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Chapter A

Example: Iterative homomorphic
speckle reduction with a Wiener
filter

In this chapter we give a complete example of parameter estimation taking into account
the knowledge of the full image formation process. The example is for a class of im-
ages obtained in coherent illumination like laser, synthetic aperture radar (SAR), sonar,
echography, computer tomography.

A.1 Image formation process

We consider the coherent imaging system presented in Fig. A.1. A rough surface (com-
pared with the wavelength of the incident radiation) is illuminated by a unit-amplitude
coherent field.

The reflectance of the surface ξ = ξ(k, l) is the product of the object amplitude

reflectance x
1
2 = x

1
2 (k, l) and the random phase exp(j Φ) = exp(j (k, l)). (k, l) are the

spatial coordinates on the illuminated surface. The image formation system is composed
by two lenses and an aperture spaced by the focal distance of the lenses (Fig. A.1).
Such a system is equivalent with a low pass filter of bandwidth given by the size of the
aperture. From the point of view of optics, in any location of the screen (the image
plane) are coming incident waves reflected by a large number of independent scatterers
of the illuminated surface. These waves have random phases and produce in the image
plane random interferences, the speckle effect. The mathematical model of the image
formation is shown in Fig. A.3. Where h = h(k, l) is the coherent point spread function
of the system (the aperture), γ = γ(k, l) is the complex image and y = y(k, l) is the
speckle intensity in the observed image. Speckle is a deterministic phenomena, namely
interference, but due to our lack of knowledge of the detailed structure of the imaged
surface it is best described by its statistical properties. The speckle restoration problem
is a signal estimation problem where we extract the signal component x from the ”noisy”
data y.
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Figure A.1: Diagram of a typical coherent imaging system. The incident coherent radia-
tion of wavelength λ is reflected by a rough surface of reflectance x. A system of 2 lenses
and an aperture spaced by the focal distance have the effect of a direct Fourier transform,
a low-pass filter, and an inverse Fourier transform. Thus the reflectance x is imaged in
the plane y.

Figure A.2: Two examples of coherent images: Synthetic Aperture Radar. Left XSAR
image ”train”, λ = 3cm, image resolution 12.5m. Right, ERS-1 image ”agriculture, λ =
5cm, image resolution 20m. Both images have 512x512 pixels. The multiplicative nature
of speckle can be observed when comparing the rough aspect of high reflectance regions
with the smooth appearance of the dark areas.
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Figure A.3: Mathematical model of the coherent image formation. The intensity image y
is obtained from the convolution of the complex reflectance with the filter h. The complex
reflectance is represented its amplitude x and phase Φ.

A.2 Speckle statistics

In many practical applications, the object surface is extremely rough compared to the
wavelength. This is called fully developed speckle. In this case the phase function Φ is an
uncorrelated random field uniformly distributed between 0 and 2π. We also assume that
Φ is statistically independent of the original image intensity x. Thus the scene surface
can be modeled as a collection of a large number of independent random scatterers. In
this case the discrete complex amplitude of the complex image γ can be written

γ(m, n) =
∑

k

∑
l

h(m− k, n− l) |x|
1
2 (k, l)ej Φ(k,l) (A.1)

which is the convolution with the point spread function h. The intensity of the speckled
image is

y(m, n) = ||γ(m, n)||2. (A.2)

Based on these assumptions and using the central limit theorem we find that the process
γ can be approximated by a complex circular Gaussian process. (Both, its real and
imaginary part are Gaussian processes of zero mean and identical variance; see Section
7.2.6.) Consequently y has a negative exponential p.d.f. (cf. Section 7.2.5. where we
apply the square function to transform a Rayleigh distributed r.v.).

p(y|x) =
1

x
e−

y
x , y ≥ 0 (A.3)

p(y|x) = 0, y < 0 (A.4)

Remark The p.d.f. p(y|x) is the likelihood expressing the incertitude introduced by the
noise, here the speckle process. We observe that speckle is a multiplicative noise.

y = x · n (A.5)
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Thus the speckle noise is described by

p(n) = e−n, n ≥ 0 (A.6)

p(n) = 0, n < 0 (A.7)

where n = n(k, l).

