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a INRA-Unité de Bioclimatologie, BP 81, Villenave d’Ornon Cedex 33883, France
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Abstract

Surface soil moisture is a key variable used to describe water and energy exchanges at the land surface/atmosphere interface. Passive

microwave remotely sensed data have great potential for providing estimates of soil moisture with good temporal repetition on a daily basis

and on a regional scale (f 10 km). However, the effects of vegetation cover, soil temperature, snow cover, topography, and soil surface

roughness also play a significant role in the microwave emission from the surface. Different soil moisture retrieval approaches have been

developed to account for the various parameters contributing to the surface microwave emission. Four main types of algorithms can be

roughly distinguished depending on the way vegetation and temperature effects are accounted for. These algorithms are based on (i) land

cover classification maps, (ii) ancillary remote sensing indexes, and (iii) two-parameter or (iv) three-parameter retrievals (in this case, soil

moisture, vegetation optical depth, and effective surface temperature are retrieved simultaneously from the microwave observations).

Methods (iii) and (iv) are based on multiconfiguration observations, in terms of frequency, polarization, or view angle. They appear to be very

promising as very few ancillary information are required in the retrieval process. This paper reviews these various methods for retrieving

surface soil moisture from microwave radiometric systems. The discussion highlights key issues that will have to be addressed in the near

future to secure operational use of the proposed retrieval approaches.
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1. Introduction

Surface soil moisture is a key variable in describing the

water and energy exchanges at the land surface/atmosphere

interface. In hydrology and meteorology, the water content

of the surface soil layer (corresponding roughly to the 0–5

cm top soil layer) is an important variable to estimate the

ratio between evaporation and potential evaporation over

bare soils, to estimate the distribution of precipitation

between runoff and storage, and to compute several key

variables of the land surface energy and water budget

(albedo, hydraulic conductivity, etc.). Also, by assimilating

time series of surface soil moisture data in Soil–Vegeta-

tion–Atmosphere Transfers (SVAT) models, total moisture

stored in the root zone can be estimated (Calvet, Noilhan, &

Bessemoulin, 1998).
ed.
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Previous research has shown that passive microwave

remote sensors can be used to monitor surface soil moisture

over land surfaces (Eagleman & Lin, 1976; Jackson,

Schmugge, & Wang, 1982; Schmugge, Gloersen, Wilheit,

& Geiger, 1974; Shutko, 1982; Van de Griend & Owe,

1994a; Wang, Shiue, Schmugge, & Engman, 1990). How-

ever, the effects of vegetation cover (Ferrazzoli et al., 1992;

Jackson & Schmugge, 1991; Wigneron, Calvet, Kerr,

Chanzy, & Lopes, 1993), soil temperature (Chanzy, Raju,

& Wigneron, 1997; Choudhury, Schmugge, & Mo, 1982;

Van de Griend, 2001), snow cover (Mätzler, 1994; Pull-

iainen & Hallikainen, 2001), topography, and soil surface

roughness (Mo & Schmugge, 1987; Wang, O’Neill, Jack-

son, & Engman, 1983; Wigneron, Laguerre, & Kerr, 2001)

also play a significant role in the microwave emission from

the surface. Other parameters such as soil texture, bulk soil

density, and atmospheric effects (Njoku & Entekhabi, 1996)

have a smaller (second-order) influence but should also be

accounted for.

Many approaches have been developed to retrieve soil

moisture from microwave radiometric measurements where

each of the various effects contributing to the surface

microwave emission is taken into account. Until recently,

very few studies have investigated the effects of topography

that may have a considerable effect, especially in high

mountain regions (Mätzler & Standley, 2000). Also, the

effect of surface roughness is difficult to establish, espe-

cially when dealing with inhomogeneous surface elements,

and is therefore usually derived from retrospective data by

model calibration using surface roughness as an optimiza-

tion parameter. On relatively large spatial scales, however,

these effects are generally found to be small (Jackson et al.,

1999; Jackson, Le Vine, Swift, Schmugge, & Schiebe,

1995; Van de Griend & Owe, 1994b). Therefore, the surface

soil moisture retrieval approaches can be mainly distin-

guished depending on the way two key variables, vegetation

and surface temperature, are accounted for in the retrievals.

Although passive microwave radiation penetrates vege-

tation canopies, the effects of vegetation have to be

accounted for because the vegetation absorbs and reflects

part of the microwave emission from the soil surface. The

different approaches used to account for effects caused by

vegetation cover may be broken down into three main

categories:

(i) Statistical techniques: In general, these techniques are

based on regression analysis. For each land cover type/

biome or group of pixels (for spaceborne observations),

linear relationships between measured brightness tem-

perature TB and surface soil moisture are established

(Ahmed, 1995; Choudhury, Tucker, Golus, & New-

comb, 1987; Teng, Wang, & Doraiswamy, 1993; Theis,

Blanchard, & Newton, 1984). The slope and intercept

of the regression line are then analyzed in terms of land

cover variables, which can be estimated from ancillary

data.
(ii) Forward model inversion: In this approach, a model is

used to simulate remotely sensed signatures (output) on

the basis of land surface parameters (input). Inversion

methods are developed to produce an ‘‘inverse model’’

in which outputs are the relevant land surface variables.

The inversion methods are usually based on an iterative

minimization routine of the root mean square error

(RMSE) between forward model simulations and

observations. Other methods suggest the use of look-

up table (LUT) or neural network (NN).

(iii) Explicit inverse: Explicit inverse of the physical process

can be built by transferring input (remote sensing

measurements) into output (land surface parameters). In

most studies, neural networks are used to create this

explicit inverse function.

The second main surface variable that should be

accounted for in the retrieval method is surface temperature.

Surface temperature (Ts) is necessary to estimate surface

emissivity (es) from remotely sensed brightness temper-

atures (TB = Tses). However, if soil temperature varies with

depth and differs from the temperature of the vegetation, the

‘‘effective’’ temperature (Teff) of all emitting elements is

required. In most studies, Ts or Teff is derived from ancillary

remote sensing observations in the thermal infrared or

microwave domain, from existing climate data (Owe, Van

de Griend, & Chang, 1992) or from atmospheric models.

Recently, the possibility of simultaneously retrieving ‘‘effec-

tive surface temperature’’ with two additional parameters,

vegetation characteristics and soil moisture, has been dem-

onstrated, mainly from simulated data sets (Davis, Chen,

Hwang, Tsang, & Njoku, 1995; Njoku & Li, 1999;

Wigneron, Waldteufel, Chanzy, Calvet, & Kerr, 2000).

This paper will review these different approaches to the

problem of soil moisture retrieval from microwave radio-

metry. The first generation of soil moisture retrieval method

has been developed for airborne observations with a mono-

configuration sensor (i.e., one polarization/frequency chan-

nel and nadir view angle) (Jackson et al., 1995; Schmugge

& Jackson, 1994; Wang et al., 1990). When only one

measurement is available, soil moisture only can be

retrieved from the observations. New methods have been

proposed recently in preparation for new sensor systems

(AMSR-E and AMSR, SMOS, etc.) with multiconfiguration

capabilities: multifrequency, dual-polarization or polarimet-

ric, multiangular observations. For instance, the Advanced

Microwave Scanning Radiometer (AMSR-E and AMSR)

instruments planned to be launched on the Earth Observing

System (EOS) Aqua satellite and on the Japanese Advanced

Earth Observing Satellite II (ADEOS-II) will provide dual-

polarization and multifrequency data (6.9, 10.7, 18.7, 23.8,

36.5, and 89 GHz) (Njoku & Li, 1999). The Soil Moisture

and Ocean Salinity (SMOS) mission based on an innovative

two-dimensional aperture synthesis concept will also pro-

vide dual-polarization L-band passive microwave observa-

tions in multiangular views (Kerr, Waldteufel, Wigneron,
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Font, & Berger, 2001). In methods based on multiconfigu-

ration measurements, other parameters such as vegetation

attenuation effects and surface temperature can be retrieved

concurrently to soil moisture (methods referred to as N-

parameter retrievals). Therefore, less ancillary information is

required in the retrieval process.

In this paper, the physical basis for the remote sensing of

soil moisture and for retrieval methods is presented first.

