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The successful launch of panchromatic WorldView-1 and the planned launch of WorldView-2 will make a
major contribution towards the advancement of the commercial remote sensing industry by providing
improved capabilities, more frequent revisits and greater imaging flexibility with respect to the precursor
QuickBird satellite. Remote sensing data from panchromatic systems have a potential for more detailed and
accurate mapping of the urban environment with details of sub-meter ground resolution, but at the same
time, they present additional complexities for information mining.
In this study, very high-resolution panchromatic images from QuickBird and WorldView-1 have been used to
accurately classify the land-use of four different urban environments: Las Vegas (U.S.A.), Rome (Italy),
Washington D.C. (U.S.A.) and San Francisco (U.S.A.). The proposed method is based on the analysis of first-
and second-order multi-scale textural features extracted from panchromatic data. For this purpose, textural
parameters have been systematically investigated by computing the features over five different window
sizes, three different directions and two different cell shifts for a total of 191 input features. Neural Network
Pruning and saliency measurements made it possible to determine the most important textural features for
sub-metric spatial resolution imagery of urban scenes.
The results show that with a multi-scale approach it is possible to discriminate different asphalt surfaces,
such as roads, highways and parking lots due to the different textural information content. This approach also
makes it possible to differentiate building architectures, sizes and heights, such as residential houses,
apartment blocks and towers with classification accuracies above 0.90 in terms of Kappa coefficient
computed over more than a million independent validation pixels.
© 2009 Elsevier Inc. All rights reserved.
1. Introduction
Human activity truly dominates the Earth's ecosystems with
structural modifications. Rapid population growth over recent decades
and the concentration of this population in and aroundurban areas have
significantly impacted the environment (Pacifici et al., 2007). Although
urban areas represent a small fraction of the land surface, they affect
large areas due to the magnitude of the associated energy, food, water
and raw material demands. Urban areas are undergoing dynamic
changes and, as a consequence, are facingnewspatial andorganizational
challenges as they seek to manage local urban development within a
global community. Sub-urbanization refers to a highly dynamic process
where rural areas, both close to, but also distant from, city centers
become enveloped by, or transformed into, extended metropolitan
regions. These areas are a key interface between urban and rural areas
due to the provision of essential services in both (GLP, 2005).
i).
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During the last two decades, significant progress has been made in
developing and launching satellites with instruments, in both the
optical/IR and microwave regions of the spectra, well suited for Earth
observation with an increasingly finer spatial and spectral resolutions
(Bamler and Eineder, 2008; ESA, 2006; DigitalGlobe, 2008a; Digital-
Globe, 2008b). The successful launch of WorldView-1 in September
2007 and the planned launch of WorldView-2 have made and will
make a major contribution towards the advancement of the
commercial remote sensing industry by providing greater capability,
more frequent revisits and greater imaging flexibility with respect to
the precursor QuickBird satellite. WorldView-1 is the world's highest
spatial resolution commercial imaging satellite with 50 cm resolution
at nadir (DigitalGlobe, 2008a). Acquisitions are panchromatic in the
spectral range of 400–900 nm. Operating at an altitude of 496 km,
WorldView-1 has an average revisit time of 1.7 days (at 1 m Ground
Sample Distance—GSD) and 5.9 days at 20° off-nadir (0.51 m GSD).
QuickBird collects both multi-spectral and panchromatic imagery
concurrently (DigitalGlobe, 2008b). The QuickBird panchromatic
resolution ranges from 0.61 m at nadir to 0.72 m at 25° off-nadir
with a bandwidth which spans from 450 to 900 nm.
ach using multi-scale textural metrics from very high-resolution
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Remote sensing data from these panchromatic systems has a po-
tential for more detailed and accurate mapping of the urban envi-
ronment with details of sub-meter ground resolution, but at the same
time, they present additional problems for informationmining. In fact,
even though they have higher spatial resolutions, they are rarely
exploited for urban classification due their complexity and themissing
multi-spectral information. Taking into account this latter aspect,
surfaces such as water and asphalt exhibit very similar values in
panchromatic data, resulting in misclassification errors, as reported
later in this paper.

Urban areas are composed of various materials (such as concrete,
asphalt, metal, plastic, glass, shingles, water, grass, shrubs, trees and
soil) arranged by humans in complex ways to build housing, trans-
portation systems, utilities, commercial buildings and recreational
areas (Carleer & Wolff, 2006). A simple building appears as a complex
structure with many architectural details surrounded by gardens,
trees, other buildings, roads, social and technical infrastructure and
many temporary objects, such as cars, buses or daily markets. There-
fore, the single panchromatic image is generally not thought suitable
for land-use mapping of such a complex scenes. For these reasons
it is necessary to extract additional information from panchromatic
images in order to recognize objects within the scenes, such as texture
or objects' shape.

The objective of this work is to systematically analyze the textural
characteristics of very high-resolution panchromatic imagery to
classify the land-use of different urban environments, helping end-
users to choose more effectively the input parameters for successive
classifications. Possible practical applications may be found in urban
planning (Shackelford & Davis, 2003; Benediktsson et al., 2003), but
also for crisis management or as support for civil protection activities
(Pagot &Martino Pesaresi, 2008; Chini et al., 2009; Chini et al., 2008a).
In fact, in destructive disasters, such as an earthquake, a prompt and
accurate overview of the damage of the human settlements is very
important to be able to manage the rescue efforts and, subsequently,
to organize restoration activities (Voigt et al., 2007; Chini et al.,
2008b).

The proposed method is based on the analysis of first- and second-
order multi-scale textural features extracted from panchromatic data.
To account for the spatial setting of cities, textural parameters have
been computed over five different window sizes, three different
directions and two different cell shifts for a total of 191 input features.
Note, in this context we used the term feature to indicate any input,
such as textural measures or the panchromatic band used to feed the
network. Neural network pruning and saliencymeasurementsmade it
possible to determine the most important textural features for sub-
metric spatial resolution imagery of urban scenes.

The paper is organized as follows: related work on texture analysis
and feature selection is outlined in Section 2, while the datasets are
described in Section 3. Section 4 deals with methodology, introducing
the multi-scale textural analysis and the concepts of neural pruning
and extended pruning. Experimental results of the classification ex-
ercises and the analysis of the textural feature contributions are
discussed in Section 5. Final conclusions follow in Section 6.

2. Related work

2.1. Texture analysis

In the past years, the value of adding textural features to the
classification of satellite images has been clearly demonstrated as a
method to overcome the lack of spectral resolution (Carleer & Wolff,
2006). Texture is the term used to characterize the tonal or gray-level
variations in an image. Texture analysis has played an increasingly
important role in digital image processing and interpretation,
principally motivated by the fact that it can provide supplementary
information about image properties. Many texture feature extraction
Please cite this article as: Pacifici, F.,, et al., A neural network appro
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methods exist. Tuceryan and Jain (1993) identify fourmajor categories
of texture feature analysis methods: i) statistical (such as those based
on the computation of the gray-level co-occurrence matrix—GLCM),
ii) geometrical (including structural), iii) model-based, such as
Markov random fields (MRF), and iv) signal processing (such as
Gabor filters). It was pointed out by Shanmugan et al. (1981) that
textural features derived from GLCM are the most useful for analyzing
the content of a variety of remote sensing imagery while, according to
Treitz et al. (2000), statistical texture measures are more appropriate
than structural for traditional land-cover classification. Recently,
Clausi and Yue (2004) demonstrated that the GLCM method has an
improved discrimination ability relative to MRFs with decreasing
window size. Six parameters (energy, contrast, variance, correlation,
entropy and inverse different moment) are considered to be the most
relevant, among the 14 originally proposed in Haralick et al. (1973)
and Haralick (1979), some of which are strongly correlated with each
other (Cossu, 1988). In their investigation of the textural character-
istics associated with gray-level co-occurrence matrix statistical
parameters, Baraldi and Parmiggiani (1995) concluded that two
parameters, energy and contrast, are the most significant in
discriminating between different textural patterns.

