Figure 18. AISA Eagle Image rate vs flight velocity 
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AISA Eagle is capable to operate within a wide range of customer specifications, as 

shown in the following figure 19: 

 

 
 

Figure. 19 AISA Eagle sensor technical specifications 
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In this work were acquired images with 30 spectral bands at about 1m ground 

resolution (Fig. 20) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20. AISA Eagle bands 
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1.3 Artificial Neural Networks (ANN) 

Artificial Neural Networks, also known as “Artificial neural nets”, “neural nets”, or 

ANN for short, are a computational tool modeled on the interconnection of the neuron 

in the nervous systems of the human brain and that of other organisms. Biological 

Neural Nets (BNN) are the naturally occurring equivalent of the ANN. Both BNN and 

ANN are network systems constructed from atomic components known as “neurons”. 

Artificial neural networks are very different from biological networks, although many 

of the concepts and characteristics of biological systems are faithfully reproduced in 

the artificial systems. 

Artificial neural nets are a type of non-linear processing system that is ideally suited 

for a wide range of tasks, especially tasks where there is no existing algorithm for task 

completion. ANN can be trained to solve certain problems using a teaching method 

and sample data. In this way, identically constructed ANN can be used to perform 

different tasks depending on the training received. With proper training, ANN are 

capable of generalization, the ability to recognize similarities among different input 

patterns, especially patterns that have been corrupted by noise. 

The term “Neural Net” refers to both the biological and artificial variants, although 

typically the term is used to refer to artificial systems only. Mathematically, neural 

nets are nonlinear. Each layer represents a non-linear combination of non-linear 

functions from the previous layer. Each neuron is a multiple-input, multiple-output 

(MIMO) system that receives signals from the inputs, produces a resultant signal, and 

transmits that signal to all outputs.  

Practically, neurons in an ANN are arranged into layers. The first layer that interacts 

with the environment to receive input is known as the input layer. The final layer that 

interacts with the output to present the processed data is known as the output layer. 

Layers between the input and the output layer that do not have any interaction with 

the environment are known as hidden layers. Increasing the complexity of an ANN, 

and thus its computational capacity, requires the addition of more hidden layers, and 

more neurons per layer. 

Biological neurons are connected in very complicated networks. Some regions of the 

human brain such as the cerebellum are composed of very regular patterns of neurons. 
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Other regions of the brain, such as the cerebrum have less regular arrangements. A 

typical biological neural system has millions or billions of cells, each with thousands 

of interconnections with other neurons. Current artificial systems cannot achieve this 

level of complexity, and so cannot be used to reproduce the behavior of biological 

systems exactly. 

1.3.1 Processing Elements 

In an artificial neural network, neurons can take many forms and are typically referred 

to as Processing Elements (PE) to differentiate them from the biological equivalents. 

The PE are connected into a particular network pattern, with different patterns serving 

different functional purposes. Unlike biological neurons with chemical 

interconnections, the PE in artificial systems are electrical only, and may be either 

analog, digital, or a hybrid. However, to reproduce the effect of the synapse, the 

connections between PE are assigned multiplicative weights, which can be calibrated 

or “trained” to produce the proper system output. 

McCulloch-Pitts Model 

Processing Elements are typically defined in terms of two equations that represent the 

McCulloch-Pitts model of a neuron: 

 

 

Where ζ is the weighted sum of the inputs (the inner product of the input vector and 

the tap-weight vector), and σ(ζ) is a function of the weighted sum. If we recognize 

that the weight and input elements form vectors w and x, the ζ weighted sum becomes 

a simple dot product: 
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Figure 21. Activation/Transfer function 

This may be called either the activation function (in the case of a threshold 

comparison) or a transfer function. Figure 21 shows this relationship 

diagrammatically. The dotted line in the center of the neuron represents the division 

between the calculation of the input sum using the weight vector, and the calculation 

of the output value using the activation function. In an actual artificial neuron, this 

division may not be made explicitly. 

The inputs to the network, X, come from an input space and the system outputs are 

part of the output space. For some networks, the output space Y may be as simple as 

{0, 1}, or it may be a complex multi-dimensional space. Neural networks tend to have 

one input per degree of freedom in the input space, and one output per degree of 

freedom in the output space. 

The tap weight vector is updated during training by various algorithms. One of the 

more popular of which is the backpropagation algorithm which we will discuss in 

more detail later. 

Artificial neural nets have a number of properties that make them an attractive 

alternative to traditional problem-solving techniques. The two main alternatives to 

using neural nets are to develop an algorithmic solution, and to use an expert system. 

Algorithmic methods arise when there is sufficient information about the data and the 

underlying theory. By understanding the data and the theoretical relationship between 

the data, we can directly calculate unknown solutions from the problem space. 

Ordinary von Neumann computers can be used to calculate these relationships quickly 

and efficiently from a numerical algorithm. 
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Expert systems, by contrast, are used in situations where there is insufficient data and 

theoretical background to create any kind of a reliable problem model. In these cases, 

the knowledge and rationale of human experts is codified into an expert system. 

Expert systems emulate the deduction processes of a human expert, by collecting 

information and traversing the solution space in a directed manner. Expert systems are 

typically able to perform very well in the absence of an accurate problem model and 

complete data. However, where sufficient data or an algorithmic solution is available, 

expert systems are a less than ideal choice. 

Artificial neural nets are useful for situations where there is an abundance of data, but 

little underlying theory. The data, which typically arises through extensive 

experimentation may be non-linear, non-stationary, or chaotic, and so may not be 

easily modeled. Input-output spaces may be so complex that a reasonable traversal 

with an expert system is not a satisfactory option. Importantly, neural nets do not 

require any a priori assumptions about the problem space, not even information about 

statistical distribution.  