Then, most significant results obtained from statistical

analyses, forward model inversion from monoconfiguration

measurements, and two- and three-parameter retrievals are

reviewed. However, the use of these latter approaches,

which are very promising, requires a good parameterization

of the dependence of the vegetation attenuation properties

on the configuration parameters (frequency f, polarization P,

and incidence angle h). The discussion highlights this key

issue that will have to be addressed in the near future to

secure operational use of the retrieval algorithms proposed

in the literature for the new sensor systems.
2. Physical basis of the land surface microwave emission

In this paper, we shall focus on the use of low-frequency

(f 1–6 GHz) measurements for two main reasons: (1) low-

frequency radiations are better suited for soil moisture

monitoring since they can more easily go through the

vegetation layer to sense moisture; and (2) at higher fre-

quencies ( f >f 15 GHz), the corrections of the atmospheric

effects that are required strongly limit the all-weather

capabilities of the microwave instruments. The physical

basis of the microwave emission from bare soil and vege-

tation-covered areas is presented in this section.

2.1. Soil emission

It has been demonstrated that passive microwave meas-

urements at frequencies as low as 1.4 GHz only measure

soil moisture (wS) at shallow soil depths (approximately 2–

5 cm) (Newton, Black, Makanvand, Blanchard, & Jean,

1982; Raju et al., 1995). This is due to the fact that the soil

moisture dependence of the transmission coefficient across

the air – soil interface predominates the soil moisture

dependence of the total energy originating from the soil

volume (Newton et al., 1982). Therefore, for rather smooth

soil surfaces, the soil microwave emissivity (eP) can be

approximated from the soil reflectivity (CSp

* ) of a plane

surface:

eP ¼ 1� CSp
* ¼ 1� jRPðeS; hÞj2 ð1Þ

The reflection coefficient (RP) can be calculated from the

soil dielectric permittivity (eS) and from the view angle h,
using the Fresnel equations [RP=RP(eS,h)]. For soils, eS is

mainly determined by the soil moisture content and, to a
somewhat smaller extent, by soil textural and structural

properties. Several models have been developed for the

low-frequency range (1–20 GHz) to relate the soil permit-

tivity to soil parameters such as soil moisture, soil salinity,

bulk density, percent of sand and clay, etc. (Dobson, Ulaby,

Hallikainen, & El-Reyes, 1985; Wang & Schmugge, 1980).

From Eq. (1), the emissivity of a smooth soil can be

related to soil moisture through the variable eS and to view

angle h. However, in general, several other factors should

also be taken into account. First, surface roughness enhan-

ces soil emission. Moreover, microwave radiation slightly

penetrates into the ground and, therefore, volume effects

influence soil microwave emission.

For most applications, a simple approach based on two

best-fit parameters, hSoil and QSoil, is probably adequate

(Wang & Choudhury, 1981). The p-polarized soil reflectiv-

ity CSp
is given by:

CSp ¼
�
ð1� QSoilÞCSp

*þ QSoilCSq
*
�
exp

�
� hSoilcos

NSoilðhÞ
�

ð2Þ

where CSp

* is the soil specular reflectivity (CSp

* =jRP(eS,h)j2).
For low-frequency bands, NSoil can be set to zero (Wang et

al., 1983), and it was found that QSoil could probably be

disregarded at L-band (Wigneron et al., 2001). Therefore, at

L-band, combining Eqs. (1) and (2) results in:

eP ¼ 1� CSp
* expð�hSoilÞ ð3Þ

This equation will be referred to as the h-parameter

correction for soil roughness effects. The volumetric soil

moisture wS can be considered as a monotonically decreas-

ing function of the emissivity eP of bare soil. If the soil

roughness conditions do not change much during the

observations, which is generally the case, this function can

be well approximated by a linear equation of the type

(Eagleman & Lin, 1976; Jackson & O’Neill, 1987; Newton

et al., 1982; Schmugge et al., 1974; Wang & Choudhury,

1981; Wang et al., 1983):

eP ¼ a0 � a1wS ð4Þ

This simple relationship proves to be valid under a large

range of soil moisture and roughness conditions.

2.2. Emission of vegetation-covered areas

When a vegetation layer is present over the soil surface,

it attenuates soil emission and adds its own contribution to

the emitted radiation. At low frequencies, these effects can

be well approximated by a simple radiative transfer (RT)

model, hereafter referred to as the s�x model. This model

is based on two parameters, the optical depth s and the

single scattering albedo x, which are used to parameterize,

respectively, the vegetation attenuation properties and the

scattering effects within the canopy layer. Using the s�x



Fig. 1. Retrieved values of bP [ p= v (o) or p= h (4)] vs. day of year

(h=40j), during the vegetation cycle of a wheat crop (Pardé et al., submitted

for publication).
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model, global emission from the two-layer medium (soil and

vegetation) is the sum of three terms: (1) the direct vegeta-

tion emission, (2) the vegetation emission reflected by the

soil and attenuated by the canopy layer, and (3) the soil

emission attenuated by the canopy. If we assume that soil

(TSoil) and vegetation (TV) temperatures are approximately

equal (Tsc TSoilc TV), the canopy brightness temperature

TbP ( p =V or H for the vertical or horizontal polarization)

can be estimated as a function of the attenuation factor cP,
the soil reflectivity CSp

, the single scattering albedo xP, and

the surface temperature Ts (Wigneron, Chanzy, Calvet, &

Bruguier, 1995):

TbPcePTs ð5Þ

where the emissivity eP is given by:

eP ¼ ð1� xPÞð1� cPÞð1þ cPCSpÞ þ ð1� CSpÞcP ð6Þ

The attenuation factor cP can be computed from the optical

depth sP as:

cP ¼ expð�sP=coshÞ ð7Þ

Several studies found that sP could be linearly related to the

total vegetation water content WC (kg/m2) using the so-

called bP parameter (Jackson & Schmugge, 1991):

sP ¼ bPWC ð8Þ

The bP parameter can be calibrated for each crop type or

for large categories of vegetation (leaf-dominated, stem-

dominated, and grasses). At 1.4 GHz, a value of 0.12F 0.03

was found to be representative of most agricultural crops.

More recent works showed that bP also depends on the

gravimetric water content of vegetation (Le Vine & Karam,

1996; Wigneron, Calvet, & Kerr, 1996). Also, it was found

that bP depends on polarization and incidence angle, espe-

cially for vegetation canopies with a dominant vertical

structure (stem-dominated canopy as cereal crops) (Ulaby

& Wilson, 1985; Van de Griend, Owe, de Ruiter, &

Gouweleeuw, 1996). For instance, Wigneron et al. (1995)

proposed a simple formulation using a polarization correc-

tion factor Cpol to parameterize this effect and compute the

optical depth for cereal crops:

sV ¼ sH½cos2h þ Cpolsin
2h�; sHðhÞ ¼ constant ð9Þ

Recent results illustrating the large changes in the value

of bP as a function of polarization and crop phenology are

given in Fig. 1 where retrieved values of bP are plotted vs.

day of year, during the vegetation cycle of a wheat crop

(Pardé et al., submitted for publication). In this figure, the

error bars were computed by considering the uncertainties

associated with the ground-based measurements of surface

soil moisture, vegetation water content, and surface temper-

ature, and the single scattering albedo xP was set equal to
zero as forward scattering effects are dominant within the

wheat canopy.

From Eqs. (5) and (6), the canopy brightness TbP can be

computed as a function of three main surface variables of

interest: surface soil moisture wS (through its effect on soil

reflectivity CSp
), vegetation optical depth sP (which can be

related to WC and canopy type), and canopy temperature TC.

Therefore, several measurement data are required to dis-

criminate among the effects of these three variables. These

data can be obtained from measurements for several con-

figuration systems of the sensor in terms of polarization,

view angle, and frequency. As for polarization effects, the

microwave signatures of soil and vegetation exhibit distinct

responses. There is a large polarization difference (PD) in

the emission from bare soils (TbHbTbV) when view angle h
exceeds 30j. As vegetation effects increase, the emission is

more and more depolarized until TbHc TbV for a dense

vegetation cover. This property has been often used to

monitor the vegetation development using polarization

indices. The most common indices are the polarization

difference and the Microwave Polarization Difference Index

(MPDI) (also referred to as the polarization ratio, PR).

