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Abstract—A novel approach based on Pulse-Coupled Neural 

Networks (PCNN) for image change detection is presented. PCNN 
are based on the implementation of the mechanisms underlying 
the visual cortex of small mammals and with respect to more 
traditional neural networks architectures such as Multi-Layer 
Perceptron (MLP) own interesting advantages. In particular, 
they are unsupervised and context sensitive. This latter property 
may be particularly useful when very high resolution images are 
considered, as in this case an object analysis might be more 
suitable than a pixel-based one. Qualitative and more quantitative 
results are reported. The performance of the algorithm has been 
evaluated on a pair of QuickBird images taken over the test area 
of Tor Vergata University, Rome. 
 

Index Terms— Pulse-coupled neural networks, unsupervised 
change detection, very high resolution images 
 

I. INTRODUCTION 

orld population growth affects the environment through 
the swelling of the population in urban areas and by 

increasing the total consumption of natural resources. 
Monitoring these changes timely and accurately might be 
crucial for the implementation of effective decision-making 
processes. In this context, the contribution of satellite and 
airborne sensors might be significant for updating land cover 
and land use maps. Indeed, the recent commercial availability 
of very high-resolution visible and near infrared satellite data 
has opened a wide range of new opportunities for the use of 
Earth observing satellite data.  In particular, new systems such 
as the latest WorldView-1 [1], characterized by the highest 
spatial resolution, now provide additional data along with  
very high resolution (VHR) platforms, such as QuickBird or 
Ikonos, which have already been operating for a few years. 

 If on one side this permits the availability of a huge 
amount of information to yield always updated products, on 
the other side the need of completely automatic techniques 
able to manage big data archives is becoming extremely 
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urgent.  
According to what is already reported so far by previous 

studies, unsupervised change detection techniques mainly rely 
on three basic steps [2]. The first one is a pre-processing step 
where  the images are spatially registered and some forms of 
radiometric standardization are also applied. In the second step 
a pixel-by-pixel comparison is usually performed, for example, 
using change vector analysis (CVA). In the third step one has 
to decide if the magnitude of the computed spectral changed 
vector exceeds some specified threshold criterion in order to 
conclude that some change has occurred. 

However, most of the research carried out so far focused 
on medium or high spatial resolution images while only few  
studies have addressed the description of fully automatic 
change detection methods for VHR images. In these cases, 
several issues have to be specifically considered. The crucial 
ones include possible mis-registrations, shadow and other 
seasonal and meteorological effects which add up and combine 
to reduce the attainable accuracy in the change detection 
results. To emphasize the pixel contextual information, besides 
the spectral one, could be an appropriate approach to take 
these issues into account. Such an approach is indeed followed 
in [3], where the authors make progressive use of 
morphological filters based algorithms for the extraction of 
changed objects after CVA.  

In this paper we consider a novel neural network approach 
for the detection of changes in multi-temporal VHR images. 
Neural networks (NNs) algorithms have been shown to be a 
rather competitive approach for image classification in remote 
sensing compared to other traditional approaches such as 
Bayesian or Support Vector Machines [4]. A supervised neural 
architecture based on MLPs has been recently applied to VHR 
images change detection with very highly accurate results [5] 
while a Hopfield-Type neural network technique for 
unsupervised change detection has been applied to Landsat 
Enhanced Thematic Mapper Plus (ETM+) imagery providing a 
positive  performance [2].  

Differently, the neural technique proposed in this paper is 
based on unsupervised pulse-coupled neural networks (PCNN) 
and is applied to VHR images. PCNN is a relatively new 
technique based on the implementation of the mechanisms 
underlying the visual cortex of small mammals [6]. The visual 
cortex is the part of the brain that receives information from 
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the eye. The waves generated by each iteration of the 
algorithm create specific signatures of the scene which are 
successively compared for the generation of the change map. 
In terms of functionalities, this comparison is analogous to 
what is performed in the step 2 of the CVA. The advantage is 
that at this point step 3 is not necessary anymore, which 
significantly reduces the computational burden. Moreover, as 
it will be shown in next section, PCNN are characterized by 
using at the same time both contextual and spectral 
information which, as mentioned before, make them suitable 
for processing VHR images.  