Though such assumptions are not required, it has been found that the addition of such 

a priori information as the statistical distribution of the input space can help to speed 

training. Many mathematical problem models tend to assume that data lies in a 

standard distribution pattern, such as Gaussian or Maxwell-Boltzmann distributions. 

Neural networks require no such assumption. During training, the neural network 

performs the necessary analytical work, which would require non-trivial effort on the 

part of the analyst if other methods were to be used. 

1.3.2 Learning 

Learning is a fundamental component to an intelligent system, although a precise 

definition of learning is hard to produce. In terms of an artificial neural network, 

learning typically happens during a specific training phase. Once the network has 

been trained, it enters a production phase where it produces results independently. 

Training can take on many different forms, using a combination of learning 

paradigms, learning rules, and learning algorithms. A system which has distinct 

learning and production phases is known as a static network. Networks which are able 

to continue learning during production use are known as dynamical systems. 
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A learning paradigm is supervised, unsupervised or a hybrid of the two, and reflects 

the method in which training data is presented to the neural network. A method that 

combines supervised and unsupervised training is known as a hybrid method. A 

learning rule is a model for the types of methods to be used to train the system, and 

also a goal for what types of results are to be produced. The learning algorithm is the 

specific mathematical method that is used to update the inter-neuronal synaptic 

weights during each training iteration. Under each learning rule, there are a variety of 

possible learning algorithms for use. Most algorithms can only be used with a single 

learning rule. Learning rules and learning algorithms can typically be used with either 

supervised or unsupervised learning paradigms, however, and each will produce a 

different effect. 

Overtraining is a problem that arises when too many training examples are provided, 

and the system becomes incapable of useful generalization. This can also occur when 

there are too many neurons in the network and the capacity for computation exceeds 

the dimensionality of the input space. During training, care must be taken not to 

provide too many input examples and different numbers of training examples could 

produce very different results in the quality and robustness of the network. 

1.3.3 Network Parameters 

There are a number of different parameters that must be decided upon when designing 

a neural network. Among these parameters are the number of layers, the number of 

neurons per layer, the number of training iterations, et cetera (Fig. 22). Some of the 

more important parameters in terms of training and network capacity are the number 

of hidden neurons, the learning rate and the momentum parameter. 

Number of neurons in the hidden layer 

Hidden neurons are the neurons that are neither in the input layer nor the output layer. 

These neurons are essentially hidden from view, and their number and organization 

can typically be treated as a black box to people who are interfacing with the system 

(Fig. 23). Using additional layers of hidden neurons enables greater processing power 

and system flexibility. This additional flexibility comes at the cost of additional 

complexity in the training algorithm. Having too many hidden neurons is analogous to 

a system of equations with more equations than there are free variables: the system is 

over specified, and is incapable of generalization. Having too few hidden neurons, 



 43  

conversely, can prevent the system from properly fitting the input data, and reduces 

the robustness of the system. 

 
 

Figure 22. Neuron Network 

 

Figure 23. Hidden Layer 

Learning Rate 

Training parameter that controls the size of weight and bias changes during learning. 

Momentum 

Momentum simply adds a fraction m of the previous weight update to the current one. 

The momentum parameter is used to prevent the system from converging to a local 

minimum or saddle point. A high momentum parameter can also help to increase the 
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speed of convergence of the system. However, setting the momentum parameter too 

high can create a risk of overshooting the minimum, which can cause the system to 

become unstable. A momentum coefficient that is too low cannot reliably avoid local 

minima, and can also slow down the training of the system. 

Training type 

Meaning: 0 = train by epoch, 1 = train by minimum error 

Epoch 

Determines when training will stop once the number of iterations exceeds epochs. 

When training by minimum error, this represents the maximum number of iterations. 

Minimum Error 

Minimum mean square error of the epoch. Square root of the sum of squared 

differences between the network targets and actual outputs divided by number of 

patterns (only for training by minimum error). 

1.3.4 Tiberius data mining software 

 

Tiberius is a predictive modelling software from Tiberius Data Mining, Melbourne, 

Australia.  

It is a free of charge data modelling and visualisation tool for university staff and 

students all over the world and is downloadable at the following url: 

http://www.tiberius.biz/download.html 

 

Some of main Tiberius main features are: 
 

Neural Networks 

Support Vector Machine 

Decision Tree 

Logistic Regression 

Regression Splines 

Automatic scorecard building algorithms 

Variable Ranker 

3D data visualisation 

Model monitoring tools 

Data recoding 

Reads SAS, SPSS, SQL Server, MySQL, Oracle, Teradata, Excel, Access, text files 
etc. 

SAS, SQL, SPSS and other model code generation 
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Following is shown a brief tutorial focusing on the main classification steps : 
 

• At very first we need to create a new Model, loading data: 
 

 
 

• After selected and loaded the data, we are requested to select what is to be 

predicted as the 'output' and the variables to be used to make the prediction as the 

'inputs'. Any variable not loaded in at this stage will be unavailable to the model. 

Variables that are selected at this stage can subsequently be removed if they are not 

required to be in the model. 
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• We will now build our first neural network model: Press the ‘Add Neuron’ (1) 

button to add a neuron to the neural network. The diagram will change to represent 

the current network architecture as neurons are added or removed. 

In order to start the learning process, press the ‘Press to train’ button (2). To stop the 

learning, press it again. Learning will only automatically stop once 100% correct 

classification has been achieved. 