These indices are defined as follows:

PD ¼ TbV � TbH ð10Þ

MDPI ¼ TbV � TbH

0:5ðTbV þ TbHÞ
ð11Þ

These polarization indices decrease with increasing veg-

etation biomass and/or vegetation cover fraction. As the

MPDI is a ratio of brightness temperatures, it is less

sensitive to the effects of variable surface temperature than

the polarization difference. Correlation between these indi-

ces and vegetation density has been demonstrated by several

studies (Choudhury, 1989, 1990; Justice, Townshend, &

Choudhury, 1989; etc.).
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Also, multifrequency measurements (Ferrazzoli, Guer-

riero, Paloscia, & Pampaloni, 1995a) can be useful to

distinguish soil contribution from that of vegetation. At L-

band ( ff 1.4 GHz), soil contribution is the dominant term

in Eq. (6) for most low vegetation covers (cc 1). As

frequency increases, the screening effect of vegetation,

namely (i) the attenuation of soil contribution and (ii) the

vegetation’s own contribution, increases (c! 0). Thus, at 5

GHz, for a low vegetation cover, soil and vegetation

contributions are close in magnitude, while at 10 GHz, the

vegetation effects become dominant.

Similar ‘screening effects’ can be obtained from multi-

angular measurements (Chanzy, Schmugge, et al., 1997)

since the attenuation effects increase as view angle increases

[cP= exp(� sP/cosh)]. The interest of using multiangular

and/or multifrequency information was used in several

retrieval studies, as shown in the following sections of this

review.
3. Methods

We will distinguish three main soil moisture retrieval

approaches in this review: (i) statistical techniques, (ii)

forward model inversion, and (iii) use of neural networks.

The use of other techniques, such as data assimilation, is

also briefly presented.

3.1. Statistical approaches

A large number of algorithms are used to retrieve

information on land surfaces from remote sensing informa-

tion by directly manipulating the measured signals through

empirical relationships of the type:

xj ¼ FjðTB;1; TB;2; . . .TB;nÞ

where TB,i corresponds to measurements made for various

configurations of the sensor, in terms of incidence angle h,
polarization, or frequency; and xj is a relevant land surface

variable. For passive microwave measurements over land,

two different statistical approaches may be distinguished:

– Classification based on dual- or multiconfiguration

observations. For instance, based on observations of

Special Sensor Microwave/Imager (SSM/I) data and

brightness temperature thresholds, various classification

rules have been developed to distinguish among dense

vegetation, forest, standing water, agricultural fields, dry

and moist bare soil, etc. (Hallikainen, Jolma, & Hyypä,

1988; Neale, McFarland, & Chang, 1990). However,

until this time, no study is known to have directly

addressed the problem of classifying soils with different

water content, although many studies have reported

spatial relationships between brightness temperature or

emissivity and surface moisture.
– Surface soil moisture is statistically related to a

combination of microwave emissivities and vegetation

microwave indices, which are used to correct for the soil

roughness and vegetation effects. These methods are

reviewed extensively for bare soil and vegetation-

covered surfaces in Section 4.1.

3.2. Forward model inversion

The problem of forward model inversion to retrieve land

surface variables could be defined as follows: a radiative

transfer model U is used to simulate the microwave radio-

metric measurements (TB)i (i = 1,. . .,q, corresponding to

measurements made for various configurations of the sensor

in terms of incidence angle h, polarization, or frequency f ),

as a function of the land surface characteristics xj
( j = 1,. . .,p) (so-called ‘‘state variables’’) (Verstraete, Pinty,

& Myeni, 1996):

ðTBÞi ¼ Uiðx1; x2; . . . ; xp; s1i; s2i; . . . ; sriÞ þ ei
for i ¼ 1; . . . ; q ð12Þ

where ski (k = 1,. . .,r; i= 1,. . .,q) stands for the configuration
parameters, which define the conditions of the observations,

and ei is the residual error between the simulated and

measured brightness temperature values. Inverting the

model consists of finding the set of land surface variables

xj ( j = 1,. . .,p) that provides the minimum value of the

residual errors ei. Therefore, the retrieval methodology

based on forward model inversion requires two main steps:

(1) selection of a forward model (Ui), and (2) selection of a

method for inversion by minimizing the residual error ei.
Both steps are specific for a certain retrieval problem and

will be discussed in Sections 3.2.1 and 3.2.2.

3.2.1. Forward modeling

The different forward modeling approaches have been

analyzed in several books and papers (Chanzy & Wigneron,

2000; Kerr & Wigneron, 1995; Tsang, Kong, & Shin, 1985;

Ulaby, Moore, & Fung, 1981–1986), and only a brief

description will be made in this review. Forward models

may be classified into three main categories: (1) nonpara-

metric data-driven models; (2) parametric data-driven mod-

els, where model parameters are adjusted by comparison

with observations; and (3) physical models, which include a

physical description of the radiative transfer processes and

where the model parameters can be directly related to the

land surface characteristics.

Most of the studies using nonparametric data-driven

models (approach (1)) are based on statistical regression

analysis or NN models (Liou, Liu, & Wang, 2001). The

models used in approach (2) require a priori knowledge of

the functional form of the process that is being modeled.

The model parameters are generally ‘‘best-fit’’ parameters,

computed by minimizing the squared error between the
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observations and the outputs of the model. In a rather low-

frequency range (1–10 GHz), most of the retrieval studies

are based on the s�x model, which was described in

Section 2 of this paper. Another simple two-parameter

model was developed by Mätzler (2000), but it has not

been evaluated yet in soil moisture retrieval studies.

More complex models (approach (3)) account for multi-

ple scattering effects that become important when the fre-

quency exceeds a few gigahertz. In these approaches, the

canopy can be modeled as a continuous medium (Calvet,

Wigneron, Chanzy, & Haboudane, 1995; Calvet, Wigneron,

Mougin, Kerr, & Brito, 1994; Tsang & Kong, 1980;

Wigneron, Kerr, Chanzy, & Jin, 1993) or as a discrete

medium containing randomly distributed discrete scatterers

characterized in terms of size, shape, density, and distribu-

tion of orientation (Ferrazzoli & Guerriero, 1995; Ferrazzoli,

Guerriero, Paloscia, & Pampaloni, 1995b, Ferrazzoli,

Wigneron, Guerriero, & Chanzy, 2000; Karam, 1997;

Wigneron et al., 1993). These models require many input

parameters and cannot be used easily to implement retrievals

of surface characteristics.

3.2.2. Statistical inversion approach (SIA)

Once the forward modeling approach has been selected, a

method for ‘‘inverting’’ the model should be defined. A very

common algorithm to invert a forward model is the stat-

istical inversion approach. The principle is to search for

input parameters (x1, x2, . . ., xp), consisting of the relevant

geophysical parameters that minimize the squared error

between the brightness temperature as measured from space

(TB)i and the actual outputs of the model Ui (x1, x2, . . ., xp).
Thus, the inversion problem is (Pulliainen, Kärnä, & Halli-

kainen, 1993):

Minimize Gðx1; x2; . . . ; xpÞ

¼
Xq

i¼1

1

2r2
i

ð/iðx1; x2; . . . ; xp; s1i; s2i; . . . ; sriÞ � ðTBÞiÞ
2

þ
Xp

j¼1

1

2k2j
ðxj � xjVÞ2 ð13Þ

where G(x1, x2, . . ., xp) = cost function; and (a priori infor-

mation) xjV= average value of the jth model parameter;

kj = standard deviation of the jth model parameter value;

and ri= standard deviation of measurement noise of the ith

channel.

Many different iterative minimization algorithms (quasi-

Newton, Levenberg–Marquardt, Simplex, etc.) are available

to minimize the cost function G(x1, x2, . . ., xp) (Press, Flan-
nery, Teukolsky, & Vetterling, 1986).

