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Neural networks for the retrieval of water vapor and liquid
water from radiometric data
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Abstract. This paper investigates the potentiality of neural networks for the retrieval of integrated
water vapor and integrated liquid water from data simulating the measurements of different ground-
based microwave radiometers, with the optional addition of a laser ceilometer. The reliability of
the neural network algorithms was evaluated comparing their performance with that achievable by
linear regression techniques with the same data sets. The obtained results showed that the neural
inversion provides a more accurate estimation of the parameters to be retrieved, especially in the
case of strong nonlinearities. In addition, neural networks succeed in exploiting the information
given by the ceilometer significantly better than linear regression. The advantages shown by the
neural inversion led the investigation further, aiming at the optimization of the architecture of the net
and focusing on the number of processing units and connections. An optimum range for the choice
of the number of neurons to be inserted in the net has been determined, and ineffective connections
have been removed via pruning algorithms. A fault tolerance analysis was also performed, which
pointed out other interesting properties of the neural retrieval procedure. In conclusion, the results of
this simulation indicate that neural networks, if compared with linear regressions, are more suitable

for cases with stronger nonlinearities and are more flexible and robust algorithms. Moreover, their
performance can improve when the number of units and connections is optimized.

1. Introduction

Atmospheric water vapor is an important quantity in
several areas, including weather prediction, very long
baseline interferometry, geodetic metrology, and radar al-
timetry. Cloud liquid is important in weather modifica-
tion, detection of conditions relevant to aircraft icing, and
in studies of the influence of clouds on solar radiation.
Both quantities have a high temporal and spatial variabil-
ity, which makes it difficult to estimate them from sur-
face humidity data. Under nonprecipitating conditions,
the thermal radiation of the troposphere at microwave fre-
quencies originates primarily from oxygen, water vapor,
and liquid water (clouds). This allows the estimation of
the integrated water vapor (V) and of the integrated lig-
uid water (L) by means of ground-based microwave ra-
diometer measurements [Hogg et al., 1983; Peter and
Kdmpfer, 1992]. Futhermore, the microwave technique
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is potentially useful in applications, such as nowcasting
or mesoscale forecasting, requiring a high time resolution
or the collection of many measurements in data-sparse re-
gions of the oceans. Dual-channel radiometers have been
operating for several years to measure V and L. The
retrievals have been generally carried out by the linear
statistic method [Westwater and Strand, 1968], and the
accuracies are satisfactory for several applications,

However, a first source of error seems to be the de-
pendence of the liquid absorption coefficient on temper-
ature [Westwater, 1978]. One way of overcoming this
difficulty can be the use of radiometers with more than
two channels so that the thermal state of the atmosphere
can also be taken into account from the multifrequency
data [Askne et al., 1985]. Also, a laser cellometer can
be considered to enhance the measurements vector [Han
and Westwater, 1995]. Moreover, the errors of liquid and,
in particular, of vapor retrievals appear to increase dra-
matically with increasing amounts of liquid, i.e., when
the nonlinear character of the inversion problem becomes
preeminent [ Westwater and Guiraud, 1980].

Recently, artificial neural networks have been recog-
nized as being useful for retrieval operations in remote
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sensing of the atmosphere [ Churnside et al., 1994; Cabr-
era and Staelin, 1995; Li et al., 1997, Del Frate and
Schiavon, 1998]. The use of neural networks in statistical
estimation is often effective because they can simultane-
ously address nonlinear dependencies and complex statis-
tical behavior. Indeed, it has been shown that a multlayer
perceptron [Beale and Jackson, 1990] with a single hid-
den layer and nonlinear activation functions 1s capable of
approximating any real-valued continuous function, pro-
vided a sufficient number of units within this hidden layer
exists [Homik et al., 1989]. While a general multilayer
perceptron can form arbitrary mappings, in practice, fi-
nite network size demands that only an approximation to
the optimal solution can be achieved.

In this paper we consider a multilayer perceptron for
determining V' and L from simulated radiometric data.
The main objective is to obtain a nonlinear regression sur-
face that represents the desired mapping and to compare
its performance with that of a classical linear technique.
A second goal, encouraged by this comparison, 1s the op-
timization of some of the most significant parameters of
the neural algorithm such as the number of units in the
hidden layer of the net or the number of its connections,
where, for this last step, a pruning procedure can be used.
The properties of robustness of the proposed technique
are also examined. We simulated, for each channel of
the radiometer, an undetected fault, and we analyzed the
effects on the accuracy of the retrieval.