As the model is learning, the classification success rates are displayed (3). 
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• An important step is good to determine which inputs are the important ones; some 

variables can be completely unimportant and be safely removed. This can be tested by 

adding randomly generated numbers as inputs and checking the importance of these 

variables once the model is built: 

 

 

• For classification problems, the data summary form has a tab called 'Important 

Variables'. The 'information value' of a variable is a metric that indicates the ability of 

that variable to split the two classes. The higher the 'information value' the better. 
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• Histograms (split by class) of the raw data, final model scores and model 

errors can be viewed. These histograms should give a graphic demonstration of why 

certain variables are important and why some are not. The red and blue bars indicate 

the class distribution. Separation of the two colours should be more evident for the 

more important variables in the model. 

 

 

• To visualise relationships between the inputs and the output, a 3D viewing 

tool is available. The 3D Viewer allows visualisation of the raw data. There are 

numerous controls to drill down on the data of specific interest: 
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1.4 Spectral Mixture Analysis 

 
The linear SMA approach assumes that the spectrum measured by a sensor is a linear 

combination of the spectra of all components within the pixel (Adams, et al., 1995; 

Roberts, et al., 1998a). The mathematical model can be expressed as 

Ri = ∑
n
 fkRik + εi 

            K=1 

 

where i is the number of spectral bands used; k _ 1, . . . , n (number of endmembers); 

Ri is the spectral reflectance of band i of a pixel, which contains one or more 

endmembers; fk is the proportion of endmember k within the pixel; Rik is known as 

the spectral reflectance of endmember k within the pixel on band i, and _i is the error 

for band i. To solve fk, the following conditions must be satisfied: (1) selected 

endmembers should be independent of each other, (2) the number of endmembers 

should be less than or equal to the spectral bands used, and (3) selected spectral bands 

should not be highly correlated.  

It is well recognized that remotely sensed data, such as visible bands in Landsat 

TM/ETM+ data, are highly correlated between the adjacent spectral wavebands 

(Barnsley, 1999). Several techniques have been used to transform the data from 

highly correlated bands to an orthogonal subset.  

Principal component analysis (PCA) and minimum noise fraction (MNF) are the two 

most common transformations (Green, et al., 1988; Boardman and Kruse, 1994; 

Jensen, 1996). The MNF transform contains two steps (ENVI, 2000): (1) de-

correlation and rescaling of the noise in the data based on an estimated noise 

covariance matrix, producing transformed data in which the noise has unit variance 

and no band-to-band correlations; and (2) implementation of a standard PCA of the 

noise-whitened data.  

The result of MNF is a two-part dataset, one part associated with large eigenvalues 

and coherent eigenimages, and a complementary part with near-unity eigenvalues and 

noisedominated images (ENVI, 2000). In the MNF transform, the noise is separated 

from the data by using only the coherent portions, thus improving spectral processing 

results. Previous studies have shown that use of MNF transform can improve the 

quality of fraction images (van der Meer and de Jong, 2000; Small, 2001; Lu, et al., 

2002; Small, 2002; Wu and Murray, 2003), and thus the MNF transform was used in 

this study. 
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Development of high-quality fraction images depends greatly on the selection of 

suitable endmembers. A variety of methods have been developed to determine 

endmembers. For example, endmembers can be obtained from (1) a spectral library, 

or field reflectance measurements; (2) the image itself (Quarmby, et al., 1992; Settle 

and Drake, 1993) or high-order PCA eigenvectors (Boardman, 1993); (3) spectrally 

pure pixels identified using the Pixel Purity Index (PPI) (Boardman, et al., 1995), 

which are selected manually by visualizing the PPI results in an N-dimensional 

visualizer with ENVI (ENVI, 2000); (4) manual endmember selection (Bateson and 

Curtiss, 1996), which is a multidimensional visualization technique for 

interactivelyexploring the mixing space in search of spectra to designate as 

endmembers; and (5) the combination of image and reference endmember selection 

methods. The combination approach involves a spectral alignment between image 

endmembers and reference endmembers, and a calibration to relate image 

endmembers to reference endmembers (Smith,et al., 1990; Roberts, et al., 1993). For 

most SMA applications, image endmembers are utilized because they can be easily 

obtained and can represent spectra measured at the same scale as the image data 

(Roberts, et al., 1998a). The endmembers are regarded as the extremes in the triangles 

of an image scattergram. Hence, the image endmembers can be identified from the 

scatterplots of two spectral bands. 

Urban landscapes are typically composed of features that are smaller than the spatial 

resolution of the sensors, a complex combination of buildings, roads, grass, trees, soil, 

water, and so on. Strahler, et al. (1986) described H- and L-resolution scene models 

based on the relationships between the size of the scene elements and the resolution 

cell of the sensor. The scene elements in the H-resolution model are larger than the 

resolution cell and can, therefore, be directly detected. In contrast, the elements in the 

L-resolution model are smaller than the resolution cells, and are not detectable. When 

the objects in the scene become increasingly smaller relative to the resolution cell 

size, they may be no longer regarded as objects individually. Hence, the reflectance 

measured by the sensor can be treated as a sum of interactions among various classes 

of scene elements as weighted by their relative proportions (Strahler, et al., 1986).  

Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper Plus (ETM+) images 

with a nominal 30 meter spatial resolution are attributed to L-resolution model. These 

data are often considered too coarse for mapping the components of urban 

environments. As the spatial resolution interacts with the fabric of urban landscapes, a 

special problem of mixed pixels is created, where several landuse and land-cover 
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(LULC) types are contained in one pixel. Such a mixture becomes especially 

prevalent in residential areas where buildings, trees, lawns, concrete, and asphalt can 

all occur within a pixel. 

 Mixed pixels have been recognized as a problem affecting the effective use of 

remotely sensed data in LULC classification and change detection (Fisher, 1997; 

Cracknell, 1998). Fisher (1997) summarized four causes of the mixed pixel problem, 

i.e., (1) boundaries between two or more mapping units, (2) the intergrade between 

central concepts of mappable phenomena, (3) linear sub-pixel objects, and (4) small 

sub-pixel objects.  