In the remote sensing literature, many examples of the use of
textural parameters have been proposed for the extraction of quan-
titative information of building density (Karathanassi et al., 2000) or
for the recognition of different urban patterns (Zhang et al., 2003). In
most cases, texture increased the per-pixel classification accuracy,
especially in urban areas where the images are more heterogeneous
(Puissant et al., 2005). Chen et al. (2004) stated that this increase in
terms of classification accuracy is dependent on the geometrical
resolution of the scene. In fact, the improvement is greater for higher
resolution images. The window size used for the texture computation
plays an important role in texture extraction: larger window sizes are
more appropriate for finer resolution than coarse resolution (Shaban
& Dikshit, 2001). The inclusion of a single texture feature in the
original input space appeared to improve the overall classification
accuracy significantly (Shaban & Dikshit, 2002). Considerations about
the relevance of textural parameters have been proposed by Dekker
(2003) who found that variance, weighted-rank fill ratio, and semi-
variogram performed better than other textural features. Further-
more, the latter were chosen as an alternative for the gray-level co-
occurrence matrix because it gave better results with SAR data. At this
point, it is important to point out that the majority of the studies that
appeared in literature in the past years have dealt with decametric
spatial resolution imagery. Consequently, the resulting classification
maps are generally representative of different terrain patterns and not
of single objects within the image, such as a building or a swimming
pool (Pesaresi, 2000).

With the increase of the spatial resolution of satellites such as
QuickBird and Ikonos, texture features turn out to be valuable for the
extraction of trees within a scene (Ouma et al., 2006) and for the
retrieval of the leaf area index (Colomboa et al., 2003). In this latter
case, textural information is related to the spatial canopy architecture.
Multi-spectral Ikonos images have been studied for road identification
with an approach that integrates an unsupervised classifier, fuzzy
logic and the angular texture signature (Zhang & Couloigner, 2006),
where a number of shape descriptors are proposed for the angular
texture signature that are successfully used to separate roads from
parking lots/buildings.

The GLCM method is widely accepted for classifying texture and
several studies have used it for land-cover classification with de-
cametric Synthetic Aperture Radar (SAR) data, such as Kurosu et al.
(1999), Kurvonen and Hallikainen (1999) and Arzandeh and Wang
(2002). Dellepiane et al. (1991) studied the combined use of back-
scattering intensity and its textural information, while Dell'Acqua and
Gamba (2006) proposed a multi-scale textural approach for urban
characterization. The coarse spatial resolution of the European Space
ach using multi-scale textural metrics from very high-resolution
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Table 1
Characteristics of the images used.

Site information Image information

Location Dimension
(pixels)

Satellite Date Spatial
res. (m)

View
angle (°)

Sun
elev. (°)

Las Vegas (U.S.A.) 755×722 QuickBird May 10,
2002

0.6 12.8 65.9

Rome (Italy) 1188×973 QuickBird July 19,
2004

0.6 23.0 63.8

Washington D.C.
(U.S.A.)

1463×1395 WorldView-
1

Dec. 18,
2007

0.5 27.8 24.9

San Francisco
(U.S.A)

917×889 WorldView-
1

Nov. 26,
2007

0.5 19.6 29.6

The dataset takes into account four different architectures from cities with diverse
urban structures.
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Agency's European Remote Sensing satellites, ERS-1 and ERS-2, al-
lowed the recognition of dense, residential, and sub-urban areas with
sufficient precision and stability in the classification maps (Dell'Acqua
& Gamba, 2003). Finally, the combined use of medium optical re-
solution imagery, SAR (and its texture features) has been exploited for
mapping urbanization by Tatem et al. (2005).

2.2. Feature selection

If on one hand more information may be helpful for the clas-
sification process, on the other hand, the increasing number of input
features may introduce additional complexity related to the increase
of computational time and the “curse of dimensionality” (Bishop,
1995), overwhelming the expected increase in class separability asso-
ciated with the inclusion of additional features. As a result, it is ne-
cessary to use a robust method to estimate parameters (Chini et al.,
2008c) or to reduce the input dataset, as for example, using principal
component analysis to diminish the number of inputs (Landgrebe,
2003). A large number of input features can be used in satellite image
classification. Generally, not all of these input features are equally
informative. Some of them may be redundant, noisy, meaningless,
correlated or irrelevant for the specific task. Intuitively, any classifica-
tion approach should include only those features that make significant
contributions, which should result in better performance (Verikas &
Bacauskiene, 2002). Under this scenario, Feature Selection (FS) aims
at selecting a subset of the features, which is relevant for a given
problem. The importance of FS is the potential for speeding up the
processes of both learning and classifying since the amount of data or
processes is reduced (Leray & Gallinari, 1998).

A wide number of approaches for FS has been proposed in the
literature (Batitti, 1994; Cibas et al., 1996; Foroutan & Sklansky, 1987;
Holz & Loew,1994; Karthaus et al., 1995; Kittler, 1980; Kudo & Shimbo,
1993; Stahlberger & Riedmiller, 1997). We cannot be exhaustive in our
review since the literature in this field is very rich and it is not the
topic of this paper, but the major ideas are described here. Mainly, FS
methods can be divided into two classes: those based on statistical
information about features and those based on classification ap-
proaches. The former determines an optimal subset of features inde-
pendently from the classification process, based on statistical criteria.
The latter removes useless features or selects the most relevant of
them based on specific criteria (Onnia et al., 2001).

When the only source of available information is provided by
training data, the feature selection task can be performed using non-
parametric approaches such as support vector machines (SVMs) or
neural network (NNs). Several specific methods have been proposed
for SVMs. A well-known embedded backward selection algorithm is
the Recursive Feature Elimination (RFE) that uses the changes in the
decision function of the SVM as criterion for the selection (Guyon
et al., 2002;Weston et al., 2003). A genetic algorithmwas proposed by
Bazi and Melgani (2006) to select an optimal subset of features for a
successive SVM classification. An example of feature selection with
Multi-Layer Perceptron neural networks can be found in Del Frate
et al. (2005). One potential advantage of neural networks for feature
selection is that this approach can simultaneously “optimize” both the
input feature set and the classifier itself, while other methods select
the “best” subset of features with respect to a fixed classifier (Mao
et al., 1994). More details on the use of Multi-Layer Perceptron neural
networks for feature selection are provided in the next section.