2. Basic Principles and the Linear Approach

For a nonscattering atmosphere in local thermodynamic
equilibrium and for a given frequency in the microwave
region, the brightness temperature T'g measured by an
upward looking radiometer 1s given by the following ex-
pression [Janssen, 1993]:

o ’ ! t 4 ’ ;
TB e f T(s)a(s)e_'}; ﬂ(ﬂ )dﬂ ds_l_Tcose'— fﬂ' ﬂ(ﬂ )ds
0

(1)
where T'(s) (kelvins) and a(s) (per kilometer) are the at-
mospheric physical temperature and the absorption coef-
ficient at the spatial coordinate s, respectively, while Teqs
(kelvins) is the brightness temperature contributed by ex-
traterrestrial sources (cosmic background). The absorp-
tion coefficient a(8) is, in general, the sum of the absorp-
tion contributions of dry air, water vapor, and clouds,

oy (s) (2)

The water vapor and the cloud absorption coefficients are,
in turn, approximately proportional to the water vapor

a(8) = agq(8) + ay(s)
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density p,(s) and the liquid density p;(s), so that we can
write

@y (8) = kupu(s) (3)

and
a(s) = kipi(s) 4)

where &k, and k; are the specific (or mass) absorption co-
efficients of water vapor and liquid, respectively. On the
other hand, V and L are related to p, (s} and p;(s) by

V = /m py(8)ds (3)
0

L= .[o pi(s)ds (6)

The integration of (2) over the entire atmosphere, with the
introduction of the optical depth 7(s), given by

7(8) = /0 3 o(s’)ds’ (7)

and of the opacity 7 = 7(00), gives
=74+ k,V + kL (8)

where 74 is the path integral of ay(3). The definition of
the mean radiating temperature (T1r)

f " T(s)a(s)e " ds
0

Tor = 25 )
] a(s)e~ ") ds
0
allows one to derive the opacity 7 from (1) by
Tmr — TB )
T==In| 40— 10
(Tmr - Tcos ( )

Therefore it turns out that a relation exists between the
measured brightness temperatures and integrated vapor
and liquid and that the inversion is feasible.

In the linear statistical approach the estimation of V
and L is commonly obtained operating in two steps [ West-
water, 1993]. In the first step an estimate of the mean ra-
diating temperature is performed. For each frequency the
corresponding 11, can be obtained using a linear regres-

sion (LR)
Ny

Tore = ag + Z ﬂnTBn (11)
n=1

where Ny is the number of the available radiometric
channels and T'g,, is the brightness temperature measured
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by the nth channel. In the second step the opacity T, at
each frequency, is evaluated using (10). Afterward, the
estimate of V' and L is performed through the following
LRs:

(12)

(13)

The coefficients a;, b;, and ¢; in (11), (12), and (13) are
obtained by applying the linear regression analysis [Hogg
et al., 1983] to a statistically significant data set. The data
sets used in this study will be described in section 3.2.

The linear statistical approach provides unsatisfactory
results in the presence of clouds with high liquid content
when the nonlinearities of the inversion problem cannot
be neglected anymore. Under this point of view the be-
havior of the neural technique is completely different. In
fact, in this case, data are processed by units that are in-
herently nonlinear,

3. Simulation Setup

3.1. The Neural Net Algorithm

An artificial neural network (NN) may be viewed as a
mathematical model composed of many nonlinear com-
putational elements, named neurons, operating in parallel
and massively connected by links characterized by dif-
ferent weights. A single neuron computes the sum of its
inputs, adds a bias term, and drives the result through a
generally nonlinear activation function to produce a sin-
gle output termed the activation level of that neuron. NN
models are mainly specified by the net topology, neuron
characteristics, and training or learning rules [Lippman,
1987].

The term topology refers to the structure of the net-
work as a whole: the number of its input, output, and
hidden units and how they are interconnected. For this
study, multilayer perceptrons (MLP) have been consid-
ered, which have been found to have the best suited topol-
ogy for classification and inversion problems [Hsu et al.,
1992]. These are feedforward networks where the mput
flows only in one direction to the output, and each neuron
of a layer is connected to all neurons of the successive
layer but has no feedback to neurons in the previous lay-
ers. Two layers of weights have been used in our case.