When mixed pixels occur, pure spectral responses of specific features are confused 

with the pure responses of other features, leading to the problem of composite 

signatures (Campbell, 2002). The low accuracy of LULC classification in urban areas 

is largely attributed to the mixed pixel problem. For example, the traditional per-pixel 

classifiers, such as maximum-likelihood classifier (MLC), cannot effectively handle 

complex urban landscapes and the mixed pixel problem. When unsupervised 

classification is applied to densely populated suburban metropolitan areas, the mixed 

pixel problem becomes exaggerated.  

Trees on lawns are confused with forest classes. Lawns are similar to pasture and 

recreation, and pavement is common in high-density residential and 

commercial/industrial areas (Epstein, et al., 2002). In practice, accurate classification 

results are a prerequisite for many environmental and socioeconomic applications, 

such as urban change detection (Chen, et al., 2000; Ward, et al., 2000), urban heat 

islands (Lo, et al., 1997; Quattrochi, et al., 2000; Weng, 2001), and estimation of 

biophysical, demographic, and socioeconomic variables (Lo, 1995; Thomson and 

Hardin, 2000). Improving LULC classification accuracy has been an important theme 

in remote sensing literature.  

Different approaches have been used to improve urban LULC classification or change 

detection accuracies. These approaches include incorporation of geographic data 

(Harris and Ventura, 1995), census data (Mesev, 1998), texture features (Myint, 2001; 

Shaban and Dikshit, 2001), and structure or contextual information (Gong and 

Howarth, 1990; Stuckens, et al., 2000) into remote sensing spectral data, use of expert 

systems (Stefanov, et al., 2001; Hung and Ridd, 2002) and fuzzy classification (Zhang 

and Foody, 2001), use of multisensor data such as merged radar and TM data (Haack, 

et al., 2002), merged SPOT and TM data (Gluch, 2002), and merged Airborne 
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Visible/Infrared Imaging Spectrometer (AVIRIS) and radar data (Chen, et al., 2003). 

One of the major advances in urban LULC analysis is Ridd’s (1995) vegetation—

impervious surface—soil (V-I-S) model (Figure 24): 

 

 

 

Figure 24. The V-I-S (Vegetation—Impervious surface—Soil) model illustrating the 

characteristics of urban landscapes (Ridd, 1995). 

 

It assumes that land cover in urban environments is a linear combination of three 

components: vegetation, impervious surface, and soil. This model provides a 

guideline for decomposing urban landscapes and a link for these components to 

remote sensing spectral characteristics.  

Several studies have adopted this model as a basis for understanding the urban 

environment. Ward, et al. (2000) used a hierarchical unsupervised classification 

scheme to classify four classes (water, forest, cleared, and urban) on a per-pixel basis 

and applied the approach to a TM image in southeast Queensland, Australia, based on 

the V-I-S model.  
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An adjusted overall accuracy of 83 percent was achieved. Madhavan, et al. (2001) 

used an unsupervised classifier (ISODATA) to classify TM images into seven classes 

in the Bangkok Metropolitan area, Thailand.  

The V-I-S model proved to be useful for the classifi- cation, although the 

classification accuracy was not as high as expected due to the complexity of the study 

area. Rashed, et al. (2001) conducted spectral mixture analysis (SMA) of IRS- 1C 

multispectral image to describe the anatomy of the Greater Cairo Region, Egypt, 

based on four image endmembers: vegetation, impervious surface, soil, and shade. A 

decision tree classifier (DTC) was then applied to the fraction images.  

The classification accuracy was found to be higher than the accuracy achieved using 

MLC and minimum distance classifiers. Phinn, et al. (2002) compared traditional 

image classification, interpretation of aerial photographs, and constrained linear SMA 

using a TM image in southeast Queensland, Australia, and found that the V-I-S 

fraction images derived from SMA provided better classification results than per-pixel 

classification and aggregated aerial photo interpretation.  

Wu and Murray (2003) used SMA to analyze impervious surface distribution in the 

metropolitan area of Columbus, Ohio, USA, and found that impervious surface can be 

estimated using a linear regression model of low and high albedo endmember 

fractions.  

Although the V-I-S model has demonstrated usefulness for identifying and 

characterizing urban land cover patterns, its use in practice is constrained due to the 

following factors. First, the V-I-S model cannot explain all land cover types such as 

water and wetlands. Second, impervious surface in the V-I-S model cannot be easily 

identified as an endmember based on remote sensing images (Wu and Murray, 2003) 

because impervious surface is a complex mixture of different materials, including 

concrete, asphalt, metals, plastic, and soils (Jensen, 2000). Finally, the V-I-S model 

excludes an important component in the mixed pixels, i.e., the shade. Shade, caused 

by tall buildings or trees, is an important factor affecting the spectral response patterns 

of urban landscapes and should be an essential consideration in analyzing urban 

landscapes.  

For medium-spatial resolution remotely sensed data, such as TM/ETM+, the central 

business district, light/heavy industry, high/medium density residential, and bare soils 

are difficult to differentiate using traditional digital image processing techniques. 

Recently SMA has attracted increasing interests in urban studies and has shown the 



 54  

potential for estimating impervious surface and vegetation abundance, and for 

improving urban land-cover classification (Rashed, et al., 2001; Small, 2001; Phinn, 

et al., 2002; Small, 2002; Wu and Murray, 2003).  
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1.5 Data 

 

1.5.1 LIDAR Data 

 

• 2007 Digital Surface Model (DSM): 48 tiles of 1SqKm area each, pixel size 

1m (Figure 25 a) 

• 2007 Digital Terrain Model (DTM): 48 tiles of 1SqKm area each, pixel size 

1m (Figure 25 b) 

• 2007 48 tiles of LAS point clouds (area: 1SqKm each) over the Comune of 

Avellino entire area, range point density: 4/m (Fig. 26). 