2.2.1. Feature selection with Multi-Layer Perceptron neural network
TheMulti-Layer Perceptron (MLP) neural network architecture can

be conceptually divided into three logically separable parts: the input
layer, the hidden layers and the output layer. The first and the last are
generally application dependent. For example, in satellite image
classification, the input dimension is the number of sensor bands, and
the output dimension is the number of predefined classes (Zeng &
Please cite this article as: Pacifici, F.,, et al., A neural network appro
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Yeung, 2006), while the choice of the hidden layers (and numbers of
neurons in each hidden layer) are generally based on some heuristic
concept or user experience. Generally, a neural network with a small
architecture may not be able to capture the underlying data structure.
In fact, if the network has an insufficient number of free parameters
(weights), it underfits the data, leading to excessive biases in the
outputs (Chandrasekaran et al., 2000). When the number of neurons
in the hidden layers increases, the network can learn more complex
data patterns by locatingmore complex decision boundaries in feature
space. However, a neural network with an architecture too large may
fit the noise in the training data, leading to good performance on the
training set but rather poor accuracy relative to the validation set,
resulting in large variance in the predicted outputs and poor accuracy
(Del Frate et al., 2007). Generally speaking, the larger the network, the
lower its generalization capabilities, and the greater the time required
for training networks (Zeng & Yeung, 2006).

Unfortunately, the optimal architecture is not known in advance
for most real-world problems. Consequently, there are two common
ways to find the desired network size: growing and pruning ap-
proaches. The first consists in starting with a small network and
adding neurons until the optimization criteria are reached (Hirose
et al., 1991). However, this approach may be sensitive to initial con-
ditions and become trapped in local minima. The second approach
consists of beginning with a large network and then removing con-
nections or units that are identified as less relevant. This approach has
the advantage that the network is less sensitive to initial conditions.
Moreover by reducing network size, it improves its generalization
capabilities when applied to new data (Kavzoglu & Mather, 1999).

Feature selection with neural networks can be seen as a special
case of architecture pruning, where input units are pruned rather than
hidden units or singleweights. Many extended pruning procedures for
removing input features have been proposed in the literature (Belue &
Bauer, 1995; Cibas et al., 1996; Del Frate et al., 2005). Although many
different pruning methods have been proposed in the literature, the
main ideas underlying most of them are similar. They all establish a
reasonable relevance measure, namely saliency, for the specific ele-
ment (unit or weight) so that the pruning process has the least effect
on the performance of the network. Pruning methods can be divided
into threewide groups in terms of decision criteria for the removing of
weights or nodes: i) sensitivity-based, ii) penalty-term approaches,
and iii) others which may include interactive pruning, bottleneck
method, or pruning by genetic algorithms. In the first method, the
sensitivity is estimated by the error function after the removal of a
weight or unit. Then, the less significant element (weight or unit) is
removed. In penalty-term methods, one adds terms to the objective
function that rewards the network for choosing efficient solutions.
There is some overlap in these two groups since the objective function
could include sensitivity terms (Chandrasekaran et al., 2000). The
pruning problem has been also formulated in terms of solving a linear
ach using multi-scale textural metrics from very high-resolution
of Environment (2009), doi:10.1016/j.rse.2009.02.014
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Table 2
Las Vegas case: classes, training and validation samples, and color legend.
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equation system (Castellano et al., 1997). Sietsma and Dow (1998)
developed a two-stage procedure, which removes the less relevant
hidden neurons and adjusts the remaining weights to maintain the
behavior of the original network. Suzuki et al. (2001) proposed a
pruning technique on the basis of the influence of removing units in
order to determine the structures of both the input and the hidden
layers. Reed (1993) and Engelbrecht and Cloete (1996) have given
detailed surveys of pruning methods. More details on the pruning
approach used in this paper are reported later in the paper.

3. Datasets

The datasets used take into account four different cities with
diverse architectural urban structures: Las Vegas, Rome, Washington
D.C. and San Francisco. The first two scenes were acquired by
QuickBird in 2002 and 2004, respectively, the others by WorldView-
1 in 2007. Details of sites and images are reported in Table 1.

3.1. Description of the scenes

The Las Vegas scene, shown in Fig. 1A, contains regular criss-
crossed roads and examples of buildings with similar heights (about
one or two floors) but different dimensions, from small residential
houses to large commercial structures. This first scene was chosen for
two reasons. First, its simplicity and regularity allowed an easier
analysis and interpretation of the textural features. Second, it re-
presents well a common American sub-urban landscape, including
small houses and large roads, which is different from the European
style of old cities built with more complex structures. To take into
account this last situation, a second test area, shown in Fig. 1B, was
used including a sub-urban scene of Rome composed of a more
elaborate urban lattice with buildings showing a variety in heights
(from four floors to twelve), dimensions and shapes including apart-
ment blocks and towers. In particular, the Rome area has two com-
pletely different urban architectures separated by a railway. The area
located in the upper right of the scene was built during the 60s:
buildings are very close to each other and have a maximum of five
floors, while roads are narrow and usually show traffic jams due to the
presence of cars and busses. The other side of the railway was de-
veloped during the 80s and 90s: buildings have a variety of archi-
tectures, from apartment blocks (eight floors) to towers (twelve
floors), while roads are wider than those on the other side of the
railroad tracks. The Washington D.C. scene, shown in Fig. 1C, contains
elements that characterize the other two, but imaged with a higher
spatial resolution (0.5 m). Buildings have different heights, dimen-
sions and shapes, varying from small residential houses to huge
structures with multiple floors (more than twenty), while asphalt
surfaces include roads with different widths (e.g. residential and
highways) and parking lots. The image of San Francisco presents
regular structures, such as a highway, residential roads, two different
type of buildings, commercial/industrial and residential, some sparse
trees and vegetated areas. This scene has been used for validation
purposes only and it will be better described later in this paper.

3.2. Classes, training and validation set definition

Several different surfaces of interest have been identified many of
which are particular to the specific scene. For the Las Vegas case, one
goal was to distinguish the different uses of the asphalt surfaces,
which included Roads (i.e. roads that link different residential houses),
Highways (i.e. roads with more than two lanes) and Parking Lots. An
unusual structure within the scene was a Drainage Channel located in
Fig. 1. Panchromatic images (left) and ground reference (right) of (A) Las Vegas, (B) Rome, an
the references to color in this figure legend, the reader is referred to the web version of thi
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the upper part of the image. This construction showed a shape similar
to roads, but with higher brightness since it was built with concrete. A
further discrimination was made between Residential Houses and
Commercial Buildings due to the different size, and between Bare Soil
(terrainwith no use) and Soil (generally, backyardswith no vegetation
cover). Finally, more traditional classes, such as Trees, Short Vegetation
and Water were added for a total of eleven classes of land-use. The
areas of shadow were very limited in the scene since the modest
heights of buildings and relative sun elevation.

Due to the dual nature of the architecture of the Rome test case and
the high off-nadir angle, of about 23°, the selection of the classes was
made to investigate the potential of discriminating between struc-
tures with different heights, including Buildings (structures with a
maximum of 5 floors), Apartment Blocks (rectangular structures with
a maximum of 8 floors) and Towers (more than 8 floors). As for the
previous case, other surfaces of interest were recognized, including
Roads, Trees, Short Vegetation, Soil and the peculiar Railway for a total
of nine classes. Differently from the previous case, in this scene
shadow occupies a larger portion of the image.

The Washington D.C. scene has features in common with the
previous two. Particularly, it is possible to distinguish different uses of
asphalt surfaces, such a Roads, Highway and Parking Lots, while
buildings show a variety of dimensions and heights, from small Resi-
dential Houses in the bottom-right of the scene, to Tall Buildings with
multiple floors in the center of the area. An interesting feature is the
role of the class Trees. The image was acquired in December and most
of the plants were without leaves. Therefore, we did not associate
these objects with the class Trees, but to a wider class Vegetation
(including short vegetation and trees without leaves), and only trees
with leaves were recognized belonging to Trees. Finally, the classes
Sport Facilities and Side Walks were added for a total of 11 classes. It
is important to highlight that similar to the Rome case, the image was
acquired with a high off-nadir angle of about 28°, and with a sun
elevation of about 25°, which caused large shadows.

