
A USER-FRIENDLY AUTOMATIC TOOL FOR IMAGE CLASSIFICATION
BASED ON NEURAL NETWORKS

B. Buttarazzi, F. Del Frate* , C. Solimini

Università Tor Vergata, Ingegneria DISP, Via del Politecnico 1, I-00133 Rome, Italy
delfrate@disp.uniroma2.it

KEY WORDS: Neural networks, automatic classification, image processing

ABSTRACT:

In this paper the implementation and the functionality of software created on the basis of neural networks technology is explained.
The program developed allows the user to read an image, to create and to train a neural network, and finally, to classify the entire
image. Using the implemented software it is possible to develop a unique program which processes efficiently all the data. Actually,
one of the thematic principals of this material is the classification of satellite images. Given that an image acquired by the satellite
could be composed by different bands not visible to the naked eye (and therefore not interpretable), an automatic program,
automatically trained, is the ideal method to study the various of information contained in it.

1. INTRODUCTION

The potentialities of neural networks in processing remotely
sensed imagery have been shown in several studies (for
example Benediktsson, 1990; Del Frate et al., 1999). Neural
networks have great capabilities as a pattern recognition method
for multi-source remotely sensed data because of the parallel
nature of the processing. In addition, no prior knowledge is
needed about the statistical distribution of the classes in the data
sources. In particular, it has been shown that multilayer
perceptrons (MLP) may be an efficient alternative to
conventional statistical approaches for automating image
classification. However, the design of neural algorithms is not
trivial and several critical issues have to be properly managed
to build reliable procedures (Bishop, 1995). Indeed, at least four
main steps are necessary for a neural network technique being
implemented for image processing: a) generation of a
statistically meaningful set of training data, b) definition of
network topology, c) training phase, d) application of the
trained net to the entire image. So far, different tools containing
a neural network simulators have been released in the field of
public domain or freeware software. In particular we mention
the SNNS (Stuttgart Neural Network Simulator) software,
which we largely have been using for our research activities.
However SNNS, like most other similar software, being
conceived for general applications rather than being focused on
remote sensing, lets the user to interplay easily with phase b)
and c) allowing, once the training files are available, to build
the most suitable neural network. However, step a) and step d)
are outside the simulator environment. This means that the user
usually has to deal with other software environments and build
his own routines both for generating the training and validation
sets and to apply the designed net to the entire image, with the
difficult result that everything has to be started again if the final
result is not satisfactory.
In this paper we present a new tool based on neural networks
for remotely sensed imagery or, generally, for image
processing, which includes in the same package all the four
aforementioned steps. This means that the user can easily
manage the whole processing in a unique software environment.
In fact, the tool, that we preliminarily call NEURANUS
(NEURAl Network User Simulator), allows the user to interact

with the image for the selection of the training sets, to create the
network topology and perform the training algorithm, and to
realize in real time or near real time (depending on the size of
the image) the results produced on the base of the choices
performed in the earlier steps.

2. THE TOOL

2.1 General characteristics

The tool has been developed within an IDL environment, it is
based on a window (widget) interface and it is rather user-
friendly because very little knowledge is required of the users
about neural network theory. In fact, the tool automatically
implements and executes some actions masking them to
unskilled users, while others aspects can be easily handled and
solved by means of a trial and error approach. As a result, the
tool provides the pixel-based classification of the full image
chosen as input. In figure 1 is shown a diagram that summarizes
the principle choices carried out by the user, from the start to
the finish of the program. We can distinguish among 3 main
fields of interactions between the user and the software: the first
field regards the managing of the files and the generation of the
training patterns. The second field concerns the design of the
neural network. The third one manages the final classification
result. The corresponding functionalities will be described with
more detail in the following paragraphs. From the point of view
of its graphical interface, two main fields can be distinguished
as illustrated in Fig. 2. A two-windows area is basically
dedicated to show the input image and the current
corresponding classified image provided by the net. A control
panel where the user can act on the classification process by
means of buttons or keyboards inputs.

2.2 From the image to the training patterns

The software accepts various types of image formats, in
particular those provided by satellite imagery distributors. Once
the file is selected, it is displayed on the left-hand window and
the users can start selecting the regions of interest by defining
the classes of interest. Figure 3 shows this functionality for a
user choosing the training pixels for the class vegetation.

Figure 1. Block diagram illustrating the possible choices of the user

Once the area has been selected the user may choose to select
another training region for that class or switch to other classes.
When the selection of the training areas is closed, the tool
automatically generates the training set. Before storing the final
patterns, a scaling of the diverse bands is executed, in a way to
obtain all of the input values in a range between [-1,+1], with
(-1) associated with the minimum value and (+1) associated
with the maximum of the ith band. Shuffling techniques, which
mix the created patterns and put them in random order, have
been also included in the software to optimize the successive
training phase.

