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Modeling Trajectory of Dynamic Clusters in Image
Time-Series for Spatio-Temporal Reasoning
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Abstract—During the last decades, satellites have acquired
incessantly high-resolution images of many Earth observation
sites. New products have arisen from this intensive acquisition
process: high-resolution satellite image time-series (SITS). They
represent a large data volume with a rich information content and
may open a broad range of new applications. This paper presents
an information mining concept which enables a user to learn
and retrieve spatio-temporal structures in SITS. The concept is
based on a hierarchical Bayesian modeling of SITS information
content which enables us to link the interest of a user to specific
spatio-temporal structures. The hierarchy is composed of two
inference steps: an unsupervised modeling of dynamic clusters
resulting in a graph of trajectories, and an interactive learning
procedure based on graphs which leads to the semantic labeling
of spatio-temporal structures. Experiments performed on a SPOT
image time-series demonstrate the concept capabilities.

Index Terms—Bayesian modeling, dynamic cluster trajectories,
information mining, semantic labeling, spatio-temporal learning.

I. INTRODUCTION

A. Satellite Image Time-Series

Nowadays, huge quantities of satellite images are avail-
able from many different Earth observation sites. Moreover,
thanks to a growing number of satellite sensors, the acquisition
frequency of a same scene is permanently increasing. Further-
more, the high spatial resolution of the sensors gives access
to detailed image structures. Thus, opportunities to compose
high-resolution satellite image time-series (SITS) are growing
and the observation of precise spatio-temporal structures in
dynamic scenes is getting more and more accessible.

Experiments presented in this paper were performed using a
SITS, partially visible in Fig. 1. The SITS is composed of SPOT
multispectral images containing 2000 3000 pixels. The spa-
tial resolution is 20 m. The acquired scene is a rural area located
in the East of Bucharest (Romania). The acquisition campaign
was driven in order to provide remote sensing data for the Data
Assimilation for Agro-Modeling (ADAM) project. The SITS was
obtained by daily acquisition and by filtering out images pre-
senting a cloud or a snow cover above the project test sites. This
selection procedure resulted in 38 images irregularly sampled in
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Fig. 1. SITS contain many spatio-temporal structures. The yellow arrow
points out a ploughing phenomenon occurring in the ADAM SITS. We can also
see a plane occlusion in the image acquired 32 days after the first acquisition
(November 14, 2001), as well as the smooth evolution of the forest cover.

time, which were acquired over a period of 286 days. Fig. 2 dis-
plays the irregular sampling of the SITS. The images were then
made superposable and a radiative transfer model was applied
to produce reflectance measurements. The ADAM project SITS
is available online.1

SITS are complex objects possessing a rich information
content. They contain numerous and various spatio-temporal
structures. For example in rural scenes, one can observe the
growth and the maturation of cultures, their harvests, evolu-
tions of ploughland, river floods, etc. Near urban areas, car
and plane occlusions are frequent but there are also evolving
constructions, pollution phenomenon, etc. Some examples of
spatio-temporal structures are pointed out in Fig. 1.

The analysis of spatio-temporal structures are useful to under-
stand complex evolutions which concern various domains such
as agriculture, forest monitoring, ecology, hydrology, urbaniza-
tion, etc. But our capacity to store these large volumes of data
has exceeded our ability to access the broad variety of informa-
tion contained in it. Indeed, limited tools exist to exploit this
huge potential of information. Change detection, monitoring
and validation of physical models by data assimilation consti-
tute the most used analysis for information extraction in SITS.

1Centre National d’Etudes Spatiales, database for the data assimilation
for Agro-Modeling (ADAM) Project: http://medias.obs-mip.fr/adam/web/
frameset/f_serveur.html.
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Fig. 2. Acquisition dates of cloud-free images in the ADAM database. The
horizontal axis represents time which is irregularly sampled while the vertical
axis represents the time difference between consecutive acquisition dates.

The methods developed in these fields are complicated and ded-
icated to specific applications. Although these techniques are ef-
ficient, together they represent a limited range of applications.
Nevertheless, one may be interested in finding a specific forest
cover evolution or in detecting wheat harvests occurring during
a given period. Until now, only few methods have been devel-
oped. They mainly focus on low-resolution images regularly
sampled in time such as meteorological data [1], [2].2 Thus, in
order to adapt to a broader range of application and to have ac-
cess to the variety of information contained in SITS, collabora-
tive and generic methods are needed.

B. Information Mining

Large volumes of data are important resources. But to be rel-
evant, users must be able to interpret the data information con-
tent. Understanding this huge quantity of data, which may be
complex and multidimensional, can represent laborious work
for users. Images are particularly complex objects possessing
rich information contents. A manual analysis of associations and
relations among images is not feasible. Furthermore, the useful-
ness of such an analysis may be restricted to a particular appli-
cation. But there is a broad diversity of application domains and
it is not possible to produce a specific analysis for each one of
them. Generic analysis methods are needed to respond specifi-
cally to the needs of each application domain.

In summary, in many fields, there is a real need to transform
growing databases into knowledge. The objective of informa-
tion mining is to solve this problem, by adapting the data infor-
mation content to the users’ needs. Information mining can be
defined as the nontrivial process of analyzing data in the per-
spective of discovering implicit but potentially useful informa-
tion. The discovered information can be for instance patterns,
association rules, causal effects, changes, anomalies, etc. An in-
formation mining perspective enables content-based retrieval,
knowledge discovery, and data understanding.