The ground references for each scene, reported in Fig. 1, have been
obtained by careful visual inspection of separate data sources,
including aerial imagery, cadastral maps and in situ inspections (for
the Rome scene only). An additional consideration regards objects
within shadows that reflect little radiance because the incident
illumination is occluded. Textural features can potentially be used to
characterize these areas as if they were not within shadow. Therefore,
d (C)Washington D.C. Color codes are in Tables 2–4, respectively. (For interpretation of
s article.)

ach using multi-scale textural metrics from very high-resolution
of Environment (2009), doi:10.1016/j.rse.2009.02.014
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Table 4
Washington D.C. case: classes, training and validation samples, and color legend.

Table 3
Rome case: classes, training and validation samples, and color legend.
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these surfaces were assigned to one of the corresponding classes of
interest described above.

When classifying imagery at sub-meter spatial resolution, many of
the errors may occur in the boundaries between objects. On the other
hand, it is also true that the nature of the objects is fuzzy and often it is
not possible to correctly identify an edge. To investigate this effect, we
defined the first two ground references (Las Vegas and Rome) not
including boundary areas, and the other (Washington D.C.) minimiz-
ing the extensions of these regions.

In order to select training and validation samples, having both
statistical significance and avoiding the correlated neighboring pixels,
we have adopted a stratified random sampling (SRS) method, en-
suring that even small classes, such as water or trees, were adequately
represented as reported by Chini et al. (2008c). In SRS, the population
of N pixels is divided into k subpopulations of sampling units N1,N2,…,
Nk, which are termed “strata”. Therefore, we have randomly sampled
the pixels in each of those classes accordingly to their extension in
area, based on the produced ground reference.

The number of pixels used for training may influence the final
classification accuracy. To investigate this, we used about 5% and 10%
of the total pixels for the Las Vegas and Rome scenes (same spatial
resolution), respectively, and for comparison about 10% for the
Washington case (higher spatial resolution). Details of the number
of samples used as training (TR) and validation (VA) are reported in
Tables 2–4 for the Las Vegas, Rome and Washington D.C. areas,
respectively. Kappa coefficient and percentage overall error analysis
(Foody, 2002) were used to evaluate the confusion matrices derived
from the supervised classification.

4. Methodology

4.1. Multi-scale texture analysis

Spectral-based classification methods may fail with the increased
geometrical resolution of the data available. As stated by Gong et al.
(1992), improved spatial resolution data increases within-class var-
iances, which results in high interclass spectral confusion. In many
cases, several pixels are representative of objects, which are not part of
land-use classes defined. Cars may be used as a representative
example, as they do not belong to any land-use class, however cars
may be present in related classes, such as roads and parking lots.
Furthermore, cars may create textural patterns in imagery, for exam-
ple in parking lots, and this effect may be measured and utilized for
filtering them out. It is evident that this problem is intrinsically related
to the sensor resolution and it cannot be solved by increasing the
number of spectral channels. Therefore, a solution may be to include
spatial information that can be used to characterize land-use classes
by exploiting different concentrations and patterns of these non land-
Please cite this article as: Pacifici, F.,, et al., A neural network appro
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use pixels. We exploit these two last characteristics of land-use, using
a multi-scale approach based on GLCM textural features.

In this work, six different second-order textural features derived
from the GLCM and two first-order textural features have been
considered. The formulation of these six second-order textural
features is shown in the following:

Homogeneity =
XN−1

i=1

XN−1

j=1

p i; jð Þ
1 + i− jð Þ2 ð1Þ

Contrast =
XN−1

i=1

XN−1

j=1

p i; jð Þ · i− jð Þ2 ð2Þ

Dissimilarity =
XN−1

i=1

XN−1

j=1

p i; jð Þ · j i − j j ð3Þ

Entropy = −
XN−1

i=1

XN−1

j=1

p i; jð Þ · log p i; jð Þð Þ ð4Þ

Second moment =
XN−1

i=1

XN−1

j=1

p i− jð Þ2 ð5Þ

Correlation =
XN−1

i=1

XN−1

j=1

i · jð Þ · p i; jð Þ− μ i · μ j

σ i · σ j
ð6Þ

where σ and μ are the mean and standard deviation respectively, i, j
are the gray tones in the windows, which are also the coordinates of
the co-occurrence matrix space, while p(i,j) are the normalized
frequencies with which two neighboring resolution cells separated by
a fixed shift occur on the image, one with gray tone i and the other
with gray tone j; N is the dimension of the co-occurrence matrix,
which has a gray value range of the original image.

Homogeneity assumes higher values for smaller digital number
differences in pair elements. Therefore, this parameter is more
sensitive to the presence of near diagonal elements in the GLCM.
Contrast takes into account the spatial frequency, which is the
difference in amplitude between the highest and the lowest values
of a contiguous set of pixels. This implies that a low contrast image is
not necessarily characterized by a low variance value, but the low
contrast image corresponds to low spatial frequencies. Unlike Contrast
where theweights increase exponentially as onemoves away from the
diagonal, for Dissimilarity the weights increase linearly. This para-
meter measures how different the elements of the co-occurrence
ach using multi-scale textural metrics from very high-resolution
of Environment (2009), doi:10.1016/j.rse.2009.02.014
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Table 5
Input space resulting from panchromatic band, first- and second- order textural features.

Input features Cell Size
(pixel)

Step
(pixel)

Direction
(°)

# Inputs

Panchromatic 1
First-order Mean 3×3 10

Variance 7×7
15×15
31×31
51×51

Second-
order

Homogeneity 3×3 15 0 180
Contrast 7×7 30 45
Dissimilarity 15×15 90
Entropy 31×31
Second
Moment

51×51

Correlation
Total input features 191
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matrix are from each other and it is high when the local region has a
high contrast. Entropy measures the disorder in an image. When the
image is not uniform, many GLCM elements have very small values,
which implies that Entropy is very large. If we consider a windowwith
completely random gray tones, the histogram for such a window is a
constant function, i.e., all p(i,j) are the same, and Entropy reaches its
maximum. The Second Moment measures textural uniformity, i.e.,
pixel pairs repetitions. Indeed, when the image segment under con-
sideration is homogeneous (only similar gray levels are present) or
when it is texturally uniform (the shift vector always falls on the same
(i,j) gray-level pair), a few elements of GLCM will be greater than 0
and close to 1, while many elements will be close to 0. Correlation is
expressed by the correlation coefficient between two random var-
iables i and j, and it is a measure of the linear-dependencies between
values within the image. High Correlation values imply a linear rela-
tionship between the gray levels of pixel pairs. Thus, Correlation is
uncorrelated with Energy and Entropy, i.e. to pixel pair repetitions
(Baraldi & Parmiggiani, 1995).

First-order statistics can be computed from the histogram of pixel
intensities in the image. These depend only on individual pixel values
and not on the interaction or co-occurrence of neighbouring pixel
values. The first-order parameters used in this paper are Mean and
Variance. TheMean is the average gray-level in the localwindowand the
Fig. 2. Mean digital number of the eleven classes of Las Vegas. Only four groups were iden
consistent with Table 2). Particularly, water was grouped with roads, highways and parking lo
soil. (For interpretation of the references to color in this figure legend, the reader is referre
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Variance is the gray-level variance in the local window. The latter is high
when there is a large gray-level standard deviation in the local region.