3.3. Neural networks and explicit inversion

Another alternative approach to the SIA is the use of a

neural network. First, an appropriate set of input–output
data is generated, using the forward model Ui. Then a copy

of the forward model (U i*) is made by training the NN on

the set of data. Hence, the NN is able to capture very

complex and nonlinear relationships within its self-organiz-

ing connections. The advantage of the NN technique is that

once the NN has been trained, parameter inversion can be

accomplished quickly. In the field of microwave radiometry,

NN has been applied to the estimation of snow character-

istics (Davis, Chen, Tsang, Hwang, & Chang, 1993; Tsang,

Chen, Oh, Marks, & Chang, 1992), surface wind speed over

the ocean (Stogryn, Butler, & Bartolac, 1994), clouds and

precipitation (Li, Vivekanandan, Chan, & Tsang, 1997), etc.

Another simple way to invert a forward model using NN

is to train an inverse model by reversing the roles of the

inputs and outputs: the input nodes of the NN are the

measured brightness temperature and the output nodes are

land surface parameters. This method, known as explicit

inversion, is widely used in remote sensing (Li et al., 1997).

Unfortunately, the forward model is characterized by ‘many-

to-one mapping’ (i.e., a set of measurements cannot be

uniquely related to environment variables). Several studies

expressed concerns about the fact that the explicit inversion

approach may lead to wrong results when the inverse image

of the forward model is not convex (Davis et al., 1993; Li et

al., 1997) and that the iterative constrained inversion tech-

nique was found to be more appropriate than explicit

inversion to deal with the many-to-one mapping.

3.4. Other techniques

Assimilation approaches (Kalman filter optimal estima-

tion and variational data assimilation) have been applied to

the problem of retrieving near-surface soil moisture and

temperature profile from time series of radiobrightness

observations. Several studies have shown that modeling

the heat and mass flow within the soil can be used to derive

information about the soil water content profile from time

series of microwave brightness temperatures. For instance,

the feasibility of using brightness temperature measure-

ments (microwave and infrared channels) to solve the

inverse problem associated with soil moisture and heat

profile was demonstrated by Entekhabi, Nakamura, and

Njoku (1994) over bare soils. Burke, Gurney, Simmonds,

and Jackson (1997) retrieved soil hydraulic properties from

time series of measured brightness temperatures over agri-

cultural fields. Sequential and variational data assimilation

approaches have been tested on experimental bare soil

(Galantowicz, Entekhabi, & Njoku, 1999) and vegetation

(Calvet et al., 1998; Wigneron, Chanzy, Calvet, Olioso, &

Kerr, 2002) data sets and on a series of synthetic experi-

ments based on the Southern Great Plains (SGP) 1997

Hydrology Experiment (Reichle, Entekhabi, & McLaughlin,

2001). Theses studies, which required continuous series of

measurements and which were based on the coupling

between Soil–Vegetation–Atmosphere Transfers models

and radiative transfer models, are not reviewed here.
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3.5. Discussion

Statistical and NN approaches are simple and efficient

methods for demonstrating the capabilities of passive micro-

wave observations for monitoring soil moisture. However,

these methods have some limitations as they can only be

used for the regions and the time period during which they

were calibrated. In other words, as these methods are ‘site-

specific,’ they are not applicable for monitoring special

events or trends, which are out of the domain of calibration.

To address all these aspects, approaches based on forward

model inversion from SIA are often found to be more

efficient than conventional statistical algorithms (Pulliainen

et al., 1993). In these approaches, vegetation effects are

generally parameterized using the s�x model (See Section

2). At L-band, the parameter x is often set at a constant value

and, therefore, characterizing vegetation effects is limited to

the determination of the optical depth s only. The s�x
model inversion can be based on mono- or multichannel

microwave observations. When monoconfiguration meas-

urements are available, soil moisture only can be retrieved.

Conversely, when multiangular and/or multifrequency dual-

polarization observations are available, several surface var-

iables can be retrieved. Two-parameter retrievals correspond

to the case when both soil moisture and vegetation optical

depth are retrieved simultaneously. In that case, the effective

surface temperature is usually derived from thermal infrared

or high-frequency microwave measurements. In some stud-

ies, three parameters (soil moisture, vegetation optical depth,

and effective surface temperature) are retrieved simultane-

ously. They are referred to as ‘‘three-parameter retrievals.’’

Most significant results obtained from these different meth-

ods are reviewed in the following sections.
4. Soil moisture retrievals based on nonparametric

models

4.1. Statistical approaches

Over bare soils, a simple linear relationship between soil

moisture and emissivity (Eq. (4)) proves to be valid under a

large range conditions, provided that sufficient ground data

are available to calibrate the coefficients a0 and a1. Note that

sensitivity to soil moisture (i.e., the absolute value of the

slope a1) was generally found to increase as frequency and

surface roughness effects decreased (Choudhury, Schmugge,

Chang, & Newton, 1979; Newton et al., 1982; Wang et al.,

1983). Thus, soil moisture can be retrieved by inverting the

above linear equation. Note that in the linear Eq. (4), the

normalized brightness temperature TBN (TBN =TB/Ts, where

Ts is an estimate of the surface temperature) often replaces

the emissivity.

Over vegetation-covered areas, the soil moisture retrieval

algorithms based on regression techniques differ primarily

in the way they account for the effects of vegetation on the
relationship between TB and soil moisture. Several studies

have shown that, for a given level of the vegetation biomass,

the relationship TB vs. soil moisture wS can be satisfactorily

approximated by a linear function for soil moisture content

between 0.1 and 0.4 m3/m3 (Theis et al., 1984; Ulaby,

Razani, & Dobson, 1983; Wang, 1985; Wang et al.,

1982). The slope and intercept of the relationship are a

function of the vegetation characteristics (canopy type,

biomass, or water content) and of the viewing configuration

(in terms of view angle, polarization, frequency).

Jackson et al. (1982) suggested the principle of a stat-

istical retrieval approach using a vegetation index to quan-

tify the effects of the vegetation cover. The vegetation index

can be computed either from passive microwave observa-

tions (vegetation index: PD, MPDI, etc.) or from data

acquired by optical remote sensing systems (vegetation

index: NDVI, PVI, etc.). It should be noted that in most

studies relating satellite microwave measurements to soil

moisture indices, the Antecedent Precipitation Index (API),

an indicator of soil moisture (Linsley, Kohler, & Paulhus,

1975; Saxton & Lenz, 1967), is used as ground truth

because of the lack of field data.

This method was fully developed by Theis et al. (1984)

using a remote sensing vegetation index (e.g., PVI derived

from visible and infrared data) to parameterize the vegetation

effect on the linear function relating the microwave emis-

sivity to soil moisture. Based on this principle, Choudhury

and Golus (1988) and Choudhury et al. (1987) carried out

retrievals of soil wetness from spaceborne radiometer obser-

vations. The study of Choudhury and Golus, referred to as

CG88 below, is based on observations from both Scan-

ning Multichannel Microwave Radiometer (SMMR) and

the National Oceanic and Atmospheric Administration

(NOAA)-7 Advance Very High Resolution Radiometer

(AVHRR) radiometer over the semiarid US Southern Great

Plains. They showed that SMMR 6.6-GHz frequency TbH
was correlated to soil wetness when computed using an API

model (Choudhury et al., 1987), for a number of areas

involving a wide range of vegetation densities. They found

that both the slope and the regression intercept of TbH vs.

API were linearly correlated with the vegetation index NDVI

derived from AVHRR visible and near-infrared observations.

The magnitude of the slope (i.e., the sensitivity of TbH to soil

moisture) decreased and the intercept increased with increas-

ing NDVI values corresponding to increasing biomass.

These results were used to develop a simple model to

derive soil wetness index API from both SMMR (TbH) and

AVHRR observations (NDVI). The general form of the

model developed in CG88 is given by:

APIE ¼ aþ bNDVI� TbHð6:6 GHzÞ
cþ dNDVI

ð14Þ

where APIE is the estimated API index; and a, b, c, and d

are parameters obtained from a regression analysis. This

estimator was found to provide four levels of soil moisture.