The individual neuron is the elemental building block
of each layer, and it is mainly characterized by its acti-
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vation function. The most common activation function 1s
the nonlinear sigmoid function, also used in our simula-
tions, defined as follows:

1
14e2

f(z) = (14)
Such an activation function yields values in the range
[0,1]. Since the output units of the mapping network must
generally produce an estimate of a parameter with an ar-
bitrary range, the range restriction described above must
be removed. A preprocessing of the input variables 1s
commonly performed as well. In particular, this 1s useful
if different input variables have typical values which dif-
fer significantly and do not reflect the relative importance
in determining the required outputs. For these reasons
we scaled the input and output values so that they were
between 0.01 and 0.99.

A MLP is designed to approximate an unknown input-
output relation by determining the weight or strength of
each connection via learning rules. These rules indicate
how to pursue minimization of the error function mea-
suring the quality of the network’s approximation on the
restricted domain covered by a training set (i.e., a set of
input-output examples). The ultimate goal, however, 1s
to minimize the error for all possible examples related
through the input-output relation, namely, to generalize
outside of the training set. In our case the net was trained
using the back propagation algorithm [Rumelhart et al.,
1986], which uses a gradient search technique and iter-
atively adjusts the weight coefficients in the network to
minimize an error function equal to the mean square dif-
ference between the desired and the actual net output.
For determining when the training procedure had to be
stopped, we considered the “early stopping” algorithm
[Bishop, 1995]. According to this algorithm, the perfor-
mance of the net during the training (learning) phase is
evaluated either on the training set or on a different in-
dependent validation set. In the training set the overall
error in the retrieval of the correct output keeps on de-
creasing with the training, approaching a value of conver-
gence. Conversely, the error on the validation set reaches
a minimum value, after which it will start increasing if
we continue the training. At this point the learning phase
must be interrupted.

The software simulations were performed by means
of the Stuttgart neural network simulator (SNNS), devel-
oped at the University of Stuttgart (Germany) [Zell et al.,
1995], which proved to be a high-level, flexible, and re-
liable software package. The complete training process
seldom took more than 1 hour of a medium speed CPU.
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3.2. Data

Two statistically independent ensembles (training and
evaluation) of atmospheric profiles were generated [Schia-
von et al., 1993] starting from the midlatitude summer
standard atmosphere [Damosso et al., 1983]. For tem-
perature, at ground level a random fluctuation with a
Gaussian distribution has been superimposed on its stan-
dard value. Random fluctuations were also added to
the temperature values at different heights, but with a
I' distribution [Soong, 1982]. These fluctuations were
added to a projected adiabatic profile to avoid unphysi-
cal situations. Ground-based thermal inversions with I'-
distributed thickness and strength were included, too.

The profiles of water vapor have been constructed by
adding random irregularities with a Gaussian distribution
to the standard atmosphere profile. Liquid water simulat-
ing fog and/or clouds was generated whenever the rela-
tive humidity at a given height was larger than a selected
threshold. Both the thickness of the fog layer and the
base height of the clouds were I'-distributed, and the same
distribution controlled the statistical generation of cloud
thickness. The liquid content of clouds has been assumed
to be proportional to thetr thickness [Decker et al., 1978].
A mixture of liquid and ice has been assumed below 0°C,
while only ice is present below —30°C. To better exam-
ine a more critical situation, we only considered profiles
with clouds.

These synthetic atmospheric profiles were used to com-
pute the brightness temperatures as would be measured
at the various frequencies by a ground-based radiome-
ter aiming at zenith. This was made possible by using
Liebe et al.’s [1993] millimeter-wave propagation model
(MPM), which allows one to compute the complex re-
fractivity IV of the atmosphere, the imaginary part of
which gives the absorption coefficient a required in (1).
The calculation of IV consists of several additive parts,
namely, a frequency independent term plus various spec-
tra of refractive dispersion and absorption. The spectra
consist of 44 O, and 34 H,O line contributions; nonres-
onant spectra of dry air; continuurn contributions from
the H>O spectrum above 1 THz, which are formulated
as wing responses of a pseudoline centered at 1.8 THz;
and refractivity formulation for suspended water droplets
and ice crystals, whose effects are treated by means of
the Rayleigh approximation. Inputs to the model are
barometric pressure, temperature, and relative humidity,
which are profiles data, and density of suspended wa-
ter droplets and ice crystals, which has been evaluated

from relative humidity profiles according to Decker et
al.’s [1978] model.
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The use of a propagation model combined with a pro-
file generation algorithm allows one to carry out sensi-
tivity studies between brightness temperature and atmo-
spheric components [Dawson, 1994; Li et al., 1997]. It
also allows one to cover the full range of variability of
atmospheric parameters within established bounds for a
good training of the retrieval algorithm, which could be
difficult to obtain with measured data.