The information mining problematic can be understood as a
communication channel problem with: on one hand the database

2See also National Aeronautics and Space Agency—Jet Propulsion Labora-
tory, literature database on ocean surface topography from space: http://topex-
www.jpl.nasa.gov/science/time-series-data.html.

Fig. 3. Phenomenon process changes which occur in a dynamic scene
have different time-scales. For example, plane occlusions are evanescent
objects over short time-periods whereas buildings are stationary objects over
long time-periods. Phenomena process which are changes relevant to crop
evolutions, such as the growth of crops or their harvests, possess various
time-scales. Spatio-temporal objects with time-periods below the blue dashed
line, might possess higher frequencies in their spectrum than the sampling limit
frequency.

representing the information source and, on the other a user rep-
resenting the receptor. Along the channel, the data are hierarchi-
cally processed, inducing a signal representation followed by a
semantic representation. The signal representation is obtained
by extracting information from the data by stochastic modeling
of the signal. In such a case, extracted information is described
with a particular model vocabulary, which is unmeaningful for
users. The semantic representation is obtained by modeling the
users’ semantics. In such a case, information is described with
a vocabulary and a syntax natural to users.

The goal of information mining is to bridge the semantic gap,
that is to say, to minimize the loss of information between infor-
mation available through the semantic representation, and infor-
mation obtained by a direct data inspection.

Before going into the kernel of this paper which is the descrip-
tion of a SITS information mining concept, let us motivate our
approach by pointing out some difficulties for SITS modeling.

The analysis of spatio-temporal structures in SITS is par-
ticular. Indeed, structures are characterized by heterogeneous
temporal and spatial scales. Fig. 3 illustrates the variety of tem-
poral scales attached to structures. Spatial scales of structures
are also very different. Thus, SITS modeling methods should
capture information at various scales. However, a pixel-lo-
calized time-series analysis is generally not appropriate to
characterize high-resolution SITS structures. For the ADAM
database in particular, the superposability difficulties, the ir-
regular sampling, and the sampling limit frequency, prevent a
pixel-localized stochastic modeling. The dashed vertical line
in Fig. 3 illustrates this limit. It discriminates objects which
possess higher frequencies in their spectrum than the sampling
limit frequency. To fight against these constraints, analysis at
an object level may be more robust against noise and super-
posability errors. Moreover, it may enable an investigation
below the frequency limit by using contextual information. For
instance, the behavior of the smoke of a factory, which is an
object evolving in space according to the wind effects and in
time according to the factory activities, can be modeled in a
more efficient way using its spatial context rather than a space
localized time-series analysis.
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Fig. 4. Hierarchical modeling of SITS information content. The hierarchy enables users to link spatio-temporal structures to their specific interests. First, primitive
SITS features ��� are extracted from the data DDD. Two complementary representation are induced by using the TL feature spaces and the MT feature space. Next,
dimension reduction techniques are applied and result in projected features   . Then, the feature distributions are learned and clustersCCC and classes are discriminated.
The unsupervised learning procedure is finally achieved by inferring graphsGGG and dynamic classifications, which code the data structures. By interactive learning,
the user interestsAAA are linked to the graphs and semantic labels are assigned to spatio-temporal structures.

To respond to the problematic of information mining in
SITS, we presents in the following section a Bayesian hier-
archical modeling of SITS information content. The different
inference steps of the hierarchy are hereby detailed: we present
in Section III an unsupervised learning procedure which results
in a graph of dynamic cluster trajectories, and in Section IV
we detail an interactive learning procedure which results in a
semantic labeling of spatio-temporal structures. The graph of
trajectories and the semantic labels constitute the signal and
the semantic representations of the SITS information content.
In Section V, experiments performed on the ADAM dataset are
presented and finally, in the last section, conclusions are drawn.

II. BAYESIAN HIERARCHICAL MODELING

OF SITS INFORMATION CONTENT

In order to build an information mining system for dynamic
scene understanding which is free from the application speci-
ficity and which enables its open use in almost any scenario,
we use a Bayesian hierarchical model made up of six different

levels (Fig. 4). The model links the information source , which
represents a SITS comprising spatio-temporal structures, to the
different users’ semantics . The hierarchy is defined by the
relation between the random variables

(1)

where , , , , , and are the random variables real-
izations which are associated to more and more refined levels
of information representation. As it is a Bayesian hierarchical
model, the inference of a higher level in the hierarchy depends
on the adjacent lower level and, conditionally to the latter, is in-
dependent of all other lower levels. Thus, given some data, we
infer the most likely model by maximizing the joint distribution

(2)

Hence, the levels of the hierarchy are learned independently by
applying Bayesian inferences or inferences based on entropic
measurements on families of stochastic models. Moreover, for
each learning step, we can incorporate prior knowledge by using
Bayes rule. We decompose the hierarchy into two parts:
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• unsupervised learning : for a particular SITS real-
ization , we infer a collection of graphs representing
dynamic cluster trajectories coding spatio-temporal
structures;

• interactive learning : the collection of graphs
are linked to a collection of users’ semantics ; thus we
induce a semantic labeling of spatio-temporal structures of
SITS.

The graph inference, which requires a significant computational
cost, is an application-free learning procedure. Based on this
objective representation, the semantic labeling, which is inter-
active, learns user-specific interests using positive and negative
examples.