Textural information is valuable for the discrimination of different
classes that have similar spectral responses. At the same time, it is also
necessary to exploit a multi-scale approach to better deal with objects
having different spatial coverage in an area. For this purpose, the eight
features defined before have been computed with five different
window sizes 3×3, 7×7, 15×15, 31×31, 51×51 pixels (about 1.5–
1.8 m, 3.5–4.2 m, 7.5–9.0 m, 15.5–18.6 m and 25.5–30.6 m, with
WorldView-1 and QuickBird, respectively), three different directions
0°, 45° and 90° and two different cell shift values of 15 and 30 pixels
for a total of 191 textural features, as reported in Table 5. The
dimensions of the windows and the values of the shift have been
based on the analysis of a previous work of Small (2003) who
estimated the characteristic length scale of 6357 sites in 14 urban
areas around the World, showing that the majority of sites have
characteristic length scales between about 8.0 and 24.0 m.

4.2. Magnitude-based pruning

As pointed out in the previous sections, enlarging the size of the
input space increases resource requirements and causes the “curse of
dimensionality”. Therefore, it is necessary to eliminate redundant or
useless features. This introduces the concept of saliency, or contribution,
of a feature. Some inputs may be useful only in the presence of other
features, while being useless on their own. Thus, the saliency com-
putation generally involves all network parameters simultaneously.

In the following, we first describe the feature selection method
used in this paper, known as Neural Network Pruning. Then, we
illustrate the criteria adopted for computing the feature contribution
of each input using a trained (and pruned) neural network.

As stated, among the Neural Network Pruning techniques, a
sensitivity-based method proved to be the most popular. Magnitude-
based (MB) pruning is the simplest weight-pruning algorithm which
is based on removing links with the smallest magnitude value. Thus
the saliency of a link is simply the absolute value of its weight. Tarr
(1991) explained this concept considering that when a weight is
updated, the learning algorithm moves the weight to a lower value
based on the classification error. Thus, given that a particular feature is
relevant to the problem solution, the weight would be moved in a
constant direction until a solutionwith no error is reached. If the error
tified using the panchromatic band and represented by horizontal blocks (colors are
ts, while soil appeared to be closer to residential and commercial buildings than to bare
d to the web version of this article.)

ach using multi-scale textural metrics from very high-resolution
of Environment (2009), doi:10.1016/j.rse.2009.02.014
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term is consistent, the direction of the movement of the weight vector
will also be consistent (a consistent error term is the result of all
points in a local region of the decision space belonging to the same
output class). If the error term is not consistent, which can be the case
of a single feature of the input vector, the movement of the weight
attached to that node will also be inconsistent. In a similar fashion, if
the feature did not contribute to a solution, the weight updates would
be random. In other words, useful features would cause the weights to
grow, while weights attached to non-salient features simply fluctuate
around zero. Consequently, the magnitude of the weight vector serves
as a reasonable saliency metric. Although this method is very simple,
it rarely yields worse results than the more sophisticated algorithms
(Zell et al., 1995; Le Cun et al., 1990; Hassibi & Stork, 1993).

Kavzoglu and Mather (1999) investigated different pruning tech-
niques using SAR and optical data for land-cover mapping. They found
that the MB pruning technique generally yielded better results despite
the simplicity of the algorithm. Moreover, their results show that
pruning not only reduces the size of neural networks, but also increases
overall network performance. MB pruning appeared to be robust
enough and was chosen in our work to eliminate the weakest inputs.

The network pruning technique provides a reduced set of features
and at the same time optimizes the network topology. However,
Fig. 3. In (A), (B) and (C) is shown the homogeneity textural parameter computed over Las V
and diagonal, respectively). The directional information highlights different structural pat
homogeneity values for classes roads, highway, paring lots and water computed for all directi
assumes the highest homogeneity values with respect to the other classes using horizontal te
other classes) in the diagonal directions since it is a wide structure. The notation “A×B_x_y
represent the Cartesian components of direction and shift. For example, the feature 3×3_1
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the resultant input space may have more than a reasonable number
of input features. A trade-off between classification accuracy
and computational time should be determined. The so-called Exten-
ded Pruning technique, Del Frate et al. (2005), is the process of
eliminating iteratively (by successive pruning phases) the least
contributing inputs until the training error reaches a specified limit.
This process identifies a sub-optimal feature set; sub-optimal from
the classification accuracy point of view. In fact, this further input
reduction results in a decrease in the classification accuracy. Thus,
after the optimization (from the classification accuracy point of
view) of the network topology by pruning, the Extended Pruning
technique has been used in order to identify a reduced set of input
features.

4.2.1. Computing feature saliency
Considering how weights in a neural network are updated, the

weights can be used to calculate the saliency. Once the network has
been pruned (simple or extended pruning), a general method for
determining the relative significance of the remaining input features
has been suggested by Tarr (1991). Input units whose weighted
connections have a large absolute value are considered to be the most
important. He proposes the following saliency metric to define the
egas using the same step and window size, but different directions (horizontal, vertical
terns within the area, such as vertical or horizontal roads. In (D) is shown the main
ons, window sizes and shifts. In particular, the highway (which is a horizontal structure)
xture parameters while parking lots show a distinguishing behavior (with respect to the
” has the following meaning: (A,B) are the dimensions of the window size, while (x,y)
5_0 is computed with a 3×3 window size, horizontal direction and 15 pixels of shift.

ach using multi-scale textural metrics from very high-resolution
of Environment (2009), doi:10.1016/j.rse.2009.02.014
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Table 6
Classification accuracies for the Las Vegas, Rome andWashington D.C. cases at the three
classification stages.

Las Vegas Rome Washington D.C.

Cl. err.
(%)

Kappa
coeff.

#
Inputs

Cl. err.
(%)

Kappa
coeff.

#
Inputs

Cl. err.
(%)

Kappa
coeff.

#
Inputs

Panchromatic 50.2 0.378 1 66.0 0.184 1 68.6 0.187 1
Full NN 7.1 0.916 191 16.9 0.798 191 14.5 0.838 191
Pruned NN 6.8 0.920 169 5.0 0.941 140 8.6 0.904 152
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relevance for every weight between the input i and hidden unit j of
the network:

Si =
XNh

j

w2
ij ð7Þ

which is simply the sumof the squaredweights between the input layer
and the first hidden layer. This formulation may not be completely
representative when dealing with pruned networks, since several
connections between the input and the first hidden layer may be
missing. Yacoub and Bennani (1997) exploited both weight values and
network structure of a Multi-Layer Perceptron network in the case of
one hidden layer. They derived the following criterion:

Si =
X
jaH

jwji jP
iVaI jwjiVj

X
kaO

jwkj jP
j0aH jwkjVj

 !
ð8Þ

where I,H,O denote the input, hidden and output layer, respectively. For
the two hidden layers case, which is the network topology used in our
work, we adopted a slight variation of Eq. (8). In particular, the im-
portance of variable i for output j is the sumof the absolute values of the
weight products over all paths from unit i to unit j, and it is given by:

Sij =
X
kaH1

jwik jP
kVaH1 jwikVj

·
X
xaH2

jwkx j jwxj jP
xVaH2 jwkxVj ·

P
xVaH2 jwxVj j

 !" #
ð9Þ

where H1 and H2 denote the first and the second hidden layers,
respectively. Then, the importance of variable i is defined as the sum of
these values over all the outputs classes Ncl.