To simulate noise in the radiometric channels, random
tluctuations with Gaussian distribution and varying stan-
dard deviations have been added to the brightness temper-
ature data. The results presented here refer to three levels
of rms radiometric noise, i.e., 0.5, 1.0, and 2.0 K, which
are representative of the typical characteristics of existing
radiometers.

Sets of actual radiosonde-measured profiles were con-
sidered as well. They belong to various locations in Italy
and were used to validate some of the results obtained for
the synthetic atmospheres.

The input quantities of the net simulate data measured
by three types of instruments, The first one is a multi-
frequency radiometer which was considered to simulate
the retrieval capabilities of an actual new generation ra-
diometer for remote sensing of the atmosphere designed
and developed under a project carried out by the Euro-
pean Space Agency (ESA) [Battistelli et al., 1995]. The
instrument measures brightness temperatures at the fol-
lowing seven frequencies: 22.23, 23.87, 31.65, 51.25,
52.85, 53.85, and 54.85 GHz. Indeed, although the low-
est (22.2 GHz) water vapor absorption line is fairly weak,
brightness temperatures around this frequency contain
some information on the amount and height distribution
of the tropospheric water vapor. On the other side, mea-
surements in the 30- to 40-GHz atmospheric window
carry information on the amount of liquid water present
in nonprecipitating clouds. Finally, the brightness at fre-
quencies within the 60-GHz oxygen absorption complex
depends on the temperature of the lower layers of the tro-
posphere. As a consequence, a radiometric system oper-
ating at these seven channels is expected to display a pro-
filing capability, which could have beneficial results both

for remote sensing of the troposphere and for propagation
studies.

We then simulated measurements of a typical instru-
ment used for the estirnation of V' and L. This is a dual-
channel radiometer whose work frequencies are at 23,87
and 31.65 GHz. The lower frequency, on one shoulder
of the water vapor absorption line, yields measurements
that are nearly independent from the height distribution
of water vapor, while the upper frequency is particularly
sensitive to the liquid.
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Table 1. Input and Output Statistics for the Two Data Sets

Simulated Data Radiosonde Data
Parameter Mean s.d. Mean s.d.
inputs, K
TB,, .. 106.2 18.5 90.2 20.5
TR,, o 100.8 18.9 86.2 20.4
TBa; e 101.5 25.7 89.5 25.7
TBs; o 209.1 23.1 196.1 23.7
TBss ax 246.7 12.5 236.9 13.6
TB.q as 275.7 4.7 269.2 6.1
T'Bq, as 288.3 3.2 284.1 4.6
Outputs, cm
vV 4.06 0.89] 3.08 0.836
L D.21 0.084 0.18 0.083

A third instrument that we took into account 1s a laser
ceilometer. This instrument is designed to measure cloud-
base height detecting the time (and thus the correspond-
ing distance) needed for a short pulse of light to traverse
the atmosphere from the transmitter of the ceilometer to a
backscattering cloud base and back to the receiver of the
ceilometer. We assumed a vertical resolution of 15 m.

In the remainder of this paper we consider data related
to four systems: the two radiometers with and without
the ceilometer. More emphasis will be put on the multi-
tfrequency radiometer because the additional pieces of in-
formation that the 50-GHz-band channels provide could
be beneficial to the retrieval of both V' and L [Schiavon

et al., 1993]. In particular, cloud liquid water absorp-

Table 2. RMS Errors in the Retrieval of V and L With a Multifrequency Radiometer

(Synthetic Profiles})
V RMS Error, cm L RMS Error, cm

Retrieval Radiometric Noise, K Radiometric Noise, K
Method 0.5 1.0 2.0 0.5 1.0 2.0

Input: T'g
NN1 0.0636 0.1053 0.1782 0.0056 0.0071 0.0091
NN2 0.0650 0.1041 0.1810 (0.0061 0.0076 0.0096
LR (0.1033 0.1344 0.1973 0.0106 0.0116 0.0128

Input: T

NN1 0.0619 0.1032 0.1804 0.0055 0.0073 0.0091
NN2 0.0834 0.1181 0.1902 0.0060 0.0075 0.0095
LR 0.0740 0.1134 0.1854 0.0066 0.0083 0.0102

Abbreviations are NN1, two nets, each with a single output; NN2, single net with two

components in the output vector; and LR, linear regression.
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tion depends on its physical temperature, and therefore
a temperature profiling capability can especially improve
the retrieval of L. The inclusion of the ceilometer mea-
surement, which precisely locates the cloud and therefore
determines its temperature if information on temperature
profile is present, can further enhance the estimation of
liquid.