II.  THE PCNN MODEL 

 
PCNN entered the field of image processing in the 

nineties, following upon the publication of a new neuron 
model introduced by Eckhorn et al. [6]. Interesting results 
have been already shown by several authors in the application 
of these models in image segmentation, classification and 
thinning [7, 8], including, in few cases, the use of satellite data 
[9, 10]. Hereafter we briefly recall the main concepts 
underlying the behavior of a PCNN while a more 
comprehensive introduction to image processing using PCNN 
is given in [11].  

A PCNN is a neural network algorithm that, when 
applied to image processing,  yields a series of binary pulsed 
signals, each associated to one pixel or to a cluster of pixels. It 
belongs to the class of unsupervised artificial neural networks 
in the sense that it does not need to be trained. The network 
consists of nodes with spiking behavior interacting each other 
within a pre-defined grid. The architecture of the net is rather 
simpler than most other neural network implementations. 
PCNN do not have multiple layers, which pass information to 
each other. PCNN only have one layer of neurons, which 
receive input directly from the original image, and form the 
resulting “pulse” image.  

The PCNN neuron has three compartments. The feeding 
compartment receives both an external and a local stimulus, 
whereas the linking compartment only receives the local 
stimulus. The third compartment is represented by an active 
threshold value. When the internal activity becomes larger 
than the threshold the neuron fires and the threshold sharply 
increases. Afterwards, it begins to decay until once again the 
internal activity becomes larger. Such a process gives rise to 
the pulsing nature of the PCNN. The schematic representation 
of a PCNN is shown in Fig. 1 while, more formally, the system 
can be defined by the following expressions: 
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where Si,j  is the input to the neuron (i,j) belonging to a 2D grid 
of neurons, Fi,j the value of its Feeding Compartment and Li,j is 
the corresponding value of the Linking Compartment. Each of 

these neurons communicates with neighbouring neurons (kl) 
through the weights given by M and W respectively. M and W 
traditionally follow very symmetric patterns and most of the 
weights are zero. Y indicates the output of a neuron from a 
previous iteration [n-1]. All compartments have a memory of 
the previous state, which decays in time by the exponent term. 
The constant VF and VL are normalising constants. The state of 
the feeding and linking compartments are combined to create 
the internal state of the neuron, U. The combination is 
controlled by the linking strength, β. The internal activity is 
given by: 
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The internal state of the neuron is compared to a dynamic 
threshold, θ, to produce the output, Y, by 
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The threshold compartment is described as: 
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when the neuron fires (Y  > θ), the threshold then significantly 
increases its value, this value decays until the neuron fires 
again. Vθ is a large constant that is generally more than one 
order of magnitude greater than the average value of U. Each 
neuron that has any stimulus will fire in the initial iteration, 
which, in turn, will create a large threshold value. It will then 
take several iterations before the threshold values decay 
enough to allow the neuron to fire again. The algorithm 
consists of iteratively computing (1) through (5) until the user 
decides to stop.  

It is important to observe that the signal associated to the 
PCNN has properties of invariance to changes in rotation, 
scale, shift, or skew of an object within the scene [12]. This 
feature makes PCNN a powerful tool in change detection, 
where the view angle of the satellite can play an important 
role. 

 

 
 
Fig. 1. Schematic representation of a PCNN 
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III.  APPLICATION TO CHANGE DETECTION 

 
The application of PCNN to change detection can be 

seen as a comparison of the PCNN outputs values 
corresponding to images acquired at different times. The 
response on the change occurrence stems directly from this 
comparison.   