Si =
XNcl

j=1

Sij: ð10Þ

5. Results

In this section we investigate the capability of panchromatic data
to produce land-use maps of the scenes described previously. As
stated, to overcome the spectral deficit of panchromatic imagery, it
may be necessary to extract additional information to recognize
objects within the scene. Neural Network Pruning has been adopted to
optimize the input features space and network topology, as described
in Section 5.1. Then, the analysis of most effective input features has
been carried out by the Extended Pruning technique and described in
Section 5.2. A detailed analysis of the best 10 features is illustrated in
Section 5.3. In addition, an independent test site belonging to the city
of San Francisco, has been used to show the value of the selected
features for mapping an urban scenario not included in the features
extraction phase. The analysis of the texture properties of shadowed
areas follows Section 5.4.
Fig. 4. Classification maps of (A) Las Vegas, (B) Rome and (C)Washington D.C. obtained
after the pruning phase. The maps discriminated different asphalt surfaces, such as
roads, highways and parking lots due to the different textural information content. This
approach also allowed to differentiate building architectures, such as residential houses,
apartment blocks and towers. Shadowed areas did not influence any of the maps
obtained.

ach using multi-scale textural metrics from very high-resolution
of Environment (2009), doi:10.1016/j.rse.2009.02.014
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Fig. 5. Relative feature contribution of the input features not eliminated by the extended pruning of (A) Panchromatic and Mean, (B) Variance, (C) Contrast, (D) Correlation, (E)
Dissimilarity, (F) Entropy, (G) Homogeneity and (H) Second Moment computed over all window size, directions and shifts. The mean values of these contributions, shown in red,
highlights that many of the remaining inputs have a smaller influence on the classification process compared to other features. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Feature contributions with respect to textural parameters, window sizes and
directions. In (A) is shown the contributions of textural parameters regardless of the
choice of cell sizes and directions. Dissimilarity appears to be the most informative
texture parameter. In (B) is shown the importance of the cell sizes, regardless of the
choice of textural parameters and directions. In (C), the three directions (in black) and
the two-step size (in gray) show high and relatively similar contributions, meaning that
both directions and step sizes are relevant for the classification phase.
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5.1. Optimization of the feature space and network topology

The first effort has been to produce land-use maps using only
panchromatic information with neural network. As expected, the
results obtained appeared to be really poor for the three test cases in
terms of classification accuracy. The obtained Kappa coefficient values
are 0.378 for Las Vegas, 0.184 for Rome and 0.187 for Washington D.C.
As expected, several of the defined classes were not recognized. For
example, for the Las Vegas scene, only Bare Soil, Residential Houses,
Roads and Short Vegetation have been identified, which are re-
presentative of thematerials present in the area. This is shown in Fig. 2
where it is possible to group the digital number values into four sets.
Even though water and asphalt are different, it is well known from the
literature that they may assume similar values in panchromatic data.
This has led to some confusion where water is grouped with roads,
highway and parking lots.

As already explained in Section 3.1, a multi-scale textural input
space has been extracted from panchromatic images (see Table 5),
including first- and second-order textural parameters computed with
5 window sizes, 3 directions and 2 step sizes. Note that directions and
steps are related only to second-order statistics. Fig. 3 shows an
example of the homogeneity parameter computed over Las Vegas
with three different directions (same step and window size). As
expected, the direction calculation highlights different structural pat-
terns within the area, such as vertical or horizontal roads, and parking
lots. In fact, the highway, which is a horizontal structure, has its
highest value in the 15_0 and 30_0 directions, while parking lots show
a distinct behavior (with respect to the other classes) in the diagonal
direction since they arewide structures. Note, the notation “A×B_x_y”
has the following meaning: (A,B) are the dimensions of the window
size, while (x,y) represent the Cartesian components of direction and
shift. For example, the feature 3×3_15_0 is computed with a 3×3
window size, horizontal direction and 15 pixels of shift.

A considerable increase in classification accuracy has been obtained
using the entire input dataset of 191 textural features. More precisely,
Kappa coefficient values of 0.916 for Las Vegas, 0.798 for Romeand0.838
for Washington D.C. have been obtained. With respect to the previous
implementation, all classeswere identified in the classificationmaps. On
the other hand, as mentioned, a large input space rarely yields high
classification accuracies due to information redundancy. This results in a
necessity to estimate the contribution of each parameter in order to
reduce and optimize the input space. To this end, we adopted Neural
Network Pruning to eliminate the weakest connections, optimizing at
the same time the network topology. Generally, this process increases
the classification accuracy by eliminating features that donot contribute
to the classification process, but instead only introduce redundancy.
After the pruning phase, the remaining inputs are 169 for Las Vegas,140
for Rome and 152 forWashington D.C., respectively. This relatively small
feature elimination resulted in a further increase of classification
accuracy. In particular, the Kappa coefficient values increased to 0.920
for Las Vegas, 0.941 for Rome and 0.904 for Washington D.C., whose
classification maps are illustrated in Fig. 4 and the accuracies are
summarized in Table 6 for the reader's convenience. Taking into account
the extension of boundary areas between objects, we noticed a slight
decrease of the classification accuracy for the Washington D. C. case,
whose ground reference included boundary areas.

The obtained classification maps discriminated different asphalt
surfaces, such as roads, highways and parking lots due to the different
textural information content. This approach also made it possible to
differentiate building architectures, sizes and heights, such as
residential houses, apartment blocks and towers. Here, it is important
to note that shadowed areas did not influence any of the maps
obtained. The reason for this will be described later in the paper. The
accuracies obtainedwith the optimization of the network topology are
considered here as an upper bound of the classification accuracies
derived from the multi-scale approach.
Please cite this article as: Pacifici, F.,, et al., A neural network appro
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5.2. Features selection by extended pruning technique

In the previous section, the network pruning technique provided a
reduced set of textural features and an optimized network topology in
order to obtain the most accurate classification map. However, the
input space is not close to a reduced number of features relative to the
ach using multi-scale textural metrics from very high-resolution
of Environment (2009), doi:10.1016/j.rse.2009.02.014
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computational time, and a trade-off between classification accuracy
and computational time should be found. The so-called Extended
Pruning technique is the process of eliminating the least contributing
inputs, even from this optimal classification, in order to identify a
minimal sub-optimal textural feature set. The resulting classification
is sub-optimal from the classification accuracy point of view, since this
further input reduction results in a decrease in the classification
accuracy. Particularly, the criterion chosen to stop the extended
pruning phase was to reach a classification accuracy of about 0.800 in
terms of Kappa coefficient.

After the extended pruning phase, the remaining inputs are 59 for
Las Vegas, 61 for Rome and 59 for Washington D.C., with accuracies
(Kappa coeff.) decreased to 0.859, 0.820 and 0.796, respectively. In
Fig. 5 we present the relative contributions of the input features
(including the panchromatic image itself), which are not eliminated
by the extended pruning. The saliency metric used to compute the
feature contributions has been illustrated in Sec. 4.1, Eqs. (9) and (10).
Moreover, we normalized all the contribution values between 0 and 1,
where 0 means no contribution to the classification phase. As shown,
the contribution of each input varies from city to city, due to the
architectural peculiarities (and diversity) of them. The analysis of the
mean values of these contributions, shown in red, clearly indicates
that many of the remaining inputs have a smaller influence on the
classification process compared to other features. This means that
using certain textural features (including different cell sizes and
directions) may have more significance than others.