The range for the values of L varies from 0.1 to 0.5 cm.
This is an interesting interval for comparing the perfor-
mance of NN and LR algorithms. In fact, it spans a range
in which on one side the statistical regression can still
be reckoned a valid technique, but on the other side the
presence of nonlinearities starts to be meaningful, even
though it is bounded by the nonprecipitation condition. In
Table 1 the statistics of the brightness temperatures and of
V and L considered in the simulation are reported either
for the set where profiles have been statistically gener-
ated or for the set based on radiosonde data. The two sets
have quite similar characteristics. The discrepancies be-
tween the mean values are mainly due to the fact that the
synthetic set, as already described, was generated starting
from a midlatitude summer profile, while the radiosonde
set included some profiles measured in other seasons.

4. Retrieval Results

In Table 2 we report the rms error of the retrieval of
V and L computed in different cases for the set of the
statistically generated profiles. For either NN or LR we
considered as input quantities the brightness temperatures
and the optical depths obtained by the simulated measure-
ments of the seven-frequency radiometer. We also con-
sidered the three already mentioned levels of noise for
the radiometric channels. As far as the retneval with the
NN is concerned, parameter inversion can be performed
either by using one single net with two components in the
output vector (NN2 type net) or by using two different
nets, each with a single output for either V' or L (NN1
type nets). Results are reported for both types of net con-
figuration.

Table 2 shows that, generally, the performance of the
NN is better than that of LR, particularly for noise levels
of 0.5 and 1.0 K. It can be observed that in the case of
LR the role played by 7, whose computation involves the
estimation of 71},;, 15 crucial for the retrieval of the ato-
spheric parameters. In fact, even if a more complicated
processing of the input data is required, a decrease of the
rms error up to 35% is obtained; this does not occur if the
estimation 1s performed using the NN, which seems to be
able to catch directly from the brnightness temperature all
the information necessary to retrieve the desired quanti-
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Table 3. RMS Errors in the Retrieval of V' and L With a
Multifrequency Radiometer (Radiosonde Profiles)

RMS Error, cm
V L
Input: Tg
NNI1 0.146 0.0091
LR 0.149 0.0142
Input: T
NN 0.142 0.0090
LR 0.147 0.0099

Radiometric noise 1s of 1.0 K standard deviation. Ab-
breviations are NN 1, two nets, each with a single output,
and LR, linear regression.

ties. Hence, in this latter case, the computation of T is not
needed.

It can also be noted that NN1 type nets perform gener-
ally better than NN2 type. In fact, although atmospheric
radiation at millimeter waves depend on both atmospheric
water vapor and cloud liquid, the dependence relation be-
tween each retrieved quantity and the input vector (bright-
ness temperature or opacity) is different. If we consider
both quantities in the output vector (NN2 type net), the
coefficients determined for the net during the training
phase do have to represent the two dependence relations.
Putting only one element in the output vector of the two
NNT1 type nets allows one to calculate coefficients that are
more specific for the single retrieval problem, therefore
generally performing a more accurate approximation of
the sought input-output function. For this reason, in the
following we shall limit our analysis to NN1 type nets.

The gencral wrend of the preceding results is validated
by radiosonde data. In Table 3 the rms errors obtained in
this case are reported, where a level noise of 1.0 K for the
seven radiometric channels is considered.

To turther examine the rms errors obtained with NN
and LR, some scatterplots are reported in Figures 1 and 2.
A comparison between retrieved values (on the vertical
axis) and the true values (horizontal axis) obtained inte-
grating the corresponding profiles is shown. In the re-
stricted case (profiles with more liquid) the NN augments
its improvement in the accuracy of the estimation with re-
spect to LR. For liquid a decrease of the rms error of 14%
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Figure 1. Retrieved versus true values of integrated vapor in the general case (Figures 1a and 1b)
and for the case of profiles with an amount of liquid water greater than .35 cm (Figures 1c and 1d).
Input quantities are the brightness temperatures for the neural networks (Figures 1a and 1c) and
the opacities for the linear regression (Figures 1b and 1d). Radiometric noise is of 1.0 K standard

deviation.