A first qualitative example is given by means of Fig. 2. 
Here we have three test areas, of different size, extracted from 
airborne very high resolution RGB images (about 20 cm) taken 
at two different times. In the first test area A we note very 
slight changes between the two acquisitions, basically 
consisting in some modifications occurred in the distributions 
of the plants in the garden. Note that we decided to consider a 
small area to assure high resemblance at the two different 
times. Test area B underwent, during the time shift, a few 
significant small scale changes even if the main structures are 
basically the same. Finally the test area C is extracted from test 
area B considering one of its most varied parts, shown by the 
red box in the test area B.  

The idea is that PCNN can be used to individuate, in an 
unsupervised manner, the areas of an image where a significant 
change occurred. This can be obtained by measuring the 
similarity between the PCNN signal associated to the former 
image and the one associated to the latter. A rather simple and 
effective way to do this is to use a correlation function 
operating between the outputs of the PCNN. As we have an 
output value for each unit of the PCNN, i.e. for each pixel of 
the images, an average correlation value has to be computed in 
order to have a quick and global measure of similarity.  This 
can be done by using the following expression: 
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where the sum includes all the pixels N of the image (or sub-
image).  

In Fig. 3 the PCNN output G[n] for the considered test 
areas calculated as the mean over the three R, G, B bands is 
plotted while Table 1 reports the corresponding correlation 
values associated to each image pair. From Fig. 3 we see that 
the pulsing behavior of the two images of test area A is very 
similar. Both the waveform and the time dependence of the 
two signals appear to be highly correlated. For test area B the 
result changes. Here from the very first epochs the pulsing 
activity of the two images is rather different especially as far as 
the waveform is concerned. In test area C this difference still 
increases and also the time correlation seems to get lost very 
fast. 

Such results are expressed more concisely by the 
correlation values reported in Table 1. It seems then that 
PCNN, once processing an image pair, might be capable to 
catch those portions where significant changes occurred. In 
such a context it seemed to us that an approach based on “hot 
spot” detection rather than on changed-pixel  

 

TABLE I 
NORMALIZED CORRELATION VALUES FOR THE THREE 

CONSIDERED TEST CASES 
TEST AREA CORRELATION VALUE 

A 0.98 
B 0.70 
C 0.24 

 
 

     
 

     
 

       
 

Fig. 2. Test areas A (up), B (middle), C (bottom) imaged at two different 
times t1 (left) and t2 (right) 

 

detection could be more appropriate given the huge size of the 
images that we may need to analyse in next future. It is also 
true that, as it will be shown in next section, it is always 
possible to apply a multi-scale procedure to push the detection 
to finer spatial resolutions. 

IV.  EXPERIMENTAL RESULTS 

 
The accuracy of the presented technique has been 

evaluated more quantitatively applying it to a pair of 
QuickBird images taken on a selected test site. The area 
comprises the Tor Vergata University campus and its 
surroundings and is located in Rome, Italy. The two images 
have been acquired on 29-5-2002 and 13-3-2003 and  
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Fig. 3. PCNN signals of the images taken at two different times. Up: test area 
A, middle: test area B, bottom: test area C 

 
underwent standard product pre-processing and co-
registration. The panchromatic images have been considered in 
order to design a single PCNN working with higher resolution 
rather than 4 different ones processing lower resolution 
images. The two panchromatic images are shown in Fig. 4a 
and 4b. We can see that a few changes occurred in the area 
during the analysed time window, the main ones correspond to 
the construction of new commercial and residential areas. A 
complete ground-truth of the changes is reported in Fig. 4c. 
Note that the ground survey included also houses that were 
already partially built in 2002.  

The size of the PCNN was of 100x100 neurons. For the 
reasons explained in the previous section we preferred 
working with lower resolution, only looking for the “hot spots” 
where a change could be rather probable. To operate in this 
way we averaged over the PCNN output values of the 10000 
neurons belonging to 100x100 boxes. We actually considered 
an overlap between adjacent patches of 50 pixels (half patch). 
To increase the overlap would have meant to have more spatial 

resolution but at the price of an increase of the computational 
burden. Considering we are interested in detecting objects of at 
least some decades of pixels, we assumed that an overlapping 
size of 50 pixels could be a reasonable compromise. The 
computed mean correlation value was then used to 
discriminate between changed and not changed area.  