To analyze the importance of textural parameters regardless of
the choice of cell sizes and directions, we computed, for each of
them, the feature contributions as sums over the different cell sizes
and directions. As shown in Fig. 6A, the panchromatic band, which
does not contain any information on cell sizes and directions, has
the smallest contribution. Fist-order textural features, which do not
contain any information on directions, have smaller contributions
than second-order features. Particularly, Dissimilarity appears to be
the most informative texture parameter, even if it is similar to
Contrast. This may be related to the linear weighting of the gray-
tone levels of the scene (to be compared to the exponentially
weight of Contrast). In the same way, we analyzed the importance
of the cell sizes, regardless of the choice of textural parameters and
Fig. 7. Frequency of the input features with respect to the input feature contribution h
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directions. This is illustrated in Fig. 6B, where larger cell sizes of
31×31 and 51×51 show higher contributions. This may be related
to the very high-resolution data used in this paper. Since QuickBird
andWorldView-1 sensors have resolutions close to half a meter, it is
reasonable that the textural information is contained in the spatial
range of 15.0–25.0 m, a result which is consistent with Small
(2003).

In Fig. 6C, the three directions (in black) and the two-step sizes (in
gray) have high and similar contributions, meaning that both di-
rections and step sizes are relevant for the classification phase. This
last result points out the necessity of having directional information to
better capture differences in textural patterns.

5.3. Analysis of the best 10 textural features

We have shown that many of the remaining inputs, after the
extending pruning phase, have a smaller influence on the classifica-
tion process compared to other features. To further investigate in-
dividual feature contributions, the frequency of the input features
with respect to the input feature contribution is shown in Fig. 7, which
highlights that only very few inputs show a relative contribution
greater than 0.30. The best ten features are reported in Table 7 with
the corresponding values of contribution relative to the mean values
over three cities and several different land-uses.

To understand the contribution of a single class to these ten
features, we merged together the different land-use classes into five
groups, which are common to the three scenes. The resultant common
five classes are: Buildings, Roads, Soil, Trees and Vegetation. The
contributions per single class of the ten best features with respect to
these five classes are illustrated in Fig. 8. For example, the first-order
Mean 51×51 seems to be appropriate for the discrimination of roads,
while Dissimilarity 51×51_0_30 appears to be valuable for the
detection of trees.

With this drastic reduction of input features (from about 60 to 10),
we expected a further decrease of the classification accuracy with
respect to the extended pruning results. On the other hand, this effect
was compensated for by the reduction (from about 11 to 5) of the
output classes. In particular, we re-classified the Washington D.C.
scene using only the ten best textural inputs, obtaining an accuracy of
ighlights that only very few inputs show a relative contribution greater than 0.30.

ach using multi-scale textural metrics from very high-resolution
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Table 7
Best ten features and corresponding feature contribution averaged over three cities and
several different land-uses classes.

Best 10 features Relative input feature contribution

Mean 51×51 0.535
Variance 51×51 0.547
Homogeneity 51×51_0_15 0.572
Homogeneity 51×51_30_0 0.345
Dissimilarity 31×31_30_30 0.339
Dissimilarity 31×31_30_0 0.404
Dissimilarity 51×51_0_30 0.512
Entropy 31×31_15_0 0.374
Second Moment 51×51_0_30 0.301
Correlation 51×51_30_30 0.357
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0.861. This result is particularly relevant since it was obtained after a
generalization (mean) of results obtained over all of the cities with
different architectures.

Even though these considerations show similarities, especially in
terms of computational time and generalization capability for
different urban scenarios, it is necessary to emphasize the importance
of exploiting the entire textural features dataset, including all different
spatial scales and directions. Starting from the same textural features
and pruning the neural networks made it possible to classify different
urban scenarios with high accuracies, showing both the efficiency and
the robustness of the multi-scale approach used here.

5.3.1. The San Francisco test case
In the previous section, we discussed the feature contributions as

mean values over three different test sets corresponding to Las Vegas,
Rome and Washington D.C. A reduced set of ten features has been
identified as valuable for urban classification. Now the question is:
how well do these ten features classify a new urban scene? To answer
this question, we used these ten features to classify an independent
data set of a portion of San Francisco. Note that different combinations
of texture metrics might produce more accurate results for this
particular test case. However, we only want to investigate the
potentialities of the selected features (obtained as average of 3 totally
different conditions) when applied to a new scenario. In this sense,
these ten features are not an optimal combination, but simply a set of
inputs that may potentially increase the classification accuracy when
applied to very high-resolution imagery.
Fig. 8. Contributions per single class of the best ten features with respect to the five common
for the discrimination of roads than Correlation or Second Moment, while Dissimilarity 51×
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The scene, shown in Fig. 9A, has been imaged by WorldView-1
with an off-nadir angle of 19.6°. Further, long shadows are caused by a
sun elevation of 29.6°. This neighborhood may be considered a
representative architecture for many cities, making it suitable for
validation purposes. The same five common classes defined previously
have been used. Training and validation pixels have been selected and
are summarized in Table 8, while the entire ground reference map is
shown in Fig. 9B.

We first classified the panchromatic image alone, obtaining a
Kappa coefficient of about 0.224. Then, using only the reduced set of
ten textural features, we obtained a map, shown in Fig. 9C, whose
accuracy was about 0.917.

5.4. Analysis of texture properties of shadowed areas

Shadow effects are often ignored when using decametric spatial
resolution images, such as Landsat. In these cases, shadowed pixels
may be located on an object's boundaries where there is a mixture of
radiances caused by different surfaces. Vice versa, shadows have a
huge impact on classification with metric or sub-metric spatial
resolution images, such as QuickBird or WorldView-1. In urban
areas, shadows are mainly caused by buildings, tress or bridges and
may potentially provide additional geometric and semantic informa-
tion on the shape and orientation of objects. On the other hand,
shadowed surfaces require more consideration since they may cause a
loss of information or a shape distortion of objects.

In the literature, shadow is generally dealt with as an additional
class (Benediktsson et al., 2005; Bruzzone and Carlin, 2006). In this
paper, we have defined the ground reference regardless of the
presence of shadowed areas, leading to classification maps, which
do not contain any pixels of shadow. To further investigate this, we
extracted the shadowed pixels of the Rome scene and analyzed their
textural values (normalized between 0 and 1) with respect to the non-
shadowed pixels of the same class. As illustrated in Fig. 10, where
continuous-lines represent pixels of shadowand dotted-lines the non-
shadowed pixels of the corresponding class. Only panchromatic
information appears to not be able to adequately separate the classes
whose pixels are covered by shadow. In fact, they are mainly
concentrated in the lower part of the scale values, acting more as a
unique class. Mean values (and their standard deviation) are also
reported in Table 9 for blocks, roads and vegetation. Even though these
classes defined. The first-order Mean and Variance 51×51 seem to be more appropriate
51_0_30 appears to be valuable for the detection of trees.
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Table 8
San Francisco case: classes, training and validation samples, and color legend.
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surfaces are different, the (normalized) panchromatic values of
shadowed areas are very similar: 0.08, 0.05 and 0.07, respectively.
By contrast, shadowed areas have their own texture properties,
allowing the discrimination between different shadowed classes.