in the general case is improved to 31% in the restricted
case. For water vapor, in the general case the improve-
ment displayed by NN is 8%, while in the restricted case
it 1s 17%. This confirms that the stronger the nonlinear-

ities are in the inversion problem (which correspond to a
larger amount of liquid), the better the behavior of NN i1s
compared with LR. The same analysis, either for L or V,
has also been cammed out considering profiles measured
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Figure 2, Retrieved versus true values of integrated liquid in the general case (Figures 2a and 2b)
and for the case of profiles with an amount of liquid water greater than 0.35 cm (Figures 2c and 2d).
Input quantities are the brightness temperatures for the neural networks (Figures 2a and 2¢) and
the opacities for the linear regression (Figures 2b and 2d). Radiometric noise is of 1.0 K standard
deviation.

by radiosondes. These latter results confirm the previous  ther with the dual-channel radiometer or with the seven-
considerations. channel radiometer. One more term, bn,+1H, or

In Table 4 the retrieval results, obtained using the two  ¢p s+1H, where H, is the cloud-base height, was added
other instruments described in section 3.2, are reported: to (12) or (13), respectively, for LR, while one element
The ceilometer is supposed to be used in synergy ei- for H. was added to the input vector for NN. It can be
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Table 4. RMS Errors in the Retrieval of V and L With Four Different Measurement Configurations

V' RMS Error, cm L RMS Error, cm
Simulated Radiometric Noise, K Radiometric Noise, K
Instrument 0.5 1.0 0.5 1.0 2.0
Neural Network Retrieval Method
DCR 0.0861 0.1512 0.2730 0.0100 0.0104 0.0117
DCR +C 0.0763 0.1457 0.2705 0.0049 0.0057 0.0079
MFR 0.0636 0.1053 0.1782 (0.0056 0.0071 0.0091
MEFR + C 0.0505 0.0902 0.1663 0.0026 0.0036 0.0059
Linear Regression Retrieval Method

DCR 0.1340 0.1809 0.2909 0.0113 0.0116 0.0128
DCR + C 0.1297 0.1775 0.2880 0.0080 0.0084 0.0099
MER (0.0740 0.1134 0.1854 0.0066 0.0083 0.0102
MFR + C 0.09356 0.1233 0.1910 0.0047 0.0060 0.0079

Input quantities were the brightness temperatures for the neural network and the opacities for the
linear regression. Abbreviations are MFR, multifrequency radiometer; DCR, dual-channel radiome-

ter; and C, ceilometer.

noted that again, the estimation based on NN gives gen-
erally better results if compared with LR. This occurs for
each of the four simulated sensing configurations. Focus-
ing on the contribution of the ceilometer to the accuracy
improvement of the estimates, the NN seems to exploit
the information provided by this intrument much better
than LR does. In the case of liquid water and for a radio-
meftric noise of 0.5 and 1.0 K of standard deviation, the
error is halved using NN, while LR does not show such
a good incorporation of the ceilometer measurement. In
the case of water vapor, even less accurate results are ob-
tained using LR,

5. Optimization Results and Pruning

We also tried to optimize the NN from the point of view
of the number of its adaptive parameters (units and con-
nections). We considered a net which used as inputs the
brightness temperature of the seven-channel radiometer,
L or V in output, and, desiring to optimize the net in a
still more critical range of values of L, we restricted the
analysis only to profiles with values of L larger than 0.2
cm.
In Figure 3 the rms error of the retrieval of V and L
versus the number of neurons in the single hidden layer is
plotted. A noise level of 1.0 K has been assumed. The re-

ported results were obtained by averaging over a number
of realizations generated from different initial conditions
and randomly varied in time. It can be noted that for both
cases an optimum number or at least an optimum range
does exist for the number of neurons in the hidden layer.
In fact, if the number of neurons is too small, the input-
output associative capabilities of the net are too weak. On
the other hand, this number should not be too large; oth-
erwise, these capabilities might show a lack of generality
(they would be tailored on the training set). It turns out
that a fair compromise between these two contrasting re-
quirements has to be found. Hence it is not always true
that the more complex the nets are (i.e., the greater the
number of neurons is) the better the results are, which is
of particular interest for hardware design purposes. For
water vapor and for data corrupted with noise of 1.0-K
standard deviation, an optimum range for the number of
hidden units will be 3-7. For integrated liquid, instead,
this study suggests a number of neurons between 2 and
6. We also made some tests with other levels on noise
affecting the data, and we generally noted that the lower
the level of noise is, the larger the value of the optimum
number of neurons is.