Fig. 2. Outline of the soil moisture algorithm in the retrieval studies derived

from Jackson et al., 1995.
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This analysis has been pursued in two studies based on

the same regression methods (Ahmed, 1995; Teng et al.,

1993). The study of Teng et al. (1993) is based on obser-

vations at higher frequencies (19.3 and 37.0 GHz) from

SSM/I over a part of the US Corn and Wheat Belts. The

general form of the regression model developed by Teng et

al. is very similar to the one developed by CG88, except that

to parameterize vegetation effects, Teng et al. used a micro-

wave index (the polarization difference, PD, computed at 37

GHz) instead of the NDVI:

APIE ¼ aþ bPDð37 GHzÞ � TbHð19:3 GHzÞ
cþ dPDð37 GHzÞ ð15Þ

They noted that distinct regressions had to be made for the

western (semiarid) and eastern (more humid) areas of the

study. Also, over this later area (more densely vegetated),

results were not as good. They concluded that frequency

channels lower than 19.3 GHz are required for soil moisture

estimation in more densely vegetated regions.

The study of Ahmed (1995) is also similar to CG88. It is

based on SMMR observations and was performed using an

extended study area, covering dense to sparse vegetation

covers. He used either the NDVI index (the form of the

regression model is the same as in CG88), or the polar-

ization difference index [PD(6.6 GHz)] to correct for

vegetation effects. For the latter, the regression model is

based only on microwave observations at 6.6 GHz and its

functional form is given by:

APIE ¼ a� bðTbVð6:6 GHzÞ þ TbHð6:6 GHzÞÞ

� cðTbVð6:6 GHzÞ � TbHð6:6 GHzÞÞd ð16Þ

where a, b, c, and d are parameters obtained from a

regression analysis. The nonlinear term (right side of equa-

tion) was included to account for vegetation effects. In

general, the study of Ahmed (1995) supported the modeling

approach developed in CG88.

Recently, statistical retrieval methods were investigated

based on a global synthetic data set of TB observations

simulated at L-band (Pellarin, Calvet, & Wigneron, in

press). The TB data set described continental pixels at a

half-degree spatial resolution during a 2-year time period

(1987–1988) and accounted for within-pixel heterogeneity,

based on 1-km resolution land cover maps. The retrieved

soil moisture could be expressed as a function of linear

combinations of microwave indices, computed from differ-

ent angles (20j, 40j, and 50j) and both polarizations.

Global maps of the estimated accuracy of the soil moisture

retrievals, as could be obtained from future spaceborne

missions such as SMOS, were produced. It was found that

using a local regression method (LRM), in which independ-

ent regression models were calibrated over each pixel, soil

moisture retrieval is better than 0.04 m3/m3 over about 90%

of the global continental area for both years, considering a
1-K radiometric noise on the TB data. Even though the study

was based on a simulated data set, the statistical methods

were found to be very efficient to evaluate the capability of

L-band TB observations to monitor wS at the global scale.

4.2. Explicit inversion of neural network

Liu, Liou, Wang, Wigneron, and Lee (2002) have inves-

tigated retrievals of soil moisture from radiometric measure-

ments at 1.4 and 10.65 GHz using neural networks. The

study was based on experimental data obtained from crane-

based observations over wheat fields at the INRA Avignon

test site in 1993 and 1996. The model is an Error Prop-

agation Learning Back Propagation (EPLBP) neural net-

work, which is trained solely on experimental data. Instead

of using an iterative constrained inversion technique of the

forward model, their approach is based on an explicit

inverse process: the input nodes of the NN are the measured

brightness temperature and the output nodes are land surface

parameters, that is, soil moisture (m3/m3) and vegetation

water content (kg/m2). The EPLBP neural network was

trained with observations randomly chosen from the 1993

data and evaluation of the retrieval approach was based on

both 1993 and 1996 data sets. Liu et al. showed that the

average retrieval errors for both data sets were about 4% per
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volume for soil moisture and about 0.4 kg/m2 for the

vegetation water content.
5. Retrievals based on monoconfiguration measurement

(SIA)

We distinguished two main categories of retrieval

approaches in this section, depending on the way vegetation

effects are accounted for: (1) parameters used to correct for

vegetation effects are derived from land cover classification

maps; or (2) vegetation effects are computed, independently

of soil moisture, from ancillary remote sensing indexes.

5.1. Use of land cover classification maps

Very significant examples of soil moisture mapping data-

bases retrieved from microwave radiometry have been per-
Fig. 3. Soil moisture mapping derived from the ESTAR measurements during the S
formed for hydrologic studies by the USDA Hydrology

Laboratory (Beltsville) and the NASA Goddard Space Flight

Center (Greenbelt) during large-scale experiments such as

FIFE (Wang et al., 1990), the Monsoon 90 experiment in

southern Arizona (Schmugge & Jackson, 1994), Washita ’92

in central Oklahoma (Jackson et al., 1995), and the Southern

Great Plains Hydrology Experiment (Jackson et al., 1999).

Most of these studies are based on L-band observations

acquired by the PBMR and ESTAR instruments (Schmugge,

1998).

The retrieval method is described in detail by Jackson et

al. (1995, 1999) and is illustrated in Fig. 2. The retrievals

were based on monoconfiguration observations such as H

polarization and nadir (h = 0j). For ESTAR data, observa-

tions up to h = 35j were used and a correction factor was

computed to normalize incidence angle. The resulting data

set was then considered to be observed at nadir (Jackson et

al., 1995). The retrievals were based on model inversion.
outhern Great Plains Hydrology Experiment (SGP97; Jackson et al., 1999).



Fig. 4. Synergistic approach by Van de Griend et al. (1994a) from combined

37- and 6.6-GHz SMMR measurements.
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The model accounted for vegetation effects, using the

s�x model, and assuming that s = bVWC and that

x = 0. Soil roughness was accounted for using the h-

parameter correction (Choudhury et al., 1979) and soil

texture using the empirical model developed by Wang and

Schmugge (1980). Geographical Information System (GIS)

was used to assign each pixel, at about 800-m grid

resolution, to land cover/soil categories. Information layers

included vegetation type, vegetation water content, h-

parameter, soil texture, and soil bulk density. Values of

the model input parameters (b, h, VWC, soil texture in

terms of percent of sand and clay, etc.), required to apply

corrections, were estimated for each pixel, using GIS. The

only unknown for each pixel was soil moisture, which was

retrieved from the brightness temperature observations (H

polarization, h = 0j). During these experiments with inten-

sive observation periods, consistent day-to-day changes in

soil moisture corresponding to rainfall and drying phases

could be monitored. As shown in Fig. 3, distinct spatial

structures, in relation to topography, soil texture, and soil

hydraulic properties, could be distinguished by tracking the

soil moisture changes from the retrieval process. Predic-

tions of soil moisture were analyzed from several verifi-

cation sites where ground-based 0–5 cm surface soil

moisture samples were collected.

5.2. Use of vegetation indices

The previous approach is particularly well adapted to a

very accurate analysis of airborne observations over well-

defined and well-controlled areas. When ancillary informa-

tion on soil and vegetation is limited, other methods have to

be developed. Several studies have investigated the possi-

bility of using remote sensing indexes (visible, near-infrared,

and microwaves) to evaluate vegetation attenuation effects.

The study of Van de Griend and Owe (1994a) (the

method was referred to as ‘a synergistic approach’) is used

to illustrate the proposed methodology. The soil moisture

retrievals are based on H-polarization 6.6 and 37 GHz

Nimbus/SMMR microwave brightness temperatures obser-

vations in Southeastern Botswana over a 3-year period. A

s�x model type model was used to model TB. The

optical depth was derived from two indexes, using either

(1) the Microwave Polarization Difference Index computed

from 37-GHz SMMR data, or (2) the Normalized Differ-

ence Vegetation Index (NDVI), computed from visible and

near-infrared NOAA/AVHRR observations. Soil moisture

was retrieved from brightness temperature data at 6.6 GHz

by model inversion. The outline of the retrieval algorithm

is given in Fig. 4. Best results were obtained by assuming

x = 0 and using NDVI to parameterize optical depth. An

important outcome of this study was that only the night-

time satellite signatures showed a significant response to

soil moisture variations while daytime signatures did not.

This could be explained by several factors (Van de Griend

et al., 1994b). One of them is that the savannah surface
experiences extremely high temperatures with severe dry-

ing during the day, whereas the soil moisture profile tends

to recover somewhat during the night. Moreover, Van de

Griend et al. noted that inverse modeling based on the

synergistic approach led to significant errors at both low

and high soil moisture contents. These problems led them

to develop another method, referred to as the ‘dual-polar-

ization approach’ (Van de Griend & Owe, 1994b), which

will be described in Section 6.