Before detailing the levels of the hierarchy, let us introduce
several spaces for the SITS representation. Image time-series
are stochastic processes which are usually represented in a
multidimensional space comprising two spatial axes , a time
axis , and several feature components (radiometric values,
texture parameters, etc.). Since the features are assumed in-
dependent, the analysis of the multidimensional space is done
independently on the different types of features. In such a
multidimensional space, the signal denoted by is
represented by a cloud of points. This is the natural space for
the SITS representation. But, SITS possess several other rep-
resentations which lead to various interpretations. We hereby
introduce as follows, several spaces for the SITS representation
which are used in the proposed information mining concept.

The space formed by the feature components and the time
axis is called the dynamic feature space. In this space, SITS
is represented by a histogram of features evolving in time. As
the evolving features depend on their spatial location, we note
as this evolving histogram.

Considering time samples, we denote by the fea-
ture components localized at different times .
We can form different time localized (TL) feature spaces with
the different time localized feature components . In them,
we represent SITS by a succession of histograms of features.
As each feature is linked to a spatial location, we note these
signals as . These spaces constitute the
different states of the dynamic feature space. If we group fea-
tures by similarity, we obtain different collections of clusters

. In the image space, we represent the
spatial classifications associated to
the collections of TL clusters.

The multitemporal (MT) feature space is a multidimen-
sional space composed of the TL feature components

. In this space we represent SITS by a
multidimensional histogram of features. As this histogram de-
pends on spatial locations, we note it as . If we
group features by similarity, we obtain a collection of clusters

. In the image space, we represent the
spatial classification associated
to the collection of MT clusters. By projecting the MT clusters
in the different TL feature spaces, we can decompose the
MT representation and reconstruct the different states of the
dynamic feature space. We denote by , an MT cluster
projected in the TL feature space at time .

Equipped with these SITS representations, we present the dif-
ferent levels of the hierarchy.

• The lowest level represents the data , which is constituted
by spatio-temporal structures defined in time windows and
spatial masks.

• First, by using different signal models, features are ex-
tracted from the data at a pixel level for the different time
locations ; . We then induce two comple-
mentary representations by placing them in the TL feature
spaces and in the MT feature space.

• Next, to fight against the “curse of dimensionality,” we em-
ploy dimension reduction techniques to extract, from the
MT feature space, interesting projections containing linear
and nonlinear structures. The projected features are rep-
resented in a space composed of the extracted components.

• Then, the distribution of the MT projected features and the
TL features are learned using a Gaussian mixture model
of unknown complexity. The modeling procedure discrim-
inates MT and TL clusters possessing Gaussian shapes.
MT and TL classifications are then produced, by mapping
these clusters in the image space.

• The unsupervised learning procedure is finally achieved by
inferring graphs coding the data structure of SITS. They
model the dynamic feature space by formalizing trajecto-
ries of MT clusters through TL clusters. Additionally, a
spatial constraint is introduced into the inference by using
the MT and TL classes.

• By interactive learning, the users’ interests are linked
to the graphs which represent spatio-temporal structures.
To complete this semantic labeling, parameters of a graph
similarity model are interactively estimated by updating
probabilities of a Bayesian network. This update is per-
formed using a Dirichlet model with positive and negative
examples provided by a user.

III. UNSUPERVISED INFERENCE OF A GRAPH OF

DYNAMIC CLUSTER TRAJECTORIES

A. Feature Extraction

Dynamic scene understanding relies on the ability and robust-
ness of information extraction from the observed data. We apply
appropriate stochastic models to capture spatial, spectral,
or geometric structures in each image of the time-series at a
pixel level. These models are given as parametric data models

and assign a likelihood to a given realization of
the data for a particular value of the parameter vector . Ex-
amples of these image models are Gibbs–Markov random field
models for textural features or the intensities of the multispec-
tral images for spectral features [3]. Of course, for the latter, no
sophisticated modeling is involved.

The extracted features are represented in the MT feature
spaces by the signal . Together with the implicit
spatial index , this signal carries the global information on
the time-series. But, these extracted features can also form, in
the TL feature spaces, a collection of signals with

.
In the next two sections, we detail the analysis of the extracted

features represented first in the MT feature space and then in the
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TL feature spaces. Finally, we use these two types of represen-
tation to model the dynamic feature space.

B. Modeling a Multitemporal Feature Space

1) Dimension Reduction: The MT feature space represents
a space of high dimensionality since it results from the union
of all the TL feature spaces. A direct application of a nonpara-
metric procedure is severely restricted in this case, by the lim-
itation called the “curse of dimensionality” [4]. However, the
information contained in a feature space of high dimensionality
can often be represented with fewer dimensions. In remotely
sensed images in particular, the spectral bands usually present
redundancies. Furthermore, the phenomenon is likely to be ac-
centuated when considering an MT feature space. Dimension
reduction techniques, exploit this property to reduce the space
dimension by extracting interesting projections.

Dimension reduction techniques study statistical methods
like principal component analysis (PCA) or projection pursuit
(PP), which are to some extend, equivalent to methods based on
discriminant analysis [5]. Indeed, PCA is suited for linear anal-
ysis while PP can exploit the extra compression associated with
nonlinear relationships. Furthermore, the application of these
statistical methods, enables us to release from the singularity
problems which often occur in high-dimensional spaces. Re-
sulting projections are then modeled using a Gaussian mixture
assumption (cf. Section III-B2) in which multimodal patterns
are discriminated.

