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Abstract

Two neural network algorithms trained by a physical vegetation model are used to retrieve soil moisture and vegetation variables of wheat

canopies during the whole crop cycle. The first algorithm retrieves soil moisture using L band, two polarizations and multiangular

radiometric data, for each single date of radiometric acquisition. The algorithm includes roughness and vegetation effects, but does not

require a priori knowledge of roughness and vegetation parameters for the specific field. The second algorithm retrieves vegetation variables

using dual band, V polarization and multiangular radiometric data. This algorithm operates over the whole multitemporal data set. Previously

retrieved soil moisture values are also used as a priori information. The algorithms have been tested considering measurements carried out in

1993 and 1996 over wheat fields at the INRA Avignon test site.

D 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Retrieving moisture of bare and vegetated soils is a

fundamental application of microwave radiometry. Several

experimental and theoretical studies have demonstrated that

the soil emissivity is sensitive to moisture, especially when

low frequencies—typically L band—are used (Jackson &

Schmugge, 1989; Schmugge, O’Neill, & Wang, 1986).

Future satellite missions, such as the Soil Moisture and

Ocean Salinity mission (SMOS), will use an L band radio-

meter to monitor soil moisture and ocean salinity (Kerr et

al., 2001).

The effects of roughness and vegetation cover partially

reduce the monitoring capability. In an operational scenario,

where soil moisture has to be retrieved by radiometric

measurements, the effects of roughness and vegetation

cover must be correctly quantified, in order to achieve a

good retrieval accuracy. To describe vegetation effects,

models based on simple relationships between optical depth

and plant water content may be effective (Jackson &

Schmugge, 1991). However, vegetation effects heavily

depend on plant moisture and geometrical structure, besides

plant biomass. Therefore, physical models are required to

achieve a complete description of vegetation effects, which

is necessary to improve the accuracy and the reliability of

retrieval algorithms.

This study aims at investigating the capability of micro-

wave radiometers to monitor the soil moisture of a wheat

field during the whole cycle. Simultaneous retrieval of

vegetation variables is also considered. The study is based

on experimental data collected in 1993 by the six-frequency

PORTOS radiometer at the Institut National de Recherches

Agronomiques (INRA) test site near Avignon, France.

Measurements taken in 1996 at the same site are also used

for the test phase.

In 1993, brightness temperatures of a wheat field were

measured simultaneously with ground measurements of all

the significant biophysical and geometrical crop properties.

Measurements covered the whole crop cycle. Previous

investigations based on these experimental data were con-

ducted. A simple algorithm, able to retrieve soil moisture

and vegetation biomass of wheat using a semiempirical

model, was developed and tested by Wigneron, Chanzy,

Calvet, and Bruguier (1995). The model was based on the

concepts of optical depth and albedo and the coefficients

were fitted in order to match experimental emissivities.

Ferrazzoli, Wigneron, Guerriero, and Chanzy (2000) used

the same multitemporal wheat emissivities to test a theoret-

ical model based on the Radiative Transfer theory. The
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model outputs were used to develop a simple soil moisture

retrieval procedure, requiring a priori knowledge of vegeta-

tion parameters trends as a function of the Day of Year

(DoY).

In the present paper, the Avignon experiment is used to

develop and test inversion schemes, based on neural net-

works, able to retrieve the multitemporal values of soil

moisture and of some important vegetation variables.

Neural network algorithms, combined with the use of an

electromagnetic model, have proven to be a powerful tool to

face remote sensing inversion problems; the examples can

be found in Dawson (1994), Del Frate and Schiavon (1999),

Del Frate and Wang (2001) and Tsang, Chen, Oh, Marks,

and Chang (1992). Neural networks are composed of many

nonlinear computational elements (called neurons) operat-

ing in parallel and linked with each other through connec-

tions characterized by multiplying factors (Rumelhart,

Hinton, & Williams, 1986). This structure makes neural

networks inherently suitable for addressing nonlinear prob-

lems, as the remote sensing inversion problems usually are.