Other studies based on the same general methodology

have dealt with soil moisture retrievals. Chanzy, Schmugge,

et al. (1997) produced soil moisture maps from airborne

PORTOS (H polarization, 5.05 GHz) observations within the

framework of the Hapex–Sahel Experiment, over an agri-

cultural site in a semiarid environment. As for the ‘syner-

gistic approach,’ the optical depth was estimated from

vegetation indices derived from microwave remote sensing

observations. Chanzy et al. found that improvements in the

retrieval method could be obtained by improved discrim-

ination of the different surface types (mainly tiger bush,

fallow lands, and cultivated fields), which may have different

attenuation properties. Over the same Sahelian area, an

approach combining L-band (from the Push Broom Micro-

wave Radiometer, PBMR) and C-band (from the PORTOS

radiometer) microwave observations was investigated by

Magagi, Kerr, and Meunier (2000). Optical depth at L-band

was derived from a polarization difference index (PDVM) at

C-band.
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6. Two-parameter retrievals

6.1. Dual-polarization multiangular observations

Calvet et al. (1994, 1995), Wigneron, Kerr, et al. (1993),

and Wigneron et al. (1995) have demonstrated the capability

of performing two-parameter retrievals from dual-polariza-

tion multiangular observations. Wigneron et al. investigated

simultaneous retrievals of both soil moisture and vegetation

characteristics. The study is based on crane-based exper-

imental measurements using the multifrequency PORTOS

radiometer over a soybean field during a 3-month period.

Methodology is based on inversion of a continuous model-

ing approach. In the continuous approach, the vegetation is

characterized by the correlation lengths lZ and lU, the

vegetation volume fraction fracV (m3/m3), and the gravi-

metric moisture Mg (kg/kg), of the vegetation material. Prior

to the inversion process, calibrations of the model parame-

ters (lZ and lU), which parameterize permittivity fluctuations

inside the canopy layer (Tsang & Kong, 1980) are per-

formed using ground measurements. Wigneron et al. simul-

taneously retrieved both soil moisture and the vegetation

volume fraction fracV (m3/m3) (i.e., the ratio of the volume

of vegetation over volume of the vegetation layer) from

multiangular and dual-polarization measurements at L-band

(1.4 GHz), C-band (5.05 GHz), and at 36.5 GHz. In parallel

to this study, Calvet, Chanzy, and Wigneron (1996) inves-

tigated two-parameter retrievals, but instead of retrieving

soil moisture and vegetation data, they attempted simulta-

neous retrievals of near-surface soil moisture and canopy

temperature. This was carried out using high frequencies

(23.6, 36.5, and 90 GHz) over sparse agricultural crops

(Calvet et al., 1995) and over Sahel semiarid landscapes

(Calvet et al., 1996). Soil moisture retrieval was found to be

feasible over sparse canopy. Over patchy and more dense

vegetation canopies, retrieval with high frequencies alone

was found to be difficult. In particular, Calvet et al.

concluded that surface temperature (Ts) could not be

retrieved under wet soil conditions.

The concept of ‘two-parameter’ retrievals from multi-

angular and dual-polarization measurements could be dem-

onstrated by inverting continuous models. However, the

continuous approach had several disadvantages, which were

discussed by Kerr and Wigneron (1995). In particular, it is

not easy to compute explicit relationships describing the link

between the correlation lengths (lZ, lU) and the vegetation

biophysical characteristics. As a consequence, accurate cal-

ibration of the correlation lengths for a variety of vegetation

covers and accounting for changes in the vegetation charac-

teristics as a result of growth, senescence, etc., is not easy.

6.2. Dual-polarization C-band spaceborne observations

The results of an earlier study, ‘‘the synergistic approach’’

(Van de Griend & Owe, 1994a), based on Nimbus/SMMR

6.6 GHz data over the savannah vegetation in southeastern
Botswana showed that the ratio of vertical and horizontal

polarization optical depths and the ratio of albedos were

almost constant during a 3-year period. This conclusion led

Van de Griend and Owe (1994b) to develop a new method,

referred to as the ‘‘dual-polarization approach.’’ The princi-

ple of the method can be summarized as follows: using the

s�x model, the brightness temperatures for both polar-

izations are expressed as a function of two time variant

parameters, volumetric soil moisture (wS) and the vegetation

transmissivity at H polarization (cH), and of time-invariant

parameters a, b, xH, and hS (soil roughness correction

parameter), where a and b are defined as:

a ¼ cH=cV ð17aÞ

and

b ¼ xH=xV ð17bÞ

The time-invariant parameters are assumed to be region-

specific and were calibrated for the savannah vegetation

using all of the satellite observations made over the 3-year

period from 1984 to 1987. Once these parameters were

calibrated, the system of two equations (s�x model equa-

tions for both polarizations) and two unknowns (wS and cH)
was solved by using an iterative minimization routine. In

comparison with the earlier ‘synergistic approach,’ the rms

error between ground-based soil moisture and satellite-esti-

mated soil moisture was reduced from 5% down to 1.2% per

volume. Van de Griend and Owe also noted that the concept

of the time-invariant behavior of cH/cV was supported by the

fact that the resulting errors in the estimated soil moisture

showed no significant seasonal dependence.

Based on the same satellite signatures (dual-polarization

6.6-GHz SMMR observations), a different methodology for

simultaneously retrieving surface soil moisture and optical

depth was presented by Owe, de Jeu, and Walker (2001)

over several test sites in Illinois. The test sites consisted

almost entirely of farms (cropland, pasture and grasses,

woodland). Contrary to the previous approach, it was

assumed that both the optical depth (s) and the scattering

albedo (x) are polarization-independent (a = b = 1, in Eqs.

(17a) and (17b)). Owe et al. noted that there was some

experimental evidence that both s and x were polarization-

dependent, but mainly for vegetation elements that exhibited

some preferential orientation such as vertical stalks in tall

grasses, grains, and maize. However, they considered that

vegetation elements were randomly orientated for most

crops and natural vegetation and that s was polarization-

independent on a satellite scale. In the approach of Owe et

al., there are two unknowns, vegetation optical depth (same

value for both polarizations) and the soil dielectric constant,

and two equations for both polarizations. Owe et al. trans-

formed the problem in order to obtain a single equation

where the only unknown was the dielectric constant of the

soil. Six-year time series of soil moisture and optical depth



Fig. 5. Time variations in measured (—) and retrieved (o) soil moisture

during the PORTOS-93 (two-parameter retrievals) (Pardé et al., submitted

for publication).

J.-P. Wigneron et al. / Remote Sensing of Environment 85 (2003) 489–506500
retrievals were carried out over several test sites. Although a

true validation of the SM retrievals cannot be made, Owe et

al. found that the annual course of the satellite SM retrievals

compared well with the in situ ground measurements and

precipitation data. Moreover, the annual course of the

optical depth retrievals coincides well with expected vege-

tation dynamics and 10-day NDVI composite data.

6.3. Dual-polarization multiangular L-band and/or C-band

data

As previously discussed, implementation of the continu-

ous modeling approach is not easy for retrieval applications.

An approach very similar to the one developed byWigneron,

Kerr, et al. (1993) was based on the s�x model at low fre-

quencies (L-band and C-band) (Wigneron et al., 1995). Si-

multaneous retrievals of soil moisture and optical depth were

carried out over a wheat and a soybean crop during the whole

vegetation cycle. Retrievals were obtained from dual-polar-

ization PORTOS observations for different radiometric con-

figurations: mono- or multiangular (0–40j incidence range)

observations at L-band, or from combined L- and C-bands.

Vegetation model parameters, which are assumed to be

constant during the whole growth cycle, were calibrated

prior to the inversion process. For retrievals based on L-

band, only one vegetation parameter is required: the polar-

ization factor Cpol accounting for the dependence of optical

depth on polarization and incidence angle (Cpol(1.4 GHz)); the

parameter x (1.4 GHz) was set to zero. For retrievals based

on combined L- and C-bands, three parameters were

required: Cpol(1.4 GHz); single scattering albedo at C-band,

x (5 GHz); and the ratio between optical depth at L- and C-

bands and H polarization, sH(1.4 GHz)/sH(5 GHz).

