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ABSTRACT

This paper reports on the development of Neural Net-
works algorithms for tropospheric ozone retrieval from
ESA-Envisat SCIAMACHY measurements. We present
and discuss some retrieval experiments from UV/VIS
simulated data, based upon a combined sensitivity analy-
sis performed with the aid of the UVSPEC radiative
transfer model and a neural Extended Pruning procedure.
In particular, the role of UV and VIS information budget
is here exploited and critically discussed.
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1. INTRODUCTION

Inferring tropospheric ozone information from satellite
nadir data is a difficult task owing to the poor sensitiv-
ity of the Earth’s radiance to ozone variations in the at-
mospheric lower levels. Most of the existing techniques
to retrieve information about the ozone in troposphere
from space are based on Tropospheric Ozone Residual
(TOR) methodology, that is, stratospheric ozone, mea-
sured eventually by a limb viewing sensor, is subtracted
from the total column ozone content, measured eventu-
ally by a nadir viewing instrument [1, 2, 3]. Another indi-
rect method relies with the integration of the tropospheric
concentration of ozone from pre-inferred ozone profiles
[4, 5]. However, a direct technique, referring only to
nadir measurements, could be more effective because 1)
it requires only data from one instrument, and 2) it would
be possible, ideally, to obtain better horizontal resolu-
tions. Experience on ESA-ERS2 GOME data demon-
strated the suitability of Neural Networks (NNs) schemes
as an alternative method to obtain ozone information with
less time and computational efforts [6, 7, 8, 9]. NNs are
composed of some computational elements called neu-
rons, linked with weighted synapses. In the training
phase, the NN learns the mapping between input and
output vectors by optimizing the synapses’ weights. It
has been demonstrated that, providing that the learning
dataset is representative of the phenomena to be modelled

and a sufficient number of processing units is considered,
NNs, in particular Multi Layer Perceptrons, can approx-
imate any continuous mapping function with the desired
accuracy [10].

In this paper we first present the results obtained by a sen-
sitivity study performed with the LibRadtran suite [11].
The study aims at exploring the relative information bud-
get in UV and VIS spectral ranges, in relation to tro-
pospheric sounding. Secondly we report on the perfor-
mance of the subsequently designed Neural Networks
algorithms, specifically dedicated to tropospheric ozone
retrievals from simulated ENVISAT-SCIAMACHY radi-
ance spectra.

2. HEIGHT RESOLVED SENSITIVITY STUDY
OF THE EARTH’S UV/VIS RADIANCE TO
TROPOSPHERIC OZONE VARIATIONS

To investigate the possibilities and limits of inferring the
tropospheric ozone variations from satellite data we an-
alyzed the variations in Earth’s radiance resulting from
changes of ozone concentration at different tropospheric
heights. We used the UVSPEC radiative transfer model
and the LibRadtran libraries to represent a summer mid-
latitude urban environment. We selected the atmospheric
state by choosing vertical profiles of air density, pres-
sure and temperature, and ozone, oxygen, water vapor,
carbon dioxide and nitrogen dioxide concentrations as in
AFGL midlatitude summer climatological standard. The
tropopause has been considered in the range 14-17 km.
Aerosols optical properties were set as in standard state,
and the absorption lines of the active species have been
modelled with a Correlated K band parametrization. The
solar spectrum was chosen at a resolution of 0.05 nm
(ATLAS PLUS MODTRANspectrum) and then interpo-
lated at the operating wavelength of SCIAMACHY sen-
sor in the interval 220-800 nm. The solar zenith angle
(sza) has been put at a fixed value of 30◦ (mean value of
sza at Rome station overpass), and observation geometry
has been put as an exact nadir measurement (zenith and
azimuth angles equal to 0). The SCIAMACHY sensor
has been three fold modelled: a) the model was forced
to solve the radiation transfer equation at the operating
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Figure 1. Spectral differences (%) of Earth’s radiance
for a doubling of ozone concentration at z=14 km with
respect to standard AFGL midlatitude summer.