The inverse mapping and the input–output discriminant

relations are established during the training phase on the

basis of data generated by the electromagnetic model.

The presented retrieval procedure uses three data sets: (a)

emissivities simulated by the theoretical model for several

possible combinations of soil and vegetation variables; (b)

multitemporal emissivities measured by the PORTOS radio-

meter; and (c) multitemporal soil and vegetation variables

collected by ground measurements. The first data set is used

to train the network; the second one is used to retrieve

ground variables using the trained network; the third one is

used to test the procedure.

The work is subdivided into two subsequent issues. The

first issue considers the retrieval of soil moisture content. To

this aim, two polarizations, multiangular radiometric signa-

tures at 1.4 GHz are used. The soil moisture is retrieved for

each single date of radiometric acquisition. A priori knowl-

edge of soil roughness and vegetation status is not required.

The second issue considers the retrieval of vegetation

variables. Vertical polarization, multiangular data at 1.4

and 10.65 GHz are used, and the algorithm uses the whole

time series of radiometric signatures to retrieve the time

series of vegetation variables. Soil moisture values retrieved

in the first issue are used as a priori information in the

second issue.

2. Materials and methods

2.1. Experimental data

The brightness temperatures were measured by the multi-

frequency PORTOS radiometer operating at six frequencies,

i.e. 1.4 GHz (L band), 5.3 GHz (C band), 10.65 GHz (X

band), 23.8 GHz (K band), 36.5 GHz (Ka band) and 90

GHz. The instrument was designed by Centre National

d’Études Spatiales, France (CNES) and Matra Marconi in

1990. Measurements were carried out over wheat fields at

the INRA Avignon test site. The radiometer was mounted

on a crane boom and the field was observed at both

horizontal (H) and vertical (V) polarizations and at various

angles h (between 0j and 50j) (Wigneron, Calvet, &

Chanzy, 1995; Wigneron, Calvet, & Kerr, 1996; Wigneron,

Chanzy, et al., 1995). We used data collected over wheat

fields in two different years: 1993 and 1996. Year 1993 data

are rather detailed and continuously achieved. With a

sampling interval of radiometric measurements of about 3

days, they span a period of time in which vegetation

development can be significantly characterized: from DoY

109 (shortly after seeding) to DoY 189 (shortly before

harvest). Conversely, 1996 data are incomplete. Even

though the experiment covered a longer period of time,

from DoY 18 to DoY 176, there was a central gap where

radiometric measurements were missing, since the instru-

ment was not available.

During the measurements, soil temperature was contin-

uously monitored using platinum probes located at different

depths. Moreover, the field was observed by a thermal

infrared radiometer, looking at the same direction of the

microwave radiometer and located closely to it, on the crane

boom. The difference between soil temperature and infrared

temperature was lower than 2 K for 65% of samples and

lower than 3 K for 85% of samples. Therefore, it appears

that the thermal gradients within the canopy are relatively

small most of the time and the surface temperature obtained

by the infrared measurements is a good approximation of

the effective canopy temperature, which contributes to the

microwave emission (Ferrazzoli et al., 2000). The exper-

imental emissivity has been simply estimated as the ratio

between the radiometer brightness temperature and the

infrared temperature.

Ground measurements of year 1993 were extensive, so

that detailed biophysical and geometrical information can be

used as input to models. Fresh and dry biomass, moisture

content and volume fraction were measured for the whole

plant and for the single components, i.e. green leaves,

yellow leaves, stems and ears. Moreover, the number of

stems per m2 and the Leaf Area Index (LAI) were moni-

tored. Measurements regarded also geometrical parameters:

length, width and thickness of leaves, height and diameter of

stems and ears. Finally, the soil moisture content at several

depths was measured, as well as the bulk density and the

roughness. Vegetation data were available every day from

109 to 185, for a total of 77 samples. For soil moisture and

emissivity data, 23 samples, corresponding to time differ-

ences between radiometric and ground measurements

shorter than 3 h, have been selected. Details about multi-

temporal ground measurements are available in Wigneron,

Chanzy, et al. (1995) and Ferrazzoli et al. (2000).