Assuming a model for the -dimensional distribu-
tion associated with feature realizations ,
the quality of the -dimensional projected features

can be evaluated by the likelihood .
Gaussian distributions for PCA or just non-Gaussian distribu-
tions for PP are examples of these models.

Principal component analysis is a linear projection of an
-dimensional space into a space in which the axes of the

projections called principal component axes are decorrelated.
Moreover, the principal components are ordered according to
a variance criterion. In other words, the th eigenvector of the
data covariance matrix corresponding to its th biggest eigen-
value defines the th principal component axis. This eigenvalue
decomposition is more convenient than the maximization of
the projection likelihood. The analysis relies on the assumption
that the data has a normal distribution in the feature space.

From another perspective, PCA searches for an orthogonal
base which minimizes the quadratic distance between the vec-
tors of the -dimensional data and their
orthogonal projection on this base. This is equivalent to maxi-
mizing the inertia of the projection defined by

(3)

The index here outlines the fact that the data have been nor-
malized by an appropriate matrix M and transformed in order
to have a mean equal to zero. In order to perform a dimension
reduction, only principal components with should be
selected. To evaluate the loss of information, we use the signal
energy where the represent the eigenvalues of

the features autocorrelation matrix. Thus, selecting the first
principal components corresponds to a percentage of restitu-
tion of the signal energy equal to

(4)

Projection pursuit groups dimension reduction techniques
that extract linear projections which contain nonlinear structures
from a multidimensional space. Furthermore, under certain
assumptions, the extracted components are independent from
the others. The extracted components are ordered according
to a criterion of non-Gaussianity evaluated by a projection
index. This approach is equivalent to the maximization of the
projection likelihood [6]. The analysis rely on the very general
assumption that the data possesses a non-Gaussian distribution,
which is in most cases, a valid hypothesis. After selecting a
sufficiently large percentage of the signal energy with PCA,
we apply PP on the reduced signal in order to exploit the extra
compression associated with nonlinear relationships.

The higher the dimensionality of the extracted projections,
the richer their information contents. For example, structures in
a plan can not always be detected in one-dimensional projec-
tions. We perform our analysis using a bidimensional projec-
tion index based on the chi-square distance. The relevance of
this distance for the approximation of Kullback–Leibler diver-
gence has been shown in [7]. In order to reveal all the maxima
of the projection index, we employ an efficient stochastic opti-
mization procedure proposed by Posse [8] combined with the
structure removal technique proposed by Friedman [9].

To perform a dimension reduction, the first independent
components with are selected. -values are employed in
order to decide whether the components are the effect of noise
or are really independent. Indeed, -values are useful to deter-
mine limits which correspond to probabilities of projection in-
dependence [7]. Thus, for a given index limit called quantile,
independent dimensions are extracted and dimension reduction
is achieved.

Dimension reduction techniques such as PCA and PP are able
to condense the information contained in the MT feature space
into a subspace of lower dimensionality. They provide an effi-
cient solution for parameter and model inference in multidimen-
sional spaces with limited sample sizes.

2) Mixture Modeling:
Gaussian mixture models: Stochastic models are ap-

propriate tools to learn about this multidimensional signal. A
Gaussian mixture model is able to approximate efficiently, any
distribution for which no prior knowledge is available and in
particular multimodal distributions. Thus, a Gaussian mixture
assumption is well suited to model the distribution of the
-dimensional realizations of the random

variable , which are assumed independent and identically
distributed. A mixture modeling procedure can infer similar-
ities that can then be used for clustering the feature space.
Components of the mixture are constituted by the grouping of
similar feature points and thus, will define clusters .

For components weighted by and possessing mean
vectors noted as and covariance matrices noted as ,
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the -dimensional distribution of a Gaussian mixture model
is defined by

(5)

where

(6)

In order to perform the modeling procedure without any con-
straints either on the number of Gaussians present in the mixture
or on their parameters, a criterion is needed to select the best
model among all the possible Gaussian mixture configurations.
In order to infer among a collection of models, the minimum
description length (MDL) principle is applied.

Model selection by the MDL principle: For the real-
izations , we choose out of a finite set of
possible models , a model hypothesis of
distribution for . We consider also the code length
function (measured in bits) needed for the description
of under the model hypothesis . A bijection appears be-
tween the probability distribution , and the code length
function . Indeed,

(7)

Minimizing this code length, called by Rissanen, “stochastic in-
formation complexity,” over selects the model maximizing
the Bayesian evidence. But the computational cost of this quan-
tity is often prohibitive. A first-order approximation is achieved
by the so-called “two-part MDL code” [10]. For parametric
model families, this code length function noted as is
composed of two terms: the code length necessary to encode the
model and its estimated parameter , and the code length neces-
sary to encode the data keeping in mind the model and its esti-
mated parameters. The first description length part is induced by
the model and parameter encoding using noninformative prior
distributions. It is noted as . The second de-
scription length part is related to the model maximum likelihood

. Thus, the two-part MDL code is defined by

(8)

The MDL principle states that the best model among a collec-
tion of tentatively suggested ones, is the one that encodes the
data with the smallest code length. To estimate the code length,
we can use the stochastic information complexity or its first
order approximation, the two-part MDL code. The computation
of this approximation requires a less intensive calculation pro-
cedure and is particularly convenient for mixture modeling.