 

 

Figure 25 a and b. Avellino’s DTM vs DSM (Detail) 
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Figure 26. LIDAR collection cover area 
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1.5.2 Hyperspectral Data 

 

• 2007 50 VNIR images at 31 bands ranging from 0.4 to 0.9 nm, pixel size 1m 
(Fig. 27) 

 

 

Figure 27. Hyperspectral Images Mosaic 

 

1.5.3 Multispectral Data 

 

• 1975 Landsat MSS quarter scene, pixel size  

• 1993 Landsat TM quarter scene, pixel size  

• 2000 Landsat ETM+ quarter scene, pixel size 30m 

• 2005 and 2006 QuickBird MS Images, pixel size 3m 

1.5.4 High-Resolution Image Data 

 

• 1997 Aerial Panchromatic Photogrammetry Stereo Couples over the Comune 

of Avellino entire area. Pixel size: 10cm (Figure 28) 
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Figure 28.Aerial photogrammetric Stereo couple 

 

• 2007 Panchromatic ‘Intensity’ Image over the Comune of Avellino entire area 

from LIDAR survey 

• 1998 RGB Ortophoto over the Comune of Avellino entire area. Pixel size: 2m 

(Figure 29) 

• 2007 RGB Orthophoto over the Comune of Avellino entire area. Pixel size 1m 
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Figure 29. Comune of Avellino RGB Ortophoto 

 

• 2005 and 2006 QuickBird Panchromatic Images, pixel size 70cm 
 

1.5.5 Cartographic (Vector and Raster) Data 

 

• 1997 Comune of Avellino Cadastral Digital Map 1:2000 scale (source: 

Comune of Avellino) 

• 2003 Comune of Avellino Digital Cartography 1:1000 scale (source: Comune 

of Avellino) 
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•  

Chapter 2 – Methodology 
 

2.1 Test areas 

 
First of all, in order to reduce the computational times due to the huge amount of data 

availables, two test areas were identified within the whole area (Figure 30): the first 

one laying in the NE part of the town, near the railway station, while the other one in 

the southern part, in the so called San Tommaso district.  

The San Tommaso district area, from now on called 30_36 (from the LIDAR survey 

tiles number) was specifically devoted to the test of the whole on-purpose developed 

chain (Figure 31). 

 
Figure 30. Test areas 

 

San 

Tommaso 

District 

Train Station 
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Figure 31. San Tommaso district Hyperspectral image 

 

2.2 The vulnerability index 

 
Iron concrete buildings represent the majority of the housing patrimony present on the 

Italian territory: for this construction typology, according to a more rigorous 

approach, the vulnerability can be defined as probability of damaging (derived from 

the related fragility analytical trends calculated for standard structures).  

On the other hand, the relevant presence of masonry constructions, especially within 

the historical centres of Italian municipalities (pertaining to the large historical 

patrimony, often with remarkable cultural features), justifies the simplified approach 

here followed and mainly based on the index of vulnerability Iv. 

 

Floors 

Typology Code Construction age Iv 
1-2-3 4-5-6 >6 

Agglomerate 

1946 to 1971 30  5 10 6 
Masonry M6 

> 1971 20  5 10 6 

PC1 
Before seismic 

classification (<2000) 
20 -6 0 6 6 Reinforced 

(iron) 
concrete RC2 

After seismic 
classification (>2000) 

0 -6 0 6 6 

 

Table 1 - Vulnerability indices and modifiers for building typologies over the study 
area (adapted, from Giovinazzi and Lagomarsino, 2001) 
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The Iv index is defined through the statistical analysis of the damages on the build 

patrimony inventoried as a result of the seismic events happened [Giovinazzi and 

Lagomarsino, 2001] in the past on a regional basis. Such index is based firstly on 

the typology of the constructions which identifies macro-groups with those more 

representative in our test areas constituted by the reinforced concrete and masonry. 

Referring to this work, if we take in mind only the buildings in masonry they turn out 

more important those realized in full fire-bricks and those in masonry not armed with 

reinforced concrete floors, while for those completely in iron concrete it is necessary 

to distinguish from buildings constructed with required anti-seismic features after the 

year 2000 from the others built before.  

The index Iv gets greater for the weaker structures more susceptible to be damaged 

and it has an interval going from -50 to 60. In addition to the buildings typologies, Iv 

is related also to other parameters and above all to the geometric ones which 

determine the modalities of response to the seismic wave in terms of displacement  

For the three above described prevailing typologies in the zone of interest indicated by 

related codes (Cod.), in Table 1 are shown the indices of means vulnerabilities (Iv) 

with typical age of construction and the respective modifiers, depending on the level 

of maintenance, the height (expressed in number of floors) and from the belongings to 

agglomerates [Giovinazzi and Lagomarsino, 2001].  

Besides these parameters, other proposed modifiers include the building’s symmetry 

in elevation and planimetric and the geological/geotechnical characteristics of the 

soils beneath. Therefore, in general, besides relative information related to typology 

and state of the construction, it’s important to have also information on height, surface 

and shape of the buildings standing in the urban area of interest, from which to derive 

the geometric parameters modifiers of Table 1. 

 

2.3 Gathering required informations 

 
According to Giovinazzi and Lagomarsino, in order to assign the proper Iv to 

buildings one have to know essentially: 

 

• Floors number 

• Whether to belong to an agglomerate or not 

• Construction age 
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• Construction material 

 

The floors number and the belonging to an agglomerate characteristics are related to 

geometrical factors, while the construction age and materials can be relatied mainly 

with the so called ‘typology’. 