A.3 The Covariance of the speckle image

The speckle image is obtained as the intensity of a circular complex Gaussian process.

n = ||γ||2 for x = 1 (A.8)

Here we assume a rectangular aperture of size ρk = ρl = ρ, and using the Wiener-
Khintchine theorem we obtain

Cn(k, l) = 1 + sinc2k

ρ
sinc2 l

ρ
(A.9)

In the ergodic case the covariance is equal to the autocorrelation. We have now derived
the likelihood model of the incertitude introduced by the speckle process. The model
contains the statistical description of the speckle, the negative exponential p.d.f. and the
deterministic image formation model given by the system point spread function h which
is reflected in the autocorrelation function of the noise.

A.4 Homomorphic filtering of the multiplicative noise

The chosen image formation system was modeled as a system with multiplicative noise

y = x · n (A.10)

Thus the homomorphic transform is a logarithmic one, so that the product is transformed
in a sum. This new signal will be Wiener-filtered in order to obtain an estimate of the
image intensity. Finally, the de-noised signal will be predicted, thus recovering the nature
of the original input signal. The diagram in Fig. A.4 presents the homomorphic transform.

A.5 Statistical characterization of signal under the

logarithmic transform

We investigate the statistics of speckle after a log transform. Using Eq. 7.40-7.44 for

f(·) = log(·) (A.11)

we obtain the p.d.f. of the process

n′ = log n (A.12)

p(n′) = exp(n′ − e−n′) (A.13)
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Figure A.4: Diagram of the homomorphic transform. The product x · n is transformed in
the sum log(x) + log(n). A linear estimator of log(x) is applied. The desired parameter
x is recovered after exponentiation.

The new r.v. n′ has the expectation

E [n′] =

∫ +∞

−∞
n′p(n′)dn′ = −ε (A.14)

where ε is the Euler constant. The design of the Wiener filter requires the knowledge of
the covariance of the noise

Rn′(4k,4l) = E [n′(k, l) n′(k +4k, l +4l)] (A.15)

Using the shorthand notation n1 = n(k, l) and n2 = n′(k +4k, l +4l) the joint p.d.f. of
the process n1 and n2 is

p(n1, n2) =

exp

[
− n1 + n2

E [n] (1− |µn(4k,4l)|2)

]
E [n]2 (1− |µn(4k,4l)|2)

·

I0

(
2
√

n1n2|µn(4k,4l)|
E [n] (1− |µn(4k,4l)|2)

)
. (A.16)

I0 is the modified Bessel function of first kind, and µn(4k,4l) is the correlation coefficient.

Rn(4k,4l) = E [n]2
(
1 + |µn(4k,4l)|2

)
(A.17)

It follows

Rn′(4k,4l) =

∫ +∞

0

∫ +∞

0

dn1 dn2 log n1 log n2 p(n1, n2) (A.18)

using the series expansion

I0(ξ) =
∞∑

k=0

(
ξ
2

)2k

(k!)2
(A.19)
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and letting α = (1− |µn(4k,4l)|2) we find

Rn′(4k,4l) =
1

α

∫ +∞

0

∫ +∞

0

dn1 dn2 log n1 log n2 exp

(
−n1 + n2

α

)
·

∞∑
k=0

1

(k!)2

(
n1n2 |µn|2

α2

)k

(A.20)

=
1

α

∞∑
k=0

|µn|2

(k!)2α2k

∫ +∞

0

dn1 log n1 exp
(
−n1

α

)
nk

1 ·∫ +∞

0

dn1 log n2 exp
(
−n2

α

)
nk

2 (A.21)

= α
∞∑

k=0

|µn|2k

[
k∑

i=1

1

i
− γ + log α

]2

(A.22)

Until now we specified the noise and image formation process in the covariance Cn′ .