MDL principle for Gaussian mixture modeling: On the
basis of the two-part MDL code, we derived the description
length of the data for the family of Gaussian mixture models.
A simplified model, neglecting the influence of surrounding
Gaussian components and assuming constant variances for
the Gaussians, was previously developed in [11]. A two-part
description length, derived from modeling a mixture of uncor-
related Gaussians, has been proposed by Wallace and Dowe
[12]. In this paper, we extend this algorithm to the correlated
Gaussian mixture model. This algorithm is to some extend,
equivalent to the Bayesian Autoclass algorithm [13]. We as-
sume the hypothesis of noninterfering Gaussians. The two-part
MDL code length for encoding the data
using a Gaussian mixture model of Gaussians of dimension-
ality , is defined by (9), shown at the bottom of the page, where

denotes a maximum number of Gaussians in the mixture
and denotes the th Gaussian of the mixture. Appendix I
details how this two-part description length is derived.

Optimization: The goal is to estimate , and
, by minimizing . Enumerating all configurations

and evaluating the two-part MDL code is not feasible. Instead,
an optimization algorithm which evaluates the changes of the
code length between two configurations rather than the code
length itself is used.

Before introducing the general algorithm, one can prove that
the change of the code length induced by the removal of a given
Gaussian is defined by (10), shown at the bottom of the
page, where and are the maximum-likelihood (ML) es-
timates of the weight of clusters before and after removal of

, and where and are respectively the ML esti-
mated probability distribution of before and after removal
of . is the ML estimated distribution of the most
probable Gaussian which is assigned to after removal of .
Appendix II provides a proof for (10).

The optimization algorithm is composed of the following
steps:

(9)

(10)
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Step 1) Initialization: A initial Gaussian mixture is pro-
duced. It is composed of a high number of
Gaussian, with parameters noted as
and . The initialization is done by randomly
spreading the clusters according to a Gaussian dis-
tribution of mean and variance learned from each
data feature component.

Step 2) Adaptation: At iteration , we consider
Gaussians in the mixture. An expectation–maxi-
mization (EM) algorithm [14] is used to perform a
ML estimation of the Gaussian mixture parameters

and .
Step 3) Selection: For the same iteration , we remove

the Gaussian which induces the biggest de-
crease in the description length .
Then we increment and go back to Step 2).
If no decrease is observed, that is to say if ,

, then we do not remove any
Gaussians and go to Step 4).

Step 4) Convergence: if at iteration , no other
decrease in the description length is observed,
then the algorithm stops iterating Steps 2) and
3). We then obtain the estimated number of
Gaussians with the ML esti-
mates of the parameters of the mixture model

.

The MT feature space is modeled according to a Gaussian
mixture distribution. Thus, we learn the parameters ,

and related to the Gaussian mixture model.
The modeling procedure infers similarities which are then used
to cluster this multidimensional feature space. Therefore, each
Gaussian comprises feature points and defines a cluster

. In parallel, MT spatial classes of the image
time-series are generated.

C. Time-Localized Representations

Our interest is focused on understanding the dynamic of
image structures in different time locations. To achieve this
goal, there are two different approaches to decompose the
signal in time.

1) Projecting the Multitemporal Feature Space: From an
initial perspective, the signal representation in the MT feature
space can be projected to enable TL representa-
tions. Consequently, each MT cluster with
can be projected into different TL feature spaces. We obtain
projected MT clusters denoted by . The
projected clusters are representative of global behaviors decom-
posed in time. Furthermore, they are specific of the MT feature
space modeling. Consequently, they contain information about
the time evolution of the feature distribution.

2) Modeling the Time-Localized Feature Space: New mod-
eling procedures can be performed directly for each of the TL
representations , independently from the MT feature
space modeling. This procedure produces sets of TL clusters

with , where is the number
of estimated clusters at time . In parallel, spatial classes

are obtained. In this case, the TL clusters are defined for

given time locations which are specific to the TL feature space
modeling. Consequently, they contain TL information on the
feature distribution.

To perform these TL clusterings, we use the MDL-based
Gaussian mixture modeling algorithm defined in Section III-B2.

3) Complementarity of the Representations: The MT fea-
ture space contains global information including the TL infor-
mation. Moreover, for TL clustering, the separability of the dif-
ferent clusters is not as clear as for the MT case. However, TL
analysis in contrast to the analysis of the highly dimensional
MT feature space, allows a more detailed information extrac-
tion. Consequently, as the interest is a time decomposition of
the signal, one should associate these two different TL repre-
sentations for a complete understanding of dynamic clusters.

D. Modeling the Dynamic Feature Space

Our interest is now focused on modeling the signal
represented in the dynamic feature space.

Each MT cluster has a particular behavior when observing
its evolution into successive TL representations. For example,
some MT clusters may share the same cluster at a given time
and split or/and merge with other MT classes at another time.
The problem is to quantify, at a given time, the similarity of these
projected MT clusters with the goal of inferring spatio-temporal
relations. Since our interest is particularly time locations and ac-
cording to the previous remarks on the complementarity of both
TL representations, we propose the following model of trajec-
tories: the trajectories of the projected MT clusters at the
different times are formalized using collec-
tions of TL clusters .

1) Inference of Dynamic Cluster Trajectories: Based on
these considerations, we define a model, noted as , for the
dynamic cluster trajectories. This model is a probabilistic dis-
tribution on the MT cluster collection conditioned by a graph
of trajectories constituted with TL clusters. Thus, we define
the likelihood of a given a graph of trajectories.