To make Fig. 10 clearer, we only consider the class buildings
(including both apartment blocks and towers), which is one of the
most relevant for urban classification. Shadows of buildings are
mainly due to two different effects: i) shadows of the building on itself
and ii) shadows of other objects, such as other buildings or trees, on a
building. As shown in Fig. 11, buildings show a sort of characteristic
textural signature. For example, the variance of shadowed buildings is
slightly higher than non-shadowed buildings. This may be interpreted
by considering the smaller extension in the area of shadow with
respect to buildings (for the scene considered) and the higher contrast
in terms of gray-tone levels on the boundary between shadowed and
non-shadowed pixels. Smaller objects with higher contrast lead to
higher spatial variability, thus larger variance values. Similar con-
siderations may be given to the homogeneity feature, which shows
an inversion of the trend between shadowed and non-shadowed
buildings due to the larger step size (30 instead of 15 pixels), but equal
window size of 51×51 pixels.

6. Conclusion

In this work, we investigated the potential of very high-
resolution panchromatic QuickBird and WorldView-1 imagery to
classify the land-use of urban environments. Spectral-based classi-
fication methods may fail with the increased geometrical resolution
of the data available. In fact, improved spatial resolution data
increases within-class variances, which results in high interclass
spectral confusion. In many cases, several pixels are representative of
objects, which are not part of land-use classes defined. This problem
is intrinsically related to the sensor resolution and it cannot be
solved by increasing the number of spectral channels. To overcome
the spectral information deficit of panchromatic imagery, it is
necessary to extract additional information to recognize objects
within the scene.

The multi-scale approach discussed in this paper exploits the
contextual information of first- and second-order textural features to
characterize the land-use. For this purpose, textural parameters have
been systematically investigated computing the features over five
different window sizes, three different directions and two different
cell shifts for a total of 191 inputs. Neural Network Pruning and
saliency measurements allowed the optimization of the network
topology and give an indication of the most important textural
features for sub-metric spatial resolution imagery and urban
scenarios.
Fig. 9. (A) Panchromatic image and (B) ground reference of San Francisco. In (C) is
shown the classification map obtained using the reduced set of ten textural features.
Color codes are in Table 8. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 10. Normalized textural values of the most contributing features and panchromatic band of the Rome case for shadowed (continuous-lines) and non-shadowed (dotted-lines)
pixels. The only panchromatic information appears to not separate sufficiently the classes whose pixels are covered by shadow, since the result mainly concentrated in the lower part
of the scale values. As opposed, shadowed areas show their own texture properties, allowing the discrimination between different shadowed classes. Color codes are in Table 3. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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We believe that the network pruning should be mandatory in any
neural-net based classification. As summarized in Table 6, using the
full neural network, the classification accuracies are modest (~0.8 in
terms of Kappa coeff.). After network pruning, the maps of the three
dataset exploited for the texture analysis, i.e. Las Vegas, Rome and
Washington D.C., show higher land-use classification accuracies,
above 0.90 in terms of Kappa coefficient computed over more than a
million independent validation pixels. The network pruning greatly
improved the classification accuracies due to twomain effects: (1) the
network topology is optimized; (2) the smaller set of input features
reduced the effect of the “curse of dimensionality”.

The identification of the most effective textural features has been
carried out using the Extended Pruning technique with saliency
measurements. Fist-order textural features, which do not contain any
information on directions, have smaller contributions than second-
order features. Dissimilarity appears to be the dominant texture
parameter. For the spatial resolution and test cases considered, bigger
cell sizes, such as 31×31 and 51×51 pixels, show higher contributions
than smaller cell sizes (regardless of the choice of textural parameters
and directions), making it clear that there is a need to exploit the
entire directional information. However, many of the remaining
Table 9
Normalized textural values (and their standard deviation) of the panchromatic band and th
(NON-SH) pixels.

Panchromatic band+best 10 features Blocks

SH NON-SH

Panchromatic 0.08 (0.13) 0.58 (0.26)
Mean 51×51 0.25 (0.22) 0.41 (0.24)
Variance 51×51 0.61 (0.17) 0.52 (0.20)
Homogeneity 51×51_0_15 0.52 (0.25) 0.42 (0.26)
Homogeneity 51×51_30_0 0.37 (0.21) 0.43 (0.26)
Dissimilarity 31×31_30_30 0.55 (0.27) 0.49 (0.24)
Dissimilarity 31×31_30_0 0.63 (0.18) 0.54 (0.23)
Dissimilarity 51×51_0_30 0.55 (0.25) 0.55 (0.23)
Entropy 31×31_15_0 0.46 (0.19) 0.51 (0.19)
Second Moment 51×51_0_30 0.51 (0.20) 0.46 (0.20)
Correlation 51×51_30_30 0.31 (0.17) 0.35 (0.22)
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inputs, after the extending pruning phase, have a smaller influence on
the classification process compared to other features. Specifically, very
few inputs showed a relative contribution greater than 0.30, as
reported in Table 7. As expected, the drastic reduction of input features
(from about 60 to 10) decreased the classification accuracy of the
Washington D.C. scene to 0.861 (Kappa coeff.) with respect to the
extended pruning result. Nevertheless, the simple selection of these
features resulted in remarkable results compared to those obtained
using the only panchromatic information. Furthermore, the result
obtained for the independent test case of San Francisco, i.e. not
included in the multi-scale textural analysis carried out in the first
part of the paper, indicates the potentialities of the reduced set of
textural features for mapping a common urban scenario.

Since the textural analysis was carried out as an average of three
different environments (and validated over more than a million
independent samples), we believe that this approach can efficiently be
extended to large areas, suchawhole city. In this sense, the SanFrancisco
scene may represent a non exhaustive, but significant, example.

To conclude, we notice that only panchromatic information
appears to not be able to adequately separate classes whose pixels
are covered by shadow. In our analysis, these pixels' values were
e most contributing features of the Rome case for shadowed (SH) and non-shadowed

Roads Vegetation

SH NON-SH SH NON-SH

0.05 (0.07) 0.25 (0.16) 0.07 (0.11) 0.65 (0.14)
0.21 (0.21) 0.27 (0.20) 0.28 (0.21) 0.72 (0.23)
0.52 (0.26) 0.40 (0.25) 0.67 (0.19) 0.23 (0.23)
0.54 (0.27) 0.55 (0.25) 0.65 (0.21) 0.80 (0.19)
0.38 (0.28) 0.58 (0.26) 0.22 (0.20) 0.73 (0.27)
0.57 (0.28) 0.43 (0.28) 0.70 (0.23) 0.26 (0.23)
0.63 (0.26) 0.38 (0.25) 0.78 (0.21) 0.28 (0.25)
0.50 (0.28) 0.42 (0.27) 0.56 (0.24) 0.23 (0.23)
0.44 (0.23) 0.33 (0.20) 0.45 (0.23) 0.24 (0.21)
0.51 (0.24) 0.60 (0.24) 0.42 (0.21) 0.77 (0.24)
0.36 (0.27) 0.50 (0.28) 0.32 (0.21) 0.70 (0.23)
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Fig. 11. Normalized textural values of the most contributing features and panchromatic band of the Rome case for shadowed and non-shadowed pixels of buildings (including also
apartment blocks and towers). The variance of shadowed buildings is slightly higher than non-shadowed buildings, while homogeneity shows an inversion of the trend between
shadowed and non-shadowed buildings using a larger step size.
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grouped together, acting as a unique class. In contrast, multi-scale
textural analysis proved that it is possible to distinguish different
shadowed areas, since they have their own texture properties.

Future research will address a comparison between the results
found in this paper and the use of isotropic textural features applied to
very high-resolution optical imagery for urban land-use classification.
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