A Velocity Vector Estimation Algorithm Tested on Simulated SAR Raw Data

Andrea Radius, Domenico Solimini

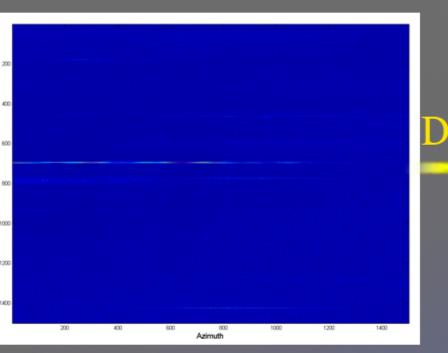
EOLab, DISP, Tor Vergata University of Rome, Italy, E-mail: radius@disp.uniroma2.it, solimini@disp.uniroma2.it

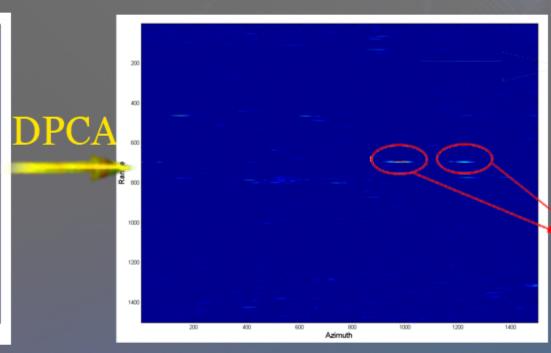
WORK DONE

Work developed:

- a)Dual-channel split-antenna SAR raw data simulator;
- b) SAR processor;
- c) velocity vector estimation algorithm
- d)Testing on simulated and real data

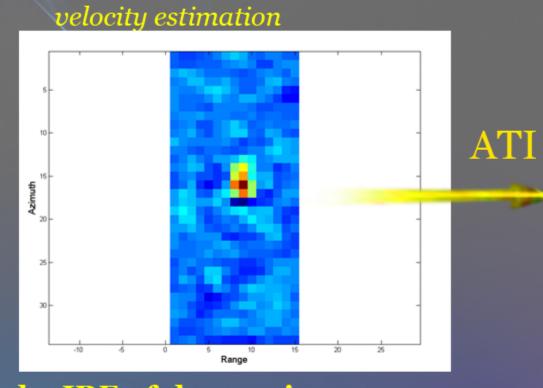
WORK SCHEME

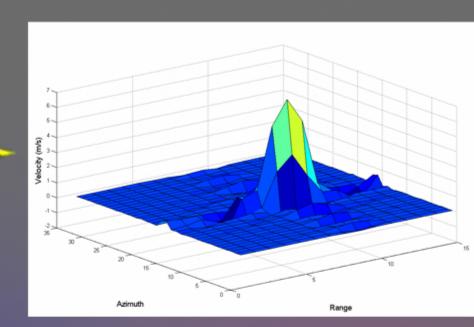

SIMULATOR



Estimation Raw algorithm

USED PROCEDURES IN THE WORK


1) Moving targets detected by DPCA (Displaced Phased Centre Antenna) DPCA: applied on the range compressed domain, it is a robust technique and optimal for moving target detection



Moving Targets

2) Range velocity estimated by ATI (Along-Track Interferometry) ATI: applied on the focused data, it is very sensitive and optimal for range

3) Azimuth velocity estimated with a bank of velocity azimuth filter, analyzing the IRF of the moving scatterer.

VELOCITY ESTIMATION ALGORITHM

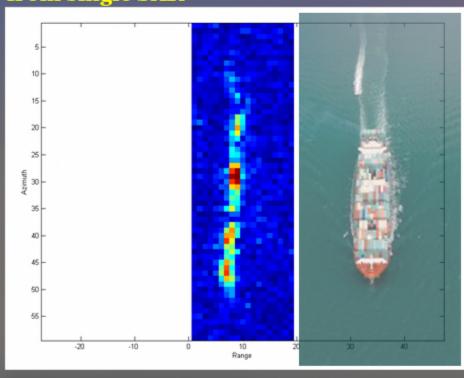
Four-steps improved velocity vector algorithm

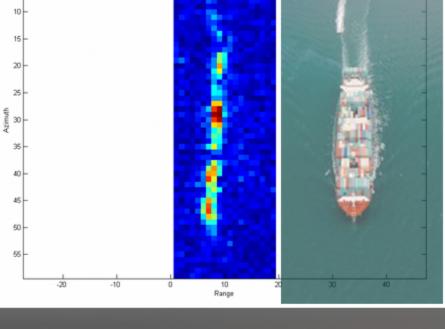
- 1. Azimuth component estimated with a coarse bank of azimuth matched filters.
- 2. Range velocity estimated by ATI, with a subsequent refinement which uses a bank of range velocity filters centred around the first estimate.
- 3. New estimate of the azimuth velocity with a fine bank of filters centred on the previously estimated range and azimuth velocity.
- 4. Moving target azimuth replacement in function of the range velocity.