To express this distribution, we hereby introduce a few nota-
tions. We decompose the graph in a set of graphs of tra-
jectories formed by TL clusters, where
each graph is associated to an MT cluster . In
order to decompose this joint probability distribution, we as-
sume that the constitution of the trajectories associated to the
different MT clusters are independent and that the association
of an MT cluster with a given TL cluster is independent of as-
sociations with other TL clusters (localized at the same time but
also at other times). Therefore, for a given MT cluster set , we
derived a likelihood of a graph of trajectories with the double
product

(11)

To apply this model, we need to define the probabilities
. We use the Kullback–Leibler divergence [15]

noted as , which is an entropic measurement
able to compare the two different TL distributions and learn
about their similarity. Because of the relative interest for each
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Fig. 5. Description of the graph of dynamic cluster trajectories.

of the MT class separately, a spatial constraint is introduced:
this divergence measurement is weighted by the number of
data points belonging to both of the corresponding MT and TL
spatial classes. Let us denote by an operator taking as
an argument a spatial map and returning its population. Thus,
we define the probabilities

(12)

where is a normalization constant. Note that the clusters are
characterized by multivariate Gaussian distributions and thus,
the divergence calculation is performed analytically. The max-
imum of the likelihood probability [cf. (11)] can be obtained
by using graphs comprising all the TL clusters . But as
the objective is to infer only the most likely associations of
MT clusters with TL clusters, we limit the graphs complexity
by removing associations with TL clusters which possess a
probability below a given threshold . Thus, the
graphs maximizing the likelihood are simply
those constituted with TL clusters for which probabilities

are higher than .
Hence, using MT clusters, we infer graphs of trajectories of

dynamic clusters which are composed of TL clusters and where
the complexity of the graphs depends on a threshold parameter

. These graphs constitute a model for the signal representation
in the dynamic feature space.

2) Graph of Dynamic Cluster Trajectories: The image time-
series has been previously submitted to several pro-
cessing levels. They result in a specific representation
which is a graph modeling the trajectories of dynamic clusters.
The chronology of the time-series and the irregular sampling in-
formation are stored in the graph. The trajectories information
is condensed in the nodes and branches of the graph. Fig. 5 sum-
marizes the description of the graph characterizing the dynamic
clusters.

• A node represents a TL cluster defining the th com-
ponent of the Gaussian mixture at a given time and is
related to a collection of MT clusters by a set of prob-
ability measurements. The complete Gaussian mixture at

a given time is described by the entire set of TL clus-
ters. Each MT cluster associated to the node is
characterized by a pixel weight ,
a divergence measurement and TL Gaussian parameters.
Moreover, each node regroups a set of indexed points in
time and space represented in a TL class .

• The branches of the graph represent the MT cluster evolu-
tions between two image samples. A branch, linking two
consecutive TL clusters and which is related to a
given MT cluster , is characterized by a time sam-
pling interval , a pixel flow and TL and MT Gaussian
parameter evolutions. The flow of feature points exchanged
between the TL cluster and is the number of
pixels shared by the two TL spatial classes and

. Furthermore, because of the restriction to a given
MT class, the flow is determined by the number of pixels
shared by the previous TL spatial classes and the MT spa-
tial class . The quantization of flow of feature
points enables us to evaluate the merging and the splitting
of the dynamic clusters in time and in each feature dimen-
sion. These phenomena are simply related to the number of
in going and out going branches associated to the nodes.

The internal MT cluster changes between two consec-
utive times and can be quantified by mutual infor-
mation. By using the projections of an MT cluster in two
consecutive times and , mutual information between
the two Gaussian projections can be measured using an an-
alytical computation. Appendix III details the mutual in-
formation analytical calculation.

The graph characterizing the dynamic clusters is
a representation of the signal where the spatial variable is
hidden. However, spatial indexes related to each point in this
feature space representation are accessible. Exploiting them
permits us to generate representations in the image space.
Indeed, we can associate to the different MT cluster
trajectories, different representations in the spatio-tem-
poral space. This space is formed by the spatial and temporal
components and . We call these representations dynamic
classifications. At each time , each dynamic classifi-
cation is composed of a particular combination of TL classes

. The TL classes of the dynamic classification related to
the th MT class , are those which correspond to TL
clusters in the associated graph of trajectories .

These dynamic classifications constitute the signal
which contains spatio-temporal information missing in the dy-
namic feature space representation . Together, these rep-
resentations describe objectively the feature evolution and the
spatial evolution of the image time-series .

IV. USER-SPECIFIC SEMANTIC LABELING

BY INTERACTIVE LEARNING

In this section, we focus on a very important step in providing
content-based query techniques: the interaction with the user
and the flexible incorporation of user-specific interests. It con-
stitutes the last level of the hierarchical information modeling.
The semantic modeling detailed in this section was previously
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Fig. 6. Interactions between a user and a graph-based learning system. The user transmits time-windows and a spatial masks to the system. They correspond to
spatio-temporal patterns of interest or noninterest; based on the graph representations of these examples associated to their dynamic classifications, the system
learns interactively user-specific semantics and retrieves, in time and in space, similar spatio-temporal structures.

presented in [16]. The learning framework presents similarities
with the one adopted by Schroder et al. [3].