A.6 Wiener filter

The Wiener filter requires additional prior information, the model of the desired parame-
ter x, expressed also as a covariance matrix Cx (Eq. 8.82). It is very seldom to have access
to such knowledge, mainly dealing with images of unknown scenes or high complexity, i.e.
different areas characterized by different covariance matrices. A possible solution is an
iterative procedure. We consider an initial estimator of Cx. For example the covariances
of the log of the observations Cy′ , y

′ = log y. This guess will be used to implement a first
Wiener filter.

x′(1) = C
(0)
x′ (C

(0)
x′ + Cn′)

−1 y′ (A.23)

The estimated x′(0) will be further used to guess a new estimate of the covariance matrix
C

(0)
x′ , which at its turn will allow the implementation of a new filter. Thus in a generic

iteration step k the estimate of the image will be

x′(k+1) = C
(k)
x′ (C

(k)
x′ + Cn′)

−1 y′. (A.24)

The algorithm is convergent but at limit k → ∞ does not exactly converge to the co-
variance of x′. There are methods to improve the estimation, but we do not address this
here.

A.7 Conclusion

This example showed a complete image estimation problem recalling description of the
physical process of imaging, its signal and system modeling and finally the stochastic anal-
ysis. The example addresses one of the common practical difficulties: The non-availability
of the prior, which can be trained from the observations. This solution implicitly has as
result the accommodation of the estimator to the non-stationarity of the signal.



Chapter 9

Gibbs-Markov random fields

We have seen that a stochastic process is fully determined by the knowledge of all p.d.f.s.

lim
n→∞

p(x(t1), . . . , x(tn)) (9.1)

where x(tk) is a r.v. obtained by sampling the process at the time tk. As a reminder to the
case of random images the time coordinate {tk} is substituted by the space coordinates
{(k, l)}.

As presented in the previous chapters the success of image analysis depends on the
accuracy and capacity to model images. Unfortunately learning high order p.d.f.s from
training data is drastically limited by the large amount of data required. In this chapter we
introduce a class of parametric models able to describe a large variety of image structures.
This class has a high practical importance.

9.1 Markov stochastic processes

We use the following notation for the process:

p(x(t1), . . . , x(tn)) = p(x1, . . . , xn; t1, . . . , tn). (9.2)

Thus we make evidence of the states xk, e.g. gray levels of an image and the time tk
evolution (the space coordinates in the case of images). A Markov process of first order
is characterized by

p(xn; tn|x1, . . . , xn−1; t1, . . . , tn−1) = p(xn; tn|xn−1; tn−1). (9.3)

The state of the process xn at time tn depends on its history only by the directly preceding
state xn−1 at time tn−1. (It was assumed t1 ≤ · · · ≤ tn.) One can write

p(x1, . . . , xn; t1, . . . , tn) = p(x1, . . . , xn−1; t1, . . . , tn−1) p(xn; tn|xn−1; tn−1) (9.4)

p(x1, . . . , xn−1; t1, . . . , tn−1) = p(x1, . . . , xn−2; t1, . . . , tn−2) p(xn−1; tn−1|xn−2; tn−2),

(9.5)

thus

p(x1, . . . , xn; t1, . . . , tn) = p(x1; t1)
n∏

k=2

p(xk; tk|xk−1; tk−1), (9.6)

9
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where

p(x1; t1) =

∫ +∞

−∞
dx2 p(x1, x2; t1, t2) (9.7)

and

p(x2; t2|x1; t1) =
p(x1, x2; t1, t2)

p(x1; t1)
(9.8)

We conclude that a first order Markov process is characterized by the 2-dimensional joint
p.d.f. For a stationary process

p(x1, . . . , xn; t1, . . . , tn) = p(x1)
n∏

k=2

p(xk;4tk|xk−1). (9.9)

with 4tk = tk − tk−1. The process depends only on the time shift 4tk.

9.2 Markov processes in 2 dimensions

Markov processes generalized to 2 dimensions are used to characterize spatial or contextual
dependencies. The dependencies are defined locally in between neighborhood pixels but
they characterize an entire image or extended region of an image.

9.2.1 Neighborhood and cliques

We introduce several topological notions. An image is considered to be defined as the
pixel intensities in the nodes of a regular lattice L. The sites in L are related to each
other via a neighborhood system

N = {Nr |∀r ∈ L}, (9.10)

where Nr is the set of sites neighboring i. The vicinity relationship has the following
properties:

1. A sites is not neighboring to itself i 6∈ Ni.

2. The neighboring relationship is mutual:

r ∈ Ns ↔ s ∈ Nr

For a given site a nested neighborhood system is defined as depicted in Fig. 9.1. When the
sites in a regular rectangular lattice L = {(i, j) |1 ≤ i, j ≤ N} correspond to the pixels
of an N × N image in the 2-dimensional plane, an internal site (i, j) has four nearest
neighbors as Ni,j = {(i − 1, j), (i + 1, j), (i, j − 1), (i, j + 1)}. The pair (L,N ) = G is
a graph, where L contains the nodes and N specifies the links according to the vicinity
relationships. A clique c for G is defined as a subset of sites in L, an example is presented
in Fig. 9.1. The sites in a clique are ordered, {i, j} is not the same clique as {j, i}. The
type of a clique is determined by its size, shape and orientation.