 

In this work was developed an operational chain devoted to extract this kind of 

informations from remote sensed data, joined with some ancillary data. 

 

In particular: 

 

• the height of a building (and hence its floors number) and its belonging to 

an agglomerate can be calculated/evaluated through softcopy 

photogrammetry and/or LIDAR surveys, coupled with some cadastral 

maps; 

• the construction age can be estimated via multitemporal image analysis; 

• finally, the construction material can be inferred through hyperspectral 

remote sensing . 

 

In the following pages will be presented this operational chain and its outcomes. 

 

2.3.1 Three dimensional buildings extraction 

 
A LIDAR airborne remote sensing mission was planned and carried out in 2007 over 

the entire municipality of Avellino, using an Optech ALTM 3100 system and 

acquiring range point clouds data with a density of 4 points for square meter. The 

flight plan has been designed to optimize the 3D restitution of the buildings in the 

urbanized areas. 

The LIDAR raw data, once preliminary filtered and georeferenced, were processed 

through customised methodologies implemented and calibrated on the areas of 

interest [Ma, 2005; Borfecchia et al., 2007] (Figure 32) to obtain the DSM (Digital 

Surface Models) which was used to properly identify the ground points for extracting 

the DTM (Digital Terrain Model – Step 1) through interpolation; objects like 

buildings have been extracted from non-ground points (Step 2), so that it has been 
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possible to derive extensively height and floors number for each building within test 

area.  

Given that the Optech ALTM 3100 is able to handle the laser multi-returns from 

semitransparent tree canopies, more reliable estimates were carried out also in 

urbanised areas where the shape of edifices is partially occluded by trees or vegetation 

(Step 3).  

The LIDAR data, opportunely processed, besides to concur to a better planimetric and 

altimetric definition of the buildings, were used also for the geometric 

characterization of buildings roofs in term of their shape (in 4 classes: Flat Simple, 

Flat Multi-level, Pitched, Complex) and for the location of the distribution of the 

vegetation in the study areas (Figures 33 and 34). 

 

Figure 32. Step-by-step LIDAR post processing chain 
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Step1. Point cloud bare-earth extraction 

 
 
 
 
 

 

Step2. Point cloud building extraction 
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Step3. Point cloud tree and forest extraction 

 

 

 

 
 

Figure 33. LIDAR elaboration chain results 
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Figure 34. 3D buildings and terrain reconstruction 
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2.3.2 Estimating the construction age: Multitemporal analysis of 
the Urban Sprawl 

 
In order to estimate the construction age of each building and keeping in mind the 

image data availables (three Landsat MS images dating fron 1975 to 2000 and a 

QuickBird MS image dating 2006), a multitemporal approach was followed. 

The idea was actually quite simple: to give a construction time according with the 

change detected through Urban Sprawl, as follows: 

 

• All the buildings in the MSS image were (obviously) already built in 

1975 (Figure 35) 

• All the buildings in the TM image that were not present in 1975 were 

built from 1975 and 1993 (Figure 36) 

• All the buildings in the ETM+ image that were not present in 1993 

were built from 1993 and 2000 (Figure 37 and 38) 

• All the buildings in the QuickBird image that were not present in 2000 

were build from 2000 and 2006 (thus following anti-seismic rules, 

Figure 39) 

 

At the same time of the LIDAR data collection, a photographic RGB digital cover of 

the whole area was acquired by means of a digital camera in order to produce an 

orthophoto of the entire territory of Avellino, with a ground pixel size of 20 cm (used 

for accuracy assessment). 

Taking into account the different ground resolution of sensors (60-30m Landsat 

scenes and 2.8m QuickBird) and the typical surface of building in the test areas, a 

spectral mixture analysis (SMA) approach was utilized for Landsat images while 

QuickBird data was processed according to more usual pixel/object classification 

schemas (Maximum Likelihood parametric, ML) to produce maps of built-up at the 

different dates.  

Instead of pixel labeling, the output of SMA is conceived in terms of spectrally pure 

covers (endemembers) percentages which were preliminary verified on the Avellino 

municipality urban sprawl starting from 1975.  

The high probability to be “mixed” for the MSS, TM and ETM+ 30x30m sized pixel 

data makes the application of the SMA more attractive than the standard classification 

methods which were used for the QuickBird data.  
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Via Sequential Maximum Angle Convex Cone algorithm [Gruninger et al., 2004], six 

endemembers were extracted from each Landsat imagery sub-areas referred mainly to 

different kind of built-up and infrastructures.  

Considering the introduction of anti-seismic rules for new constructions (Tab. x), the 

change detection step to identify the buildings in reinforced concrete made before 

2000 (without antiseismic features) was accomplished using a Landsat ETM+ scene 

and a QuickBird multispectral image, respectively acquired on August 2000 and 

October 2006. 

The final classification was accomplished using different thresholds for the 

endmembers abundance validated by means of high resolution aerial photos taken at 

time of satellite overpass and applied to the entire area of interest.  

It has been carried out an accuracy assessment for both classification typologies, 

according with the following methodology: in order to evaluate the pre and post 2000 

classifications (ETM+, SMA), it has been decided that the single pixel identified as 

building should have been correctly labelled if its surface was covered at least by a 

50% of buildings at the ground. 

For the 2006 classification (QuickBird, ML) instead, it has been decided to assign the 

status of correctly classified not to the single pixel but to clumps with a minimum 

surface of 48 sqm (i.e. 3 pixels).  

Ground truth data were derived from suitable aerial photos (1998, 2003 and 2007 

surveys) at appropriate scales and used by a photointerpretation approach with 

QuickBird 2006 panchromatic image integration for the accuracy assessments needs. 