Good simultaneous retrievals of wS and s could be

obtained from L-band observations, only if the measure-

ments were acquired over a range of look angles between 0j
and 40j in this study (accuracy was better than 0.06 m3/m3

for wS retrievals). The results of soil moisture retrievals are

illustrated in Fig. 5. Improved accuracy (f 0.04–0.05 m3/

m3) was obtained using additional C-band observations,

which were found to be useful to improve the discrimination

between soil and vegetation effects, especially during crop

senescence. The retrievals of the optical depth were found to

be closely related to the time variations in the vegetation

water content (VWC, kg/m2). By fitting the value of bP in

Eq. (8), the resulting accuracy in the retrievals of VWC was

about 0.3 kg/m2.

The feasibility of simultaneously retrieving wS and s from
low-frequency multiangular microwave measurements was

confirmed by a study based on observations over a wheat

field during several irrigation phases (Wigneron et al., 1996).

These irrigation phases were representative of rainfall or dew

events. Both soil moisture and vegetation water content

(VWC), including the amount of water intercepted by the

vegetation cover, could be retrieved before, during, and after

the irrigation phases. This study indicated that intercepted
water had very similar attenuation properties as the amount

of water stored within the vegetation material. Therefore,

these results have important practical implications for mod-

eling dew/rainfall effects on vegetation at low frequencies.
7. Three-parameter retrievals

As shown above, the concept of two-parameter retrievals

has been demonstrated in several studies based on exper-

imental observations. In preparation of spaceborne missions

(AMSR, SMOS), several studies have investigated three-

parameter retrievals using synthetic data sets. These studies

consist of three main steps:

1. A ‘reference’ brightness temperature data set, which

represents the actual land surface emission, is simulated

using the forward model.

2. A ‘measured’ data set, which accounts for the uncertain-

ties associated with the spaceborne measurements in

terms of radiometric sensitivity and systematic calibra-

tion errors, is computed by adding random Gaussian

errors and bias to the reference TB data.

3. An inversion method is applied to retrieve the land surface

parameters from the ‘measured’ data set. There is

obviously some circularity in the approach since the same

model is used both (a) to simulate the remotely sensed

observations and (b) to retrieve the land surface param-

eters from model inversion. However, these synthetic

approaches may be very useful to compare different

retrieval approaches and to evaluate the retrieval accuracy

depending on the sensor configuration, in terms of view

angle range, polarization, and frequency. Such an evalua-

tion was made for radiometric measurements from three

different dual-polarization (existing or near future)

sensors: SMMR andAMSRwithmultifrequency channels

and the planned L-band SMOS radiometer with multi-

angular viewing capabilities.



Fig. 6. Three-parameter retrievals from multiangular dual-polarization L-

band data by Wigneron et al. (2000). Additional C-band observations can

be added to the retrieval process.
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7.1. Combined s�x and neural network modeling (SMMR)

The evaluation of SMMR capabilities was made by

Davis et al. (1995). The forward model is a s�x type

model (Kerr & Njoku, 1990). Three-parameter (wS, VWC,

and Ts) retrievals were carried out using forward model

inversion from dual-polarized brightness temperatures at

frequencies corresponding to those recorded by SMMR (at

6.6, 10.7, 18, and 37 GHz).

The novel aspect of this study is that a neural network

technique was used to facilitate solving the inverse problem.

First, an appropriate set of input–output data was generated,

using the forward model. Then, a copy of the forward model

was made by training the NN, a multilayer perceptron

(MLP), to match the input–output relationships as obtained

by the forward model simulations. A Bayesian iterative

constrained inversion of the MLP was used to retrieve the

three parameters wS, VWC, and Ts. Illustration of the

method was given by applying it to SMMR data obtained

on January 6 and 10, 1982, over the African continent. In

the retrieval process, the computed brightness temperatures

were assumed to be correct to within either 2 or 5 K

Gaussian noise. Although no actual validation was pre-

sented and unsatisfactory results were obtained for some

regions in the 2-K case, retrieved maps produced by the

three-parameter process showed encouraging results. Note

that a similar study has addressed the use of NN for

retrieving surface parameters based on an explicit inverse

process (Liou, Tzeng, & Chen, 1999). Liou et al. quantified

the improvement in the retrieval accuracies if an additional

1.4-GHz channel was used in combination with high-fre-

quency observations at 19 and 37 GHz.

7.2. Retrieval algorithm for AMSR

An evaluation of the Advanced Microwave Scanning

Radiometer capabilities was made by Njoku and Li (1999)

over land surfaces. Three-parameter (soil moisture, soil

temperature, and vegetation water content) retrievals were

carried out from six channels of radiometric data (dual-

polarization microwave brightness temperatures at 6.9, 10.7,

and 18.7 GHz). The general methodology is based on a

three-step approach as described in the introduction of this

section and forward model inversion of a s�x type model.

For an assumed noise of 0.3 K in all channels, a soil

moisture and vegetation water content retrieval accuracy

of 0.06 g/cm3 and 0.15 kg/m2, respectively, could be

obtained in regions where the vegetation water content

was less than approximately 1.5 kg/m2. For bare soils, the

algorithm had difficulty discriminating between the surface

temperature and soil moisture variability. This result was

consistent with previous findings by Calvet et al. (1995).

Except in the case of bare soils, it was possible to obtain a

surface temperature accuracy of 2 K. The substantial attenu-

ation effects by the vegetation cover at high frequencies led

to relatively low levels of accuracy and considerable geo-
graphic limitations. The proposed method was tested using

data from Nimbus-7 SMMR for the years 1982–1985 over

the African Sahel. The retrieval algorithm was shown to

satisfactorily discriminate between soil moisture, vegetation,

and temperature variations over this semiarid region and

provided estimates consistent with the expected accuracy.

7.3. Retrieval algorithm for SMOS

Retrieval capabilities of the payload of SMOS, an L-band

2-D interferometric radiometer with multiangular viewing

configuration, was investigated by Wigneron et al. (2000).

In comparison with the two previous approaches, the

potential of SMOS for monitoring soil moisture should be

much higher over vegetation-covered areas since higher

wavelengths have larger penetration capabilities through

vegetation cover. The general methodology is based on a

three-step approach, given in the Introduction, and forward

model inversion of a s�x type model. The outline of the

three-parameter retrieval algorithm is given in Fig. 6. The

possibility of simultaneously retrieving (wS, s, Ts) was

investigated for several surface conditions (combining

wet/dry soils with high/low levels of biomass). Three main

retrieval approaches (RA) were tested: (RA0), all three

variables are retrieved and are considered to be unknown

(no ancillary data required); (RA1), the three-parameter

retrievals are constrained by assuming that an estimate of

Ts, with associated uncertainty of 2 K, can be obtained from

ancillary information; (RA2), the three-parameter retrievals

are constrained by assuming that an estimate of both Ts and

s can be obtained from either ancillary information or

previous SMOS observations.
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SMOS has multiangular capabilities and the set of avail-

able view angles is variable within the field of view (FOV): it

depends on the distance between the considered location on

the ground and the subsatellite track. Therefore, the evalua-

tion was made as a function of the position of the pixel

within the FOV. The main results of the evaluation were:

1. In the central part of the FOV, corresponding to a revisit

time of about 10 days, good estimates of soil moisture wS

and optical depth s can be obtained from RA0 and RA1

retrievals. Associated errors are less than 0.04 m3/m3 and

0.06 for wS and s, respectively.
2. Over the whole FOV, corresponding to a higher revisit

time of about 2–3 days, a soil moisture error of less than

0.04 m3/m3 can be obtained from RA1 or RA2 retrievals

(requiring ancillary information on Ts) for most surface

conditions except for wet soils and well-developed

vegetation.

3. The estimates of s, required in RA2, could be obtained

from RA0 retrievals using observations restricted to the

central part of the FOV with a lower revisit time. Such a

procedure may be applicable since, unlike soil moisture,

the vegetation optical depth, which depends on the

vegetation characteristics, varies rather slowly in time

over a weekly period.