2.3 The neural network

The design of a suitable neural network algorithm involves the
consideration of two main issues: the definition of a proper
topology for the network and the implementation of the learning
algorithm. As far as the topology of the network is concerned
we decided, at least for this first release of the software, to fix
the MLP as the only possible architecture but to let the user to
choose, in addition to the dimensionality of input and output
layers, the number and the size of the hidden layers in the
network. For the training, two error minimization algorithms
have been considered: the standard backpropagation algorithm
and a fast learning algorithm based on scaled conjugate gradient
(SCG) technique. This is a member of the class of conjugate
gradient methods; these are general purpose second order

techniques that help to minimize goal functions of several
variables. Second order means that such methods use the second

derivatives of the error function, while first-order techniques
like standard backpropagation only use the first derivatives. The
software initializes the weights from small random values. To
create the net, the user inserts the number of the epoch e, which
represents the number of times the training on the input pattern

Figure 2. Principal dialogue window of “NEURANUS”

Figure 2. A training area is selected for the first class
(vegetation). The desired area is the upper left red red polygon.
For the other classes the procedure is the same

is executed. When the training is finished, a graphic that reports
the decrease of the total error as a function of the epoch number
will be written in a dialogue window. Before beginning the
training phase it is possible to insert or not to insert a validation
test. This test consists of selecting some ROIs separately that are
analyzed by the net during the training phase. The utility of the
validation test is that it represents a good measure of the
progress of the training; on the basis of the Back Propagation
theory we know that, at least when finding a local minimum, the
error on the training set always decreases. This does not mean
that a longer training phase is more accurate, on the contrary,
during a long training phase the peculiarities of the input pattern
could be missed, giving more attention to the specific example
with the danger of incorrectly altering the values of the
connection weights of the neurons. However, using this
procedure, it will be possible to obtain a very low error value in
the training phase, but a not very accurate final classification.
Using the validation test on the error graph, the error of the
validation set, which is external to the training set, is printed. In
this way the user can check the progress of the training (Fig. 4).

2.4 The output

The output consists of a classification of the image according to
the classes specified by the user. The result can be accepted,
rejected or improved. Leaving the same topology, the user may
try to improve the results either acting on the number of
learning epochs or adding new training examples. When the
classification result is judged as satisfactory it is possible to
save it in a output image file. A neural network is basically
characterized by the values of the weights for each level; after
the classification it is possible to save also the connection
values obtained from the training algorithm during the learning
phase. The user, after having checked by visual interpretation
the results, could store the net in a directory that has as a name
the date and the hour in which the net has been saved (in this
way it is possible to save many nets, if it is necessary). If one
wants to classify directly an image without the training phase,
the user reloads a previously saved neural network. The utility
of this option is that the user could save as many nets as he
wants, each to classify successfully a given image. When the
training phase is finished, an error log is printed on a specific
file.

2.5 Running the software

We provide now an example of the use of the NEURANUS
software in the sphere of the satellite image interpretation.
We want to classify a satellite image acquired by QuickBird on
the basis of four principal classes: buildings, bare soil,
vegetation, roads. The acquisition area is a part of the “Tor
Vergata“ University campus, located in Italy, South East of
Rome. In addition to the buildings belonging to Tor Vergata
University, private houses are also visible in the image. As
input to the net we want to use the available four bands (R, G,
B, IR). We extracted from the image an overall number of 700
training pixels. For the network topology we choose two hidden
layers both consisting of 12 neurons. The learning was based on
a simple backpropagation algorithm iterated on 900 epochs. In
Fig. 5 we show the software graphic interface after the
processing which lasted about 1 minute although running on
very economical platforms. We see that the result is already
satisfactory at this point, even if it may also be improved acting
on the described functionalities.

3. CONCLUSIONS

A new software package for image classification based on
neural networks has been developed. The package is able to
automatically link the several steps necessary for producing
results with neural networks. Among them we include the
generation of significant training and validation set, the network
design and the application of the net to the entire image.
The software provides its output (the classified image) in near
real time so that restarting the procedure by introducing
modifications in the network topology or in the training phase
does not involve long time consumption. We have shown an
example of application to QuickBird imagery, in particular, its
4 bands have been used. The classification performance,
obtained in few minutes, confirms well the interesting
capabilities of neural networks for this type of processing (Del
Frate et al., 2004). The software can accept (for the moment) a
maximum of 20 bands so it can be considered both for more
traditional missions such as Landsat and to process images
provided by the latest sensors for monitoring land use on board
IKONOS or Proba, or the instruments such as ASTER, which is
deployed on the TERRA satellite.

REFERENCES

Benediktsson, J.A., Swain, P.H., Ersoy, O.K., 1990. Neural
Network Approaches Versus statistical methods in classification
of multisource remote sensing data. IEEE Trans. Geosci
Remote, 28(4), pp. 540 - 552

Bishop, C., 1995. Neural Networks for Pattern Recognition,
Oxford Univ. Press, New York.

Del Frate, F., J. Lichtenegger, D. Solimini, Monitoring urban
areas by using ERS-SAR data and neural networks algorithms,
Proceedings of the International Geoscience And Remote
Sensing Symposium, Hamburg, Germany, 1999.

Del Frate F., G. Schiavon, C. Solimini, Application of neural
networks algorithms to QuickBird imagery for classification
and change detection of urban areas," Proceedings of
International Geoscience And Remote Sensing Symposium,
Anchorage,Alaska, 2004.

SNNS, www-ra.informatik.uni-tuebingen.de/SNNS/

Figure 4. Graph of the error of the input patterns and of the
validation set. It is printed by the program in a suitable
dialogue window

Figure 5. An accurate classification of the “Tor Vergata” University area. We have four classes: vegetation (green),
bare soil (red), roads (blue) and buildings (white).