 
The results are summarized in the following Table 2. 

 
 

 
Table 2 - Classification Accuracy assessment 
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Figure 35. Built-up from 1975 Landsat MSS image 

 

 

 

Figure 36. Built-up from 1993 Landsat TM image 
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Figure 37. Built-up from 2000 Landsat ETM+ image 

 

 

 

 

 

Figure 38. Avellino’s Urban sprawl 1973-2000 (from Landsat images) 



 72  

 

 

Figure 39. Avellino’s built-up in 2006 from QuickBird data 
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2.3.3 Finding the construction material: ANN 

 
Once obtained the geometrical (height, area, belonging to an agglomerate) data and 

assessed the consdtruction age, only the construction material has to find out in order 

to correctly assign the Iv to buildings, thus obtaining a Vulnerability Index Map. 

For this kind of endeavour, Artificial Neural Networks were chosen, amongst other 

data mining techniques. In particular, Tiberius data mining software was used. 

 

The input data were: 

• Hyperpectral data from AISA Eagle (31 bands, mean and StDev) 

• Geometrical parameters (Area, Perimeter, Height, Floors number, Roof 

Tipology) 

• Construction time 

• Census data from Italian Statistics Institute 

 

Following is shown the logical schema adopted: 

ANN 

material 
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Artificial Neural Network were calibrated and validated through ground surveys data 

collection acquired at the same time of the LIDAR flight, according to the general 

schema reported in Figure x: 38 buildings for PC1 typology, 189 for RC2 and 6 for 

M6 (Test area San Tommaso district). 

In table 3 is reported a sample of the data availables for each building (total: 233), 

except for the HSI data, showed in the following page: 

 
ID AREA PERIMETER EDIF Height Roof MEAN_1 MEAN_DTM floors Tipology tip_num 

1 3092,81 242,60 188 10,42 Simple,Flat 345,267 334,843 3 PC1 2 

2 2450,25 201,40 189 9,49 Simple,Flat 349,557 340,068 3 PC1 2 

3 834,31 180,14 191 6,48 Simple,Flat 346,290 339,808 2 PC1 2 

4 2176,94 187,87 196 11,44 Simple,Flat 351,504 340,063 4 PC1 2 

5 916,25 123,30 197 6,87 Simple,Flat 339,075 332,201 2 PC1 2 

6 344,88 76,75 198 11,74 Pitched 383,059 371,324 4 RC2 1 

7 343,81 83,24 200 8,38 Pitched 366,428 358,049 3 RC2 1 

8 315,94 86,42 201 8,34 Simple,Flat 344,663 336,319 3 PC1 2 

9 3947,06 308,97 207 11,10 

Multi-

Level,Flat 347,334 336,230 4 PC1 2 

10 117,88 60,88 209 6,78  378,635 371,859 2 RC2 1 

11 1264,69 166,39 212 11,00 Simple,Flat 361,754 350,750 4 PC1 2 

12 825,81 133,25 215 7,86 Simple,Flat 341,949 334,094 3 PC1 2 

13 133,56 48,03 218 5,59 Pitched 355,681 350,092 2 PC1 2 

14 1235,25 165,63 223 10,90 Simple,Flat 361,704 350,805 4 PC1 2 

15 1594,25 164,36 228 14,10 

Multi-

Level,Flat 352,147 338,051 5 PC1 2 

16 169,88 53,89 229 7,13 Pitched 385,205 378,073 2 RC2 1 

17 361,31 104,07 230 10,34 

Multi-

Level,Flat 348,299 337,957 3 PC1 2 

18 3297,94 260,11 231 8,00 Simple,Flat 341,326 333,323 3 PC1 2 

19 174,63 62,64 232 9,96 Pitched 342,228 332,264 3 RC2 1 

20 214,25 60,25 233 6,36 Pitched 339,770 333,412 2 RC2 1 

Table 3. Sample Buildings data 
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In figure 40 are shown the mean spectral signatures of these three kind of buildings: 
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Figure 40. Sample buildings spectral signatures 

 
As we can see there is a pretty good separation for all typologies, even if the relative 

values for PC1 and M6 inverts starting from Band 18 (721 nm, NIR region). 

 

In figure 41 the Standard Deviations for each Band for the three same buildings are 

shown: 
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Figure 41. Sample buildings Reflectance Standard Deviations 
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In the Figure 42 is depicted the schema of the ANN network utilized [Brierley and 

Batty, 1999] with related accuracy matrix obtained for the in situ data-set.  

In this case, 60 randomly selected occurrences of the in situ survey data  were used for 

training, while the remaining provided the validation of the network.  

Taking particular care to avoid overtraining, an accuracy greater than 85% was 

achieved. 

 
 

Figure 42. The ANN Network 
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Chapter 3 – Results and discussion 

3.1 The Vulnerability Index Map 

 
Finally, after gathering all the information needed, a Vulnerability Index Map can be 

drawn (Figure 43): 

 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

Figure 43: The Vunerability Index Map (Test Area) 
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3.2 Generalization of the test case 

 

In order to evaluate the methodology here developed, a generalization of the case 

study was carried out. An higher number of buildings was gathered (1294, none of 

them previously utilyzed), picked up from other Avellino districts. 

Then a new ANN was launched, with the parameters stated above. 

In the following tables the results are shown, compared with the test case ones: 

 
 

Test area: 233 

buildings         

48 PC1   <2000 

172 RC2 >2000 

13 Masonry 

Train: 60 

Test: 173 

 
 
 

 

 

General.: 1294 

buildings       

776 PC1  <2000 

264 RC2 > 2000 

254 Masonry 

Train: 400 

Test: 894 

 
 
 
Also in the general case incouraging result were achieved, even if with a slightly 

worst accuracy, especially with regard to RC2 typology buildings. 
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Figure 44 depict the generalyzed Vulnerability Index Map, showing Iv ranging from -

6 to 52 

 

 
 

Figure 44. Vulnerability Index Map generalyzed 

 

Furthermore, the question if there was some kind of data, amongst those availabled 

and utilyzed, that was of major importance in discriminating the buildings tipologies 

within the ANN network was taken into account. 