 

  
a)                                     b) 
 

  
c)                                                         d) 
 

   
e)                                                         f) 
 
Fig. 4. a) panchromatic image (2825x2917 pixels) at time t1. b) panchromatic 
image at time t2.c) ground-truth. d) change detection result obtained by a 
standard image difference procedure. e) changed area as from the PCNN 
elaboration. f) pixel-based analysis carried out over one of the previously 
detected changed areas indicated with “x” in (e). 

 
The result is shown in Fig. 4e while in Fig. 4d, for sake of 
comparison, we report the result obtained with a traditional 
image difference approach. More in detail, in this latter case, 
an average value has been computed for each box of the 
difference image and a threshold value to discriminate between 
changed and not changed areas selected. In Fig. 4d we have 
reported the result corresponding to a threshold value 
maximizing the number of true positives keeping reasonably 
low the number of false positives.  
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What should be firstly noted is that, at least in this 
application, the algorithm did not provide any intermediate 
outputs, with the correlation values alternatively very close to 
0 or 1. This avoided to search for optimum thresholds to be 
applied for the final binary response. The accuracy is 
satisfactory, as 49 out of the 54 objects appearing on the 
ground-truth were detected with no false-alarms. The missed 
objects are basically structures that were already present in the 
2002 image (e.g. foundations or the first few floors of a 
building), but not completed yet. On the other side one can see 
that the result given by a standard image difference technique, 
although a suitable threshold value was selected here, is rather 
imprecise, presenting a remarkable number of false alarms. 

 

 
 
Fig. 5. PCNN signals corresponding to the patch indicated with “x” in Fig. 
4e. 

 
The image shown in Fig. 4f has been obtained by a multi-

scale procedure. This consists in a new PCNN elaboration, this 
time on pixel basis, of one of the hot-spots generated with the 
first elaboration, in particular the one corresponding to the box 
indicated by the “x” in Fig. 4e. The pulsing activities of this 
box at the two considered different times are plotted in Fig. 5, 
in a way analogous to the plots of Fig. 3. A clear dissimilarity 
between the two waveforms, especially between epochs 9 and 
25, can be observed. Finally it has to be noted that the output 
reported in Fig. 4f is more uniformly distributed within the 
range between 0 and 1. Its value has been multiplied with the 
panchromatic image taken at time t2 to have a result which 
better exploits the VHR property of the original image. 

V. CONCLUSION 

 
 The potential of a novel automatic change detection 

technique based on PCNN was investigated. PCNN belong to 
the family of NNs including a few interesting properties. They 
are unsupervised and context sensitive. Moreover they are 
invariant to an object scale, shift or rotation, which, once the 
two images are co-registered, might be rather useful especially 
for very high resolution images. The two waves, one for each 
image, generated by the PCNN during each iteration of the 
algorithm create specific signatures of the scene which can be 
compared for deciding about the occurrence of a change. 

Applying successively the procedure to a moving window 
allows the processing throughout the whole image.  

We preferred an approach aiming at discovering changed 
subareas in the image rather than analyzing the single pixel. 
This might be more convenient when large data sets have to be 
examined, as it should be the case in the very next years when 
new satellite missions will be providing additional data along 
with the ones already available. 

The application of the PCNN to a couple of QuickBird 
images taken over the Tor Vergata test site in Rome, Italy,  
with a time shift of less than one year, produced interesting 
results. An overall object accuracy of 90.7% has been obtained 
with no false-alarms. Moreover the method is rather fast as it 
directly analyses the correlation between the two signals 
associated to the images and no post-processing after the 
comparison is required to give the final response. Some 
investigations on the robustness of the settings of the PCNN 
parameters are currently ongoing. However, preliminary 
results indicate that applying the same parameters values 
considered for this paper to different VHR images keeps  the 
performance still satisfactory. Regarding the single parameters, 
fluctuations around the chosen values seem to be more critical 
for Vθ and αθ while β and αL show a better stability. 
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