A recent study was based on a similar three-parameter

retrieval approach from a synthetic data set of TB observa-

tions simulated at global scale (Pellarin, Wigneron, Calvet,

& Waldteufel, in press). The data set accounted for within-

pixel heterogeneity, based on 1-km resolution land cover

maps. Global maps of the estimated accuracy of the soil

moisture retrievals were produced and analyzed as a func-

tion of the pixel heterogeneity, mainly in terms of water and

forest cover fraction, assuming that no a priori information

about land cover was available. The obtained accuracy in

the wS retrievals was better than 0.04 m3/m3 over about 40%

of the continental areas, when Ts was assumed to be known

with a 2 K uncertainty.
8. Discussion and conclusions

The review shows that there are a fairly wide variety of

approaches, which have been used to retrieve soil moisture

from microwave radiometry. Most of the studies have

demonstrated the considerable potential of low-frequency

observations at L-band (f 1.4 GHz) for soil moisture

retrievals. For higher frequencies (i.e., 6.6 GHz and higher),

the sensitivity to soil moisture becomes very low when the

vegetation water content exceeds about 1.5 kg/m2 (Njoku &

Li, 1999), which corresponds roughly to a leaf area index

(LAI) of about two for crops. Therefore, it seems that the

use of C-band observations for soil moisture retrievals is

limited to semiarid regions (Chanzy, Schmugge, et al., 1997;

Njoku & Li, 1999; Magagi et al., 2000; Van de Griend &
Owe, 1994a, 1994b) with low levels of vegetation biomass.

However, Owe et al. (2001) found that rather satisfactory

retrieval results could be obtained from dual-polarization C-

band observations over agricultural test sites in Illinois.

Four main types of algorithms could be roughly distin-

guished depending on the way vegetation and temperature

effects are accounted for: (1) parameters and variables used

to correct for vegetation effects are derived from land cover

classification maps; and (2) vegetation effects are computed

from ancillary remote sensing indexes, (3) two-parameter

retrievals, and (4) three-parameter retrievals.

Most of the studies corresponding to approach (1) are

based on monoconfiguration observations, in terms of fre-

quency, polarization, and view angle. This approach is well

adapted to a very accurate analysis of airborne observations

over well-defined and well-controlled areas. For satellite

applications, when detailed information on the types and

water content of vegetation cannot easily be obtained, other

approaches (2, 3, or 4) are generally more appropriate.

Relatively satisfactory retrieval results have been obtained

using approach (2). However, the approaches based on

indices may have some disadvantages. For instance, indices

based on visible and near-infrared signatures (NDVI, for

instance) are sensitive to cloud screening, atmospheric

absorption, and scattering effects. Microwave vegetation

indices based on high-frequency measurements are also

highly sensitive to atmospheric effects (Kerr & Njoku,

1993). Moreover, the sensitivity of vegetation indices to

biomass strongly depends on the frequency channel due to

the fact that the penetration depth within the vegetation layer

strongly decreases as frequency increases. For instance,

estimates of optical depth from C-band indexes may saturate

when vegetation water content exceeds about 1.5 kg/m2.

The two-parameter retrievals (approach 3), that is, the

capability of simultaneously retrieving soil moisture (wS)

and vegetation characteristics (s or VWC) from the passive

microwave observations, was demonstrated by several stud-

ies using dual-polarization multifrequency or multiangular

observations L-band observations. The two-parameter

retrieval is a major potential asset in comparison with

approach (1) because:

(i) There is no need for ancillary information about the

vegetation water content (VWC) and the bP parameter to

compute the optical depth (s). The multiangular approach

considerably improves the retrieval process since esti-

mating these two parameters on a large spatial scale from

ancillary remotely sensed data is not easy. Vegetation

water content may change significantly at a time scale of a

few weeks, and no means is currently available to map or

simulate these time changes. The bP parameter was found

to be sensitive not only to vegetation moisture content but

also to canopy structure, which depends on the canopy

type and on phenology (cf., Fig. 1).

(ii) The retrieved variable s may turn out to be a very useful

product by itself. Actually, this variable is a meaningful



J.-P. Wigneron et al. / Remote Sensing of Environment 85 (2003) 489–506 503
index for monitoring vegetation dynamics (development

and senescence) at a global scale (Choudhury, 1990; Van

de Griend & Owe, 1993) as well as for estimating forest

characteristics. This variable was found to be closely

related to the vegetation water content for crops and to

the total branch water content for forests (Ferrazzoli,

Guerriero, & Wigneron, 2002).

The three-parameter retrievals (approach (4)), that is, the

capability of simultaneously retrieving three parameters: soil

moisture (wS), optical depth (s), and the effective surface

temperature from the passive microwave observations, is

very promising, but has not been clearly demonstrated yet

from experimental data. Its particular advantage in compar-

ison with two-parameter retrievals is that no ancillary

information about surface temperature is required. Calvet

et al. (1995, 1996) and Njoku and Li (1999) showed that

simultaneous retrievals of both soil moisture and surface

temperature may be difficult for wet soil conditions. The

theoretical study of Wigneron et al. (2000) showed that

good estimates of soil moisture wS and optical depth s can

be obtained from three-parameter retrievals in the central

part of the FOV, namely when the available angular range is

sufficiently large, from multiangular SMOS L-band data.

Accurate estimates of surface temperature should not be

expected from the three-parameter approach (especially for

wet soil conditions). However, these results were obtained

from a sensitivity study over homogeneous scenes. Three-

parameter retrievals based on experimental observations are

currently ongoing to confirm these theoretical results. Pre-

liminary results showed that soil moisture accuracies better

than 0.055 m3/m3 could be obtained over crop fields (Pardé

et al., submitted for publication), provided values of Ts were

strongly constrained in the retrieval process.

Two- or three-parameter retrievals based on multichannel

observations (in terms of frequency f, polarization P, and

view angle h) appeared to be very promising. However, the

use of these approaches requires a good parameterization of

the dependence of optical depth on the configuration

parameters ( f, P, and h). For instance, simultaneous retriev-

als based on multifrequency observations require a good

characterization of the ratio between the optical depth for

the different frequency channels (Magagi et al., 2000;

Wigneron et al., 1995). As an example, the retrieval accu-

racy based on combined L- and C-band observations was

found to be highly sensitive to the ratio s(5 GHz)/s(1.4 GHz)

(Wigneron et al., 1995). However, very little information is

available at this time about the dependence of this ratio on

view angle and polarization for different vegetation types.

Recently, a study by Van de Griend and Wigneron (sub-

mitted) summarized all available information on the fre-

quency dependence of s (1.4 < f< 37 GHz) for different

canopy types, demonstrating a log-normal relationship of

the parameter bP as a function of frequency. However, the

implementation of these results in retrieval studies was not

attempted yet.
As noted above, the problem of using several frequencies

is that the penetration depth within soil and/or vegetation

strongly depends on the frequency. For instance, when using

combined L- and C-band observations, empirical corrections

have to be applied to account for the different sampling

depths within soil at both L- and C-bands (Magagi et al.,

2000; Wigneron et al., 1995). It is very difficult to define

general relationships between the top soil moisture over

different depths (about 3 cm at L-band and 1 cm at C-band)

that could be valid over a large range of soil and climatic

conditions.

Similarly, simultaneous retrievals based on multiangular

and/or dual-polarization observations require a good char-

acterization of the ratio sH/sV and of the angular dependence

of optical depth s, for both polarizations (Van de Griend &

Owe, 1994b; Wigneron et al., 1995). Several studies showed

that the optical depth (or the related bP parameter) may

strongly depend on polarization and incidence angle, espe-

cially for vegetation canopies with a dominant vertical

structure (stem-dominated canopy such as cereal crops)

(Ulaby & Wilson, 1985; Ulaby et al., 1981–1986; Van de

Griend et al., 1996; Wigneron et al., 1995). As noted by

Owe et al. (2001), vegetation elements are randomly ori-

entated for most crops and naturally occurring vegetation

and it is likely that optical depth (s) is polarization-inde-

pendent on a satellite scale. Validation of this hypothesis

was attempted using satellite observations. However, addi-

tional validation of these preliminary results is required. On

a satellite scale, very few studies (if any) investigated the

angular dependence of optical depth (s). As for polarization,
it is likely that this dependence is rather low if the optical

depth is expressed in terms of its nadir component s0. Future
studies will have to address this key issue for retrievals

based on the multiangular microwave signatures.
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