Spatio-temporal processes, present at a given time and in a
spatial window, can possess subjective user-specific semantics
denoted by . A user may be interested in retrieving sim-
ilar events and thus, may want to know when and where sim-
ilar spatio-temporal patterns occurred. Moreover, the inference
of the graph is a robust and unsupervised coding of SITS.
And, as subgraphs contained in are stochastic models for
these spatio-temporal patterns, they can also possess user se-
mantics.3 Therefore, based on this objective signal character-
ization, we are interested in learning semantics from users in
order to achieve a semantic labeling of subgraphs representing
spatio-temporal patterns. Such a learning procedure could en-
able the recognition and the probabilistic retrieval of similar
events.

In this perspective, we schematize in Fig. 6 the interactions
between a user and a graph-based learning system: the user
transmits to the system time-windows and spatial masks corre-
sponding to spatio-temporal patterns of interest or noninterest;
based on the graph representations associated to these positive
and negative examples, the system learns interactively user-spe-

3Conversely to notations of Section III-D1, graphs G are not necessarily as-
sociated to an entire MT trajectory, but can also be only parts of the MT trajec-
tories.

cific interests and retrieves a collection of spatio-temporal struc-
tures with similar semantics occurring in defined time-windows
and spatial masks.

In order to define a model for user-specific semantics, a para-
metric similarity measure between two subgraphs

and is employed [16]. This measure is an extension of
the inexact matching algorithm proposed in [17]. The param-
eter vector weights the contribution of each type of subgraph
features. A given parameter vector corresponds to a particular
user-specific similarity and formalize a particular semantic.

By defining interactively a similarity, it is possible to link the
subjective elements representing the user semantics to the
objective subgraph features by learning the likelihood

(13)

where is an estimated parameter vector, is an estimated ref-
erence subgraph, and is a normalization constant enabling
to map the similarity function values into probabilities.

The estimation of this parameter vector is made interactively
by updating the probabilities of a Bayesian network with user
examples. More precisely, the probability update is performed
indirectly by adjusting the hyperparameters vector of
a Dirichlet model, depending on the users’ examples. For further
details, we refer the reader to [16].
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Fig. 7. Interactive learning of the ploughland semantics: most likely retrieved
spatio-temporal structures ranked, from top to bottom, according to their
posterior probabilities. Each row presents a retrieved spatial mask (left) with
its associated time-period, which is given by time locations in the first and last
images of the row. The images in each row show the spatio-temporal structure
representations in SITS.

For notation simplification, the conditioning of the like-
lihood by a model is omitted in the following. Based on
the likelihood, using a Bayesian context enables the estimation
of posterior probabilities and thus, allows a semantic
representation of the SITS content. Indeed, considering that
a user provides positive or negative examples, corresponding
to a positive or negative semantics, two likelihood
probabilities and can be derived for each
subgraph. Moreover, graph priors can be obtained using the
formula , where the summation is
done over the positive and negative semantics. Thus, assuming
a uniform prior on the semantics, the posterior probability of
the positive semantics is inferred using Bayes rule

(14)

By interactive learning, user-specific semantic posterior
probabilities are obtained for each subgraph .
Therefore, a semantic labeling of subgraphs is carried out
which enables spatio-temporal reasoning and probabilistic
retrieval of spatio-temporal structures in SITS.

Fig. 8. Interactive learning of the field maturation semantics: most likely
retrieved spatio-temporal structures ranked, from top to bottom, according to
their posterior probabilities. Each row presents a retrieved spatial mask (left)
with its associated time-period, which is given by time locations in the first
and last images of the row. The middle images in each row were selected from
SITS in order to represent significantly the spatio-temporal structure behaviors.

Fig. 9. Retrieval of Colza crops: most likely retrieved spatio-temporal
structures ranked according to their posterior probabilities. Retrieved spatial
masks (left) are associated to identical time-periods (the full SITS). Thus, the
images displayed were selected from SITS in order to represent significantly
the spatio-temporal structure behaviors.

V. SPATIO-TEMPORAL REASONING

The hierarchical modeling concept for spatio-temporal rea-
soning has been applied on the ADAM dataset described in Sec-
tion I-A. In the experiments carried out, the features were the
three spectral reflectances extracted out of a spatial subset of
200 200 pixels. In the following, we show examples of query
results obtained by the interactive training of several semantics.

We start with the analysis of ploughing semantics. We
performed this training using examples of spatio-temporal
structures defined in a time window of four samples. Fig. 7



HÉAS AND DATCU: MODELING TRAJECTORY OF DYNAMIC CLUSTERS IN IMAGE TIME-SERIES 1645

presents the retrieved spatio-temporal structures of the highest
semantic posterior probabilities together with their represen-
tations in SITS. Almost all other ploughing phenomena were
successively retrieved. However, as ploughings can differ
slightly according to the crop nature, and as there were only
few examples of such events in the considered spatial window,
the learning induced low posterior probabilities.

The training of a maturation semantics, specific to a field, was
performed. As this phenomenon occurred over a long time pe-
riod, a time window of 12 samples was selected for training.
Contrary to the ploughland semantics, the interactive learning
process, with very few positive and negative examples, enabled
the retrieval of similar events with high posterior probabilities.
The retrieved spatio-temporal structures are presented in Fig. 8
together with three significant image time samples. Note that,
the crop evolutions of highest probabilities are maturation phe-
nomena corresponding to the specific sought culture, whereas
retrieved events with lower probabilities correspond to matura-
tion of similar but slightly different cultures.