SCIAMACHY wavelengths, b) a Gaussian slit function
with a FWHM = 0.3 nm was imposed to simulate the
sensor’s spectral resolution, and 3) a 1% level noise was
added to the modelled radiances. Starting from these
assumptions, the ozone concentrations were systemati-
cally enhanced at the tropospheric heights (0-14 km in
our case) and the changes in backscattered UV/VIS spec-
tra were analyzed. Figure 1 shows the differences (%)
of Earth’s radiance in the spectral range 220-800 nm, for
a doubling of ozone at 14 km with respect to the stan-
dard case. Similar behaviors are reported for a doubling
at each of the tropospheric heights; the maximum sen-
sitivity is in the range 302-307 nm, mainly due to total
ozone variations. A little sensitivity is also reported in
the VIS range (around the interval 550-650 nm, in the
Chappuis bands). To test the overall tropospheric infor-
mation budget, we performed an integration of the men-
tioned differences in the sensible UV and VIS intervals
for enhancements at each height level, calculating some
sort of UV and VIS radiative forcing at fixed observa-
tion angle. The trends of these quantities are reported in
figures 2 and 3. Figure 2 shows also the fitting of UV
forcing with three functionsF(z). The sigmoidal fitting
function seems to approximate with a good accuracy the
trend of these values. Although noticeable dispersion,
VIS forcings, and consequently VIS tropospheric infor-
mation budget, seem to be not negligible. Considering
the observed large noise levels and the need of accurately
knowing surface albedo values, this sensitivity in Chap-
puis ozone bands can be exploited, in combination with
UV information, to retrieve tropospheric ozone informa-
tion from UV/VIS satellite data. An interesting parameter
for our purposes is the ratio of the UV and VIS forcings
above mentioned. In figure 4 the vertical trend of this
quantity for our simulated data is depicted. Qualitatively
the UV/VIS forcing ratio has a linear trend in the first
height levels, and tend to saturate at a fixed value for z
higher than 8 km. This behavior renders this parame-
ter quite interesting for sounding the lower atmospheric
heights, though uncertainties are large.

Figure 2. Dependence of UV radiative forcing at fixed
observation angle for ozone doubling, with height. Some
fitting functions are also represented. For sigmoidal fit
R2 = 0.99.

Figure 3. Dependence of VIS radiative forcing at fixed
observation angle for ozone doubling, with height.

Figure 4. Dependence of UV/VIS forcing ratio with
height. Two different fitting functions for the two height
ranges 0-7 km and 8-14 km are reported.



From this simpleexercise is possible to notice that a) the
retrieval of height resolved information on tropospheric
ozone is quite difficult owing to the low sensitivity, espe-
cially in the lower height levels and the large theoretical
standard deviations, and b) the VIS range can however
have an interesting role for this issue. NNs are particu-
larly intended to work in cases of non-linear dependency
between physical quantities. In some cases, weak depen-
dencies can be found with the aid of NNs. From this
point of view, this sensitivity analysis suggests a possible
employment of such class of algorithms.

3. NNS FOR TOC RETRIEVALS FROM MOD-
ELLED UV/VIS SATELLITE DATA

Our first inversion exercise was referred to Tropospheric
Ozone Column (TCO) retrieval; we plan to investigate
the height resolved retrieval potentiality of our Nets in
the future. We generated 4000 ozone profiles and we cal-
culated correspondingly the Earth’s radiance as described
in the previous section, by means of the UVSPEC model.
The tropopause has been considered in the range 14-17
km. The total ozone was varied between 350 and 250
DU. For part of the profiles, an additional contribution
modelled by an exponential function to simulate ground
production of ozone and some vertical transport has been
considered. These modified profiles take the following
simplified form:

O′3(z) = O3(z) + A · e− z
H (1)

TheparametersA and H were varied in the ranges 1-4 the
first, and 1-5 the second, respectively. A random value
taken from a Gaussian distribution of mean value 0 and
standard deviation 0.3 has been added to each A and H.
These modified profiles and the non modified ones were
also varied at all height levels adding a random value
taken from a Gaussian distribution of mean value 0 and
standard deviation the 50% of the considered concentra-
tion value. These operations have been made to generate
a synthetic database of profiles and spectra, trying also
to simulate, at some extent, cases of photochemical in-
duced ozone generation in midlatitude summer urban en-
vironment. It has to be noticed that this dataset prepara-
tion doesn’t pretend to model specific pollution phenom-
ena with accuracy but is intended only to provide an ex-
tended dataset to investigate the inversion potentiality of
our NNs.

The wavelength selection followed upon the sensitivity
study of section 2. Our first experiment was made con-
sidering only the UV band; in a second stage we consid-
ered also the VIS band. We will pass to a discussion on
the two approaches.

Figure 5. TOC NNs scheme. With NN1 and NN2 we in-
tend that input radiance data is without or with a 1%
additional noise.