SIMULATION RESULTS

Test velocity vectors

Vector Number	Rangevelocity	Azimuthvelocity
1	5.1 m/s	8.2 m/s
2	10.2 m/s	16.5 m/s
3	15.4 m/s	24.7 m/s
4	20.7 m/s	33 m/s

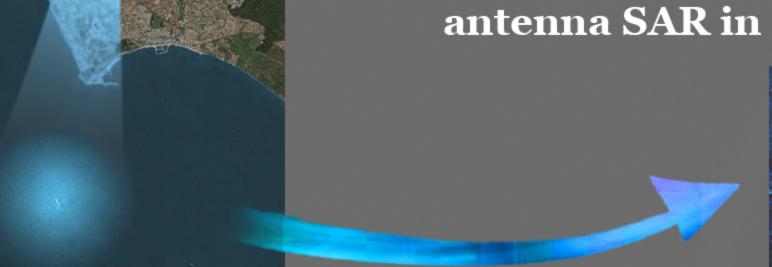

Different backgrounds generated;


- 1) Reference background with constant backscattering intensity, (Signal-to-Clutter Ratio –SCR- of 30 dB).
- 2) Sea background (SCR= 18 dB) for ship traffic monitoring.
- 2) Shrubs background (SCR=9 dB) for vehicle traffic monitoring.

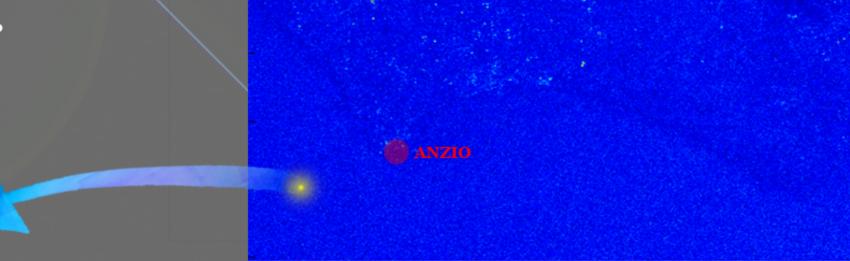
Results for the background with constant backscattering						Results for the sea background						Results for the shrubs background					
Vector number	Range error mean (%)	Azimuh error mean (%)	Range standard deviation (m/s)	Azimuth standard deviation (m/s)		Vector number	Range error mean (%)	Azimuth error mean (%)	Range Standard deviation (m/s)	Azimufh Standard deviation (m/s)		Vector romber	Range error mesn (%)	Azimufh error mean (%)	Range standard deviation (m/s)	Azimuth standard deviation (ms)	
1	7.1	18.4	0.1	0.9		1	13.5	9.7	03	32		1	619	30.7	0.4	83	
2	63	2.7	0.1	15		2	23.4	13.8	0.6	3.5		2	14.8	20.9	1	2.7	
3	6.8	7.7	0.1	2.5		3	24.8	19.6	03	29		3	29	20	0.4	8.6	
4	6	123	0.1	4.1		4	26	63	0.1	3.6		4	34.5	28.5	10.2	8.8	
					_						_						

EXPERIMENTAL RESULTS

Raw data related to a scene centred in Anzio (Italy). Application of look filtering to the range compressed data to obtain two channels from single SAR



- 1. Geographics coordinates of the ship Lat: 41° 26′ 32.95″ Lon: 12° 39′ 0.50″
- 2. Velocity on the Azimuth-Range plane azimuth -9.6 m/s range 1.6 m/s
- 3. Velocity on the north south- east west plane north south- 9.5 m/s east-west 1.4 m/s ship direction: 351.7°
- 4. Azimuth shift: 113 m


The algorithm minimizes the velocity estimation error compared to a separate estimation of the two velocity components!

CONCLUSION

- 1- The algorithm developed estimates the velocity vector without a-priori information.
- 2- This technique can be implemented for a single antenna SAR in a split-aperture mode.