A last training was performed for the retrieval of Colza crops.
We selected a time-window of 38 time samples, that is to say
the longest possible time-period. Results are displayed in Fig. 9.
Two Colza crops with very high probabilities were obtained by
this search. The other retrieved structures were similar but the
cultures were slightly different and were associated to lower
probabilities.

VI. CONCLUSION

In this paper, we have presented generic methods for mod-
eling hierarchically high-resolution SITS information content.
The developed algorithms have been integrated in a novel tool
dedicated to the exploration of SITS archives.

The concept relies on the unsupervised learning of dy-
namic cluster trajectories and on the interactive learning of
users-specific interest. The modeling of trajectories in the
dynamic feature space results in graphs coding synthetically
spatio-temporal structures contained in SITS. To infer the
graphs, Bayesian methods and entropic measurements have
been applied on strong families of stochastic models. In the last
years, information theoretical methods showed that entropy
measures enable inference preserving the relevance of the
information in the models. The relationship of these coding
methods with Bayesian inference [10], [18] demonstrate the
relevance of the model selection and parameter estimation
approach. Based on the objective graph representation, the
user-specific interest is interactively learned by positive and
negative examples. The interactive learning procedure results
in the semantic labeling of SITS and enables the probabilistic
retrieval of similar spatio-temporal structures.

The hierarchical modeling procedure has been applied on
a SPOT image time-series. The interactive learning of sev-
eral semantics has demonstrated the relevance of the methods.
Based on these experiments, the algorithms appears to be fast
and relevant for the retrieval of user-specific spatio-temporal
patterns.

APPENDIX I
TWO-PART MDL CODE LENGTH FOR

GAUSSIAN MIXTURE MODELS

The two-part MDL code for Gaussian mixture models
comprises the following description lengths, calculated using
Shannon coding theorem.

• Let denote the code length needed to encode the number
of Gaussians of the mixture, within an interval of inte-

gers . Using the Shannon coding theorem with a
uniform prior, we define this code length as

• Let denote the code length needed to encode the number
of points associated with the different
Gaussians . Employing a uniform prior
on the interval of integers , where denotes the
sample size, we obtain

• For each Gaussian , the number of bits needed to en-
code its estimated mean vector and covariance matrix is
calculated using a uniform probability distribution. In case
of continuous distribution, to encode each parameter of
the -dimensional Gaussian , we need a precision

[10]. Considering the expectation of the number
of points associated with the Gaussian ,
in order to encode all the Gaussian parameters we need a
number of bits equal to

• The code length needed for the encoding of the data point
assignments to their respective clusters is given by

• The second part composing the two-part MDL code is the
number of bits needed to encode the data points

knowing the complexity and the parameters
of the mixture. It is given by

Therefore, adding the two parts, we obtain a two-part MDL code
for the Gaussian mixture model defined by (15), shown at the
bottom of the next page.

APPENDIX II
CHANGE OF THE TWO-PART MDL CODE LENGTH FOR

GAUSSIAN MIXTURE MODELING OPTIMIZATION

The notations of Section III-B2 and of Appendix I will be
used in the following. According to (9), the two-part MDL code,
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encoding with a Gaussian mixture model, is defined by the
expression

(16)

Let , , , and denote the
code length change of , , , and induced by the re-
moval of a given Gaussian in the mixture. Note that is
constant. Therefore,

(17)

is equal to the code length decrease obtained by
saving the encoding of the number of points

(18)

represents the code length decrease induced by
saving the Gaussian parameter encoding

(19)

represents the code length decrease induced by
saving the new assignments of data belonging to the removed
Gaussian. It is defined by which is equal to the
expression

where is the ML weight estimate of , after removal of
. Thus, this quantity is expressed by

(20)

represents the code length increase induced by en-
coding the assigned data with the new Gaussian mixture dis-
tribution. The reassignments of the data points which belonged

to the removed Gaussian induce a change in the distribution of
the Gaussian mixture. Thus, the code lengths related to the en-
coding of all of the data points according to their assigned new
Gaussian distributions have to be reevaluated. Therefore,

(21)

where and are respectively the ML estimated
probability distribution of before and after removal of .

is the ML estimated distribution of the most probable
Gaussian which is assigned to after removal of . The first
sum represents the code length change related to the encoding
of the data points belonging to the removed Gaussian while
the second term represents the code length change of the other
data points induced by the change of the Gaussian mixture
distribution. Because of an exaggerated computational cost,
the ML estimated Gaussian mixture distribution after removal
of the Gaussian component is estimated by performing a
single iteration of an EM algorithm.

The global code length change is obtained using (17), that is
to say by adding these four terms. The resulting sum is given in
(10).

APPENDIX III
MUTUAL INFORMATION ANALYTICAL CALCULATION

The change of MT clusters between consecutive times can
be quantized by mutual information measurements. The mutual
information between two continuous random variables and

is defined as

(22)

According to previous notations, MT cluster projec-
tions in consecutive times , are denoted by and

. These projections are multidimensional Gaussians
which are marginal distributions related to an MT cluster.
The joint distribution, denoted by , is obtained by
projecting the MT cluster in a space composed of the two TL
feature components. Thus, as the marginal and joint distri-
butions are Gaussian, mutual information can be calculated
analytically as

(23)

(15)
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where , , and denote the covariance matrix
determinants attached to the MT cluster Gaussian projections

, , and [15].
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