9.2. MARKOV PROCESSES IN 2 DIMENSIONS 11

Figure 9.1: Nested system of neighborhood, order I to IV.

9.2.2 Markov random fields (MRF)

A random image X as a realization of a stochastic process, defined on a lattice L, is
also called a random field. A Markov random field (MRF) is defined on a lattice L with
respect to a neighborhood system N if and only if

p(x) > 0 (9.11)

p(xs|xr; r 6= s) = p(xs|xr; r ∈ Ns) (9.12)

where s and r are two sites in L. Only neighboring pixels have direct interaction. The
Markovianity is a local characterization of the random field.

9.2.3 Gibbs random fields (GRF)

A random field is said to be a Gibbs random field (GRF) in L with respect to N if
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and only if its configurations are characterized by a Gibbs distribution

p(x) =
1

Z
e−

1
T

U(x) (9.13)

where Z is the partition function

Z =

∫
dx p(x) (9.14)

T is a constant called temperature and U(x) is an energy function

U(x) =
∑
c∈C

Vc(x) (9.15)

defined as the sum of the potential functions Vc(x) over the set of all cliques C. For
example a Gaussian is a Gibbs distribution. The Gibbs distribution p(x) measures the
probability of a particular configuration (structure) in the random image X. The more
probable configurations are those with lower energies. The temperature T controls the
sharpness of the distribution (in a similar way to the variance in a Gaussian distribution).
At high temperatures all configurations tend to be equally distributed.

The potential function Vc(x) describe in a parametric manner the type of interactions
in between the pixels in a clique. Thus characterizing the structural patterns in the image.
Given the type of potential function one obtains all the information about the random
field by estimation of this parameters from the observed data.

9.2.4 Markov-Gibbs equivalence

MRF are interesting due to their local characterization, however they result in complex
computations and difficulties in consistent definition.

GRF are characterized by global properties. The Hammersley-Clifford theorem estab-
lishes the equivalence of these two types of properties. The theorem states that a random
field is a MRF in L with respect to N if and only if it is a GRF in L with respect to
N . This equivalence provides us with a simple and practical way of specifying a MRF
by using potential functions instead of local characteristics (which is usually impossible)
consider

p(xs|xr; r 6= s) =
e−

1
T

P
c∈C Vc(x)∑

ξ e−
1
T

P
c∈C Vc(ξ)

(9.16)

where ξ = {xr|r 6= s} is any configuration which agrees with X at all sites except s.
We divide now the set of all cliques C in two sets A and B. A consists of cliques

containing s and B of cliques not containing s. Thus we have

p(xs|xr; r 6= s) =
exp

(
− 1

T

∑
c∈A Vc(x)

)
exp

(
− 1

T

∑
c∈B Vc(x)

)∑
ξ exp

(
− 1

T

∑
c∈A Vc(ξ)

)
exp

(
− 1

T

∑
c∈B Vc(ξ)

)
.

(9.17)

Because Vc(x) = Vc(ξ) for any clique c that does not contain s, the factors

exp

(
− 1

T

∑
c∈B

Vc(x)

)
and exp

(
− 1

T

∑
c∈B

Vc(ξ)

)
(9.18)
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cancel. It result

p(xs|xr; r 6= s) =
exp

(
− 1

T

∑
c∈A Vc(x)

)∑
ξ exp

(
− 1

T

∑
c∈A Vc(ξ)

) (9.19)

which depends only on the neighbors of s,thus

p(xs|xr; r 6= s) = p(xs|xr; r ∈ Ns). (9.20)

That is demonstrating the equivalence of GRFs and MRFs. The full proof of equivalence
is too complex to be given here.