Iv 

Min -6 

Max 52 
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Tiberius sw offer the opportunity to show the 10 most important input parameters 

ingested, and here’s the result: 

 
 

1. Area 

2. Floors Number 

3. ST_DEV 24    NIR2   835,61nm 

4. Mean 7   GREEN  512,61nm 

5. Mean 18  NIR1   721,61nm 

6. Mean 8  GREEN  531,61nm 

7. Mean 5  BLUE   474,61nm 

8. Mean 19  NIR1   740,61nm 

9. Mean 1  BLUE   402,01nm 

10. Mean 13  RED   626,61nm 

Table 4. First 10 data in order of importance 
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ANN 10 most discriminating data

0

2000

4000

6000

8000

Categories

V
a

lu
e

s

PC1 RC2 M6

PC1 2110 3 929 5490 3744 5490 5274 3945 3073 5753

RC2 272 4 1048 4310 4530 4557 4243 5298 2826 5749

M6 73 2 995 3177 3458 3494 3100 4403 2085 3896

Area Piani
St_dev2

4
Mean7 Mean18 Mean8 Mean5 Mean19 Mean1 Mean13

Total R

0

2000

4000

6000

8000

10000

12000

14000

16000

M6 PC1 RC2

M6 1914 1299 5609

PC1 2271 417 9056

RC2 2438 556 13425

MED min MAX

In Figure 45 a plot of those data is shown, calculated as follows: every plotted value is 

a mean of each of all the accounted building tipologies, for the Generalized case. 

 

 

 

 

 

 

 

 

Figure 45. 10 most discriminating data plot 

 

In the following Figure 46 the Mean, min and MAX Reflectance values for every 

building tipology are shown. 

 

Figure 46. Mean, min and MAX R for HSI data 

 

 

MEAN 
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• The M6 min R value was in band 29 while the MAX was in band 21; 

• the PC1 min Rvalue was in band 28 while the MAX was in band 12; 

• the RC2 min R value was in band 29 while the MAX was in band 9. 

 

In the following Figure 47, the mean PC1, RC2 and M6 reflectances (Test Area 

versus General Case) are shown: 
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Figure 47. Mean Reflectances General Case vs Test Area
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3.3 Discussion 

 

The ANN configured to estimate the buildings typologies in the test area, starting 

from the known in situ data of 233 buildings and making use of both the hyperspectral 

signatures and the previously estimated buildings geometric parameters, got an overall 

final accuracy of 68% (85% PC1, 95% RC2 and just 14% M6). 

The ANN multilayer perceptron network was trained via back-propagation using a 

sample of 60 buildings data, while its validation has been carried out on the remaining 

173 field data records. 

Attention was paid to the learning phase tuning in order to avoid overtraining and 

consequent generality loss of the trained system. 

With regard to the General Case, 1.233 building where taken into account; the training 

set counted 400 of them, driving to an overall accuracy of  58,3% (80% PC1, 83% 

RC2 and 12% M6). 

A good agreement between Test Area and General Case is evident, the slight 

difference possibly due to the non correspondence shown in Band 15 reflectance (Fig. 

47) and to the inverse proportion between PC1 and RC2 building typologies (48 vs 

172 in TA and 776 vs 264 in GC). 

Masonry typology had proved hard to discriminate with the proposed methodology, 

while PC1 and RC2 typologies seems to be more easy to correctly identify and 

separate. 

With regard to discriminating data (Tab. 3), Area and Floors number constitute a 

valuable information, according with the differences shown in Tab 4. 

 

Building Typ. Mean Area, sqm Mean Floors N° 

PC1 440 5 

RC2 431 6 

M6 285 4 

Table 5. Buildings mean areas and floors number 
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As for the Hyperspectral data, they show a good separation (See figure 47) for the 

three typologies in almost the whole spectral range 0.4-0.9 nm (except for Band 15, as 

already mentioned, in which PC1 and M6 shown no separation at all with regard for 

the whole area), and the most discriminating bands are equally distributed across the 

spectrum (two blue bands, two Green bands, one Red band and two InfraRed bands). 

Finally, the Vulnerability Index Map for the General Case ranges from -6 for most 

recent, reinforced concrete-made buildings up to 52, for ancient masonry-made 

buildings. 

In order to strenghten the results with regard to a better Iv determination, it could be 

advisable to design an enhanced metodology, taking into account other kinds of 

ancillary data also, like –but not limited to-  seismic micro-zoning, geophisycal 

surveys, soil and subsoil geotechnical parameters and hydrogeological informations. 

A future interesting research line, finally, could be to insert within the remote sensing 

phase also the exploitation of SAR data, unfortunately not in possession of the 

partners for the study area at the time of the research. 
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Annex 2 Mean buildings Geometric and Reflectance data



In the following pages the Buildings data values are shown, according with the legend below: 
 
 
General Case Buildings: GC 
Test Area Buildings: TA 

Reinforced concrete before 2000: PC1 
Reinforced concrete after 2000: RC2 

Masonry: M6 

 
 

• N° of edifices (N° Edif) 

• Mean Area (AREA) 

• min Area 

• MAX Area 

• N° of floors (PIANI) 

• Structure Tipology (TIP_STRUTT) 

• Mean Reflectance values for each of the 31 AISA Eagle Bands (MEAN_1, MEAN_2, ..., MEAN_31) 
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