As a second step for the optimization of the net we
considered a pruning procedure. According to this kind
of procedure; a network is examined to assess the rel-
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Figure 3. The rms error in the retrieval of (top) vapor and (bottom) liquid with a neural network ver-
sus the number of neurons in the hidden layer. Input is seven brightness temperatures. Radiometric

noise 1s of 1.0 K standard deviation.

ative importance of its weights, and the least important
ones are deleted. Typically, this is followed by some fur-
ther training of the pruned network, and the procedure of
pruning and training may be repeated for several cycles.
Clearly, there are various choices to be made concerning
how much training is applied at each stage, what frac-
tion of the weights is pruned, and so on. In our case,
every time a weight was removed, we trained the new net
as long as was required by the early stopping procedure,
and we continued with the pruning procedure until we re-
alized that new removals involved a significant increase
of the error 1n the retrieval operation. The most important
consideration, however, is how to decide which weights
should be removed. To do this, we need some measure of
the relative importance, or saliency, of different weights.
Results that will be shown have been obtained applying
the simple concept that small weights are less important
than large weights and using the magnitude of a weight

value as a measure of its importance. We also consid-
ered more sophisticated approaches for determining the
saliency of a weight as the optimal brain surgeon [Hassibi
and Stork, 1993], which did not lead to different results.
In Figure 4 we show an example of what happens during
the pruning procedure. Until a certain point, the removal
of the less significant connections is recommended, as it
yields a decrease in the retrieval error. Then, after an os-
cillatory phase, successive removals make the error in-
crease dramatically. The pruning procedure has to be
interrupted before this point. In Figure 5 we show how
the pruning procedure modified the net configuration for
the case where the input vector consisted of the measure-
ments provided by the multifrequency radiometer and the
ceilometer and the output was water vapor. Almost 40%
of connections were eliminated. Note that the pruning
procedure did not sensitively alter the number of connec-
tions of units 1-3, but mainly affected links connected
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Figure 4. The rms error in the retrieval of vapor with a neural network versus the number of removed
connections during the pruning procedure. Input 1s seven brightness temperatures and height of the
cloud base. Radiometric noise is of 1.0 K standard deviation.

to inputs 5-8. In fact, even if the measurements of tem-  that is, the first ones to lose all their connections. In Ta-
perature profile sensitive channels and of the ceilometer  ble 5 the effects of the pruning procedure on the number
can improve the estimation of vapor, most of the informa-  of connections and on the rms error are reported for four
tion needed for the retrieval is provided by channels 1-  cases.

3, which include frequencies commonly chosen for dual- Let us now focus on the overall number of coefficients
channel radiometers. Moreover, if pruning is continued,  that is needed to perform the inversion with the neural al-
input units 5-8 would be the first ones to be canceled out,  gorithm. In the case of Figure 5, it will be given by the
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Figure 5. Neural network for the retrieval of vapor (left) before and (right) after the pruning proce-
dure. Input is seven brightness temperatures and height of the cloud base. Radiometric noise 1s of

1.0 K standard deviation.
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Table 5. Effects of the Pruning Procedure on Four

Different Nets
Input Output AC,% ARMS Error, %
MFR V —19 —1
MFR + C V —39 —3
MFR L —19 0
MFR +C L —4 0

AC and Arms error are the variations of the num-
ber of connections and of the rms error when applying
the procedure. Radiometric noise is of 1.0 K standard
deviation.

number of the surviving connections plus the number of

coefficients that define the bias of all the units. So it will
be 33 + 15 = 48. The number of coefficients that is used
instead by LR is given by the coefficients necessary for
the estimation of the 71, plus the number of coefficients
required for the estimation of vapor from the opacities,
as described 1n section 2. Considering (11) and (12) and
also adding in (12) the term for the ceilometer, we have
96 + 9 = 65 coefficients. It follows that the neural al-
gorithm, besides providing a more accurate estimation,
needs a reduced number of adaptive coefficients to per-
form the retrieval. This remarkable property still holds
with the other pruned networks.

6. Fault Tolerance Analysis

Finally, we analyzed the algorithm from the point of
view of its fault tolerance. To this aim, we simulated a set

of masked fault conditions which would not be detected
by a standard automatic quality control system. In fact,
some thresholds can be set to define acceptable physi-
cal ranges for the brightness temperatures measured by
each channel of the radiometer. The detection of val-
ues outside these ranges can activate a recovery proce-
dure which, for instance, makes use of an alternative al-
gorithm with fewer channels, perhaps off-line, or discards
corrupted data. However, if the fault is such that the out-
put data are within the set ranges, it could not be detected.
One at a time the brightness temperatures of all seven
channels were permanently set to a value within an ac-
ceptable physical range, but very close to either its upper
or lower bound, thus simulating a saturation problem.
The rms errors for the fault simulations are reported in
Table 6. Three different inversion models are considered:
LR, pruned neural network (PNN), and NN. The first