3.1. Neural inversion with the UV spectral range

For this first approach two ranges were selected: the
range of about 305.75-306.85 nm (NN UV1) and the
range of about 322.05-324.30 nm (NN UV2). Both these
bands are in the range of UV sensitivity resulting from the
analysis of section 2; band NN UV1 in particular is in the
interval of maximum sensitivity (see figure 1). The over-
all dataset has been split into two ensembles: the training
and the test dataset. A crucial point of NNs development
is the scaling of the input and output vectors to fit the op-
timal dynamical interval the neurons. Input data, in par-
ticular, needed care owing to the large intrinsic dynamics.
From simulated Earth’s radiance spectra it can be noticed
that radiance values vary over more of an order of magni-
tude from NN UV1 to NN UV2. For this reason we per-
formed a non linear scaling of the input vectors (bringing
data in the interval ranging between -1 and 1), using the
following expression 2.

NNinput(RADIANCE) = b · ln
(
− a

RADIANCE
− 1

)
(2)

with a andb to besearchedto fit the radiance values of the
training dataset. It can be noticed how dynamics gained
in the two regions of interest (near 0 for NN UV1 and near
55-60 mW/(m2sr) for NN UV2). NNs have been tested
also with input vector linear scaling; the accuracy results
greatly improved with our non linear scaling. We chose
as the output vector the TCO, calculated as the integra-
tion of the ozone concentration of our synthetic profiles
in the range 0-14 km; output values have been linearly
scaled to be in the range 0-1. We tried to invert the mod-
elled spectra with (NN2) and without (NN1) the adding
of a 1% noise to the radiance values. The first exercise
can be viewed as an inversion of the radiative transfer
model dedicated to TCO retrievals, while the second can
be considered to take into account some source of noise
due to UV/VIS sensor measurements. For both the ap-
proaches we chose to interpose a hidden layer between
the input and the output. A schematic rationale of the
NNs is showed in figure 5. We chose the dimension of
the hidden layer by analyzing the retrieval error of the
test dataset in function of the number of hidden neurons.
We found that a minimum error value can be found for



Figure 6. Scatterplot of TOC NN1 retrievals with true
data (output vectors) for test datasets. Pearson coefficient
value is reported.

Figure 7. Scatterplot of TOC NN2 retrievals with true
data (output vectors) for test datasets. Pearson coefficient
value is reported.

10 and 27 neurons, respectively for NN1 and NN2. The
learning function chosen was the Scale Conjugate Gra-
dient (SCG) function, that allows shorter learning times
with respect to the standard backpropagation scheme. In
figures 6 and 7 the test datasets’ retrievals are showed in
a scatterplot that allows the comparison with thetrueval-
ues. The Pearson coefficients for the two comparisons
are respectively 0.96 and 0.75. Such magnitude of cor-
relation parameters, in relation to the little sensitivity of
the Earth’s radiation to tropospheric ozone, can be con-
sidered a surprisingly good result of NNs schemes.

3.2. Neural inversion with the UV/VIS spectral
range

In the second stage of our work, we selected 28 UV/VIS
wavelengths according to an extended pruning procedure
performed as described in [9]. These selected wave-
lengths followed the underlying physics, with a high den-
sity in the UV and a distribution in the VIS strongly
linked to the Chappuis band features. A schematic ra-

Figure 8. TOC UV/VIS NN rationale. The distribution of
the selected wavelengths is depicted by the small figure
in the first box; brighter areas are referred to spectral
regions with higher densities (in terms of the number of
selected wavelengths per nm).

Figure 9. Scatterplot of TOC NN UV/VIS retrievals with
true data (output vectors) for test datasets. Pearson coef-
ficient value is reported.

tionale of the NN is showed in figure 8. The NN obtained
showed a surprisingly good retrieval power, enhancing of
over 10% the correlation coefficient of the retrieved and
the test TOC, with respect to UV-only case, on a test set
of 1000 input-output pairs. In figure 9 the scatterplot of
these data is reported.

3.3. Conclusions

In this paper we have reported some experiments on
NNs based inversions of simulated ESA-Envisat SCIA-
MACHY UV/VIS radiance data, based upon a sensitivity
study performed by means of the LibRadtran suite and
of a complementary Extend Pruning process. The Nets
demonstrated encouraging retrieval capabilities. In par-
ticular it was shown that the use of the VIS radiation in
the Chappuis band can improve the retrieval capabilities
of the NNs. Even if the results need more investigation,
we’d like to stress that the procedure can easily be ex-
tended to the spectral measurements of the OMI instru-



ment, carriedby the EOS-Aura platform; in this case, the
improved horizontal resolution of the sensor could help
in monitoring and understanding a number of local and
short-range air pollution phenomena.
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