seven rows of the table refer to the rms errors obtained
for the saturation of each channel. The overall averaged
errors for all the considered fault cases are reported in the
bottom row. From this line we see that the degree of fail-
ure 1s smaller with NN than with LR, which means that
the NN algorithm is more robust. We also note that the
pruning procedure does not significantly alter the prop-
erty of fault tolerance of the net; that is, the effectiveness
of the removed connections can also be neglected from
the point of view of information redundancy. A more
detailed analysis shows that for liquid, and with the ex-
ception of the failure of the 51.25-GHz channel, the es-
timation is always better than that achievable using the a
priori information, represented by the standard deviation
value (reported in Table 1). The large error for the failure

Table 6. RMS Error in the Retrieval of V' and L in Case of Fault Simulation in
One Radiometric Channel and Averaged Over All Fault Cases

V RMS Error, cm

L RMS Error,cm

Abbreviations are LR, linear regression; PNN, pruned neural network: and NN,
neural network.

Saturated Channel

Frequency, GHz LR PNN NN LR PNN NN
22.23 3.010 2645 2299 0.0192 0.0225 0.0204
23.87 3.773 2,766 2.739 0.0781 0.0242 0.0224
31.65 5.165 2.427 2.429 0.0687 0.0489 (0.0378
51.25 0.381 0.246 0.244 0.2756 0.1489 0.1526
52.85 0.218 0.725 0.716 0.0604 (.0581 (.0626
53.85 0.479 0.521 0512 0.0199 0.0121 0.0104
54.85 0.250 0.247 0.272 0.0233 0.0226 0.0232
Average 1.896 1.368 1.316 0.0779 0.0482 0.0470
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of the 51.25-GHz channel is due to the particularly wide
dynamic range that the brightness temperature at this fre-
quency spans when liquid varies in the examined inter-
val. For vapor, if the fault occurs 1n one of the last four
channels, the performance degrades shightly, with the rms
error again smaller than the standard deviation value, but
becomes unacceptable for the failure of the water vapor
absorption line channels or of the atmospheric window
one. In fact, as already noted for the pruning procedure
in the previous section, these latter channels are necessary
for a satisfactory retrieval of vapor.

7. Conclusions

The purpose of this study was to investigate the po-
tentiality of NN in estimating the tropospheric integrated
water vapor and integrated liquid water from radiomet-
ric data. Both dual-channel and multifrequency radiome-
ters have been considered, with the optional addition of a
laser ceillometer. Radiometric measurements have been
simulated by applying the MPM propagation model to
different sets of atmospheric profiles. Simulations have
been mainly performed by using statistically generated
profiles. Radiosonde-measured profiles have also been
used to validate results. The NN retrieval algorithm has
been trained and tested on two independent sets, and its
performance has been compared with that of LR trained
and tested on the same two sets. The obtained results
highlight that NN delineates an inversion model capa-
ble of performing the retrieval with good accuracy, with
generally better performance than LR algorithms, partic-
ularly when the presence of nonlinearities, due to high
cloud liquid content, 1s stronger. Beyond that, NN al-
gorithms seem to be more portable and flexible than LR
algorithms, since they are capable of taking advantage of
the tnformation provided by a ceilometer.

We also collected data for the design of an optimum
NN for the proposed inversion problems. It has been
found that an optimum range for the choice of the num-
ber of the neurons in the hidden layer of the considered
network exists. The net must have at least a minimum
size to satisfactorily implement input-output associative
capabilities, but too many neurons tend to reduce its gen-
eralization properties.

Moreover, we examined a pruning procedure for the
removal of nonsignificant connections. At the end of this
procedure the error 1s about the same, or even smaller,
than the one displayed by the net with all connections. In-
spection of the pruned networks shows that the procedure
mainly removes connections to inputs with less informa-
tion content, which, in this case, are temperature profile
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sensitive channels and the ceilometer. The overall num-
ber of the adaptive parameters of the algorithm can even
be smaller than the number required by a LR technique.
Finally, we simulated the existence of undetected faults
in the radiometric system, saturating, one at a time, the
measurements of 1ts channels at the extremes of their
physical range of variability. The retrieval performance
suffers a stronger degradation when faults are present in
the water vapor absorption line channels or in the atmo-
spheric window one. However, the NN is capable of re-
ducing the degradation better than LR, therefore demon-
strating itself to be a more robust inversion algorithm.
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