In 1996, some significant ground variables, such as soil

moisture content, crop biomass and LAI, were measured.

Out of the available data, 16 samples have been selected,
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corresponding to 1996 days in which both soil moisture data

and radiometric signatures at frequencies and angles con-

sidered by us were available.

Fig. 1 summarizes the multitemporal values of some

significant parameters derived from 1993 measurements:

volumetric soil moisture content (SMC) averaged in the 0–3

cm depth, total fresh plant biomass, experimental emissiv-

ities (at an angle of 30j) at L, C and X bands. Two different

periods may be identified in the SMC trend: a first drying

period, due to the slow seasonal effect and a second

irrigation period, characterized by rapid SMC variations.

The biomass trend shows a typical ‘‘bell’’ shape, with a

growing phase and a senescence phase. A similar ‘‘bell’’

shape is observed in the brightness temperature trends, with

an expected decrease in dynamic range with increasing

frequency. The brightness increase of the first period, which

is particularly evident at L band, is due to the simultaneous

effects of soil drying and plant growing. Ferrazzoli et al.

(2000) showed that these two effects cannot be singled out

using simple empirical regressions: algorithms based on

physical models are required to achieve a reliable retrieval.

Fig. 2 is the equivalent of Fig. 1 but for 1996 data.

Unfortunately, radiometric data are missing in a central

significant part of the crop cycle.

2.2. The model

The model assumes the vegetation medium to be a

homogeneous half-space with rough interface, representing

the soil, overlaid by an ensemble of discrete lossy scatterers,

representing the plant constituents.

The electromagnetic properties of the soil are described

by its bistatic scattering coefficient. The electromagnetic

properties of the scatterers, which represent the plant con-

Fig. 2. As in Fig. 1 for trends measured in 1996.

Fig. 1. Multitemporal trends measured on site in 1993. From top to bottom:

soil moisture (m3/m3); biomass (kg/m2); emissivity at L band, 30j;
emissivity at C band, 30j; emissivity at X band, 30j.
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stituents, are described by the absorption cross sections and

the bistatic scattering cross sections. Dielectric elements of

simple shape, such as discs and cylinders, are used. Discs

represent small leaves or parts of large leaves, while

cylinders represent stems and ears.

Once the absorption and bistatic scattering cross sections

of the scatterers have been computed for a discrete set of

incidence and scattering directions, the electromagnetic

behavior of the ensemble of scatterers is obtained. To this

end, the matrix doubling algorithm is used, under the

assumption of azimuthal symmetry. The same algorithm is

used to combine the vegetation layer scattering contribution

with that due to the soil. The emissivity of the whole

medium is finally computed by means of the energy con-

servation law.

Details about the model, including the electromagnetic

approximations adopted to describe vegetation scattering,

are given by Ferrazzoli and Guerriero (1996), Ferrazzoli,

Guerriero, Paloscia, and Pampaloni (1995) and Ferrazzoli,

Guerriero, and Solimini (1991). The particular case of a

wheat crop has been simulated by considering thin vertical

cylinders (representing stems), thicker vertical cylinders

(ears) and discs (leaves) (Ferrazzoli et al., 2000). A uniform

lower half-space with rough interface represents the soil.

The Integral Equation model (Fung, 1994) is adopted to

compute its bistatic scattering coefficient.

Fig. 3 shows emissivity values simulated by the model

(using 1993 measured ground data as input) at an angle of

30j and at L, C and X bands. The figure contains the overall

emissivity as well as the two main contributions, due to soil

emission attenuated by the vegetation canopy and to the

vegetation canopy itself. Detailed comparisons between

experimental and simulated data are reported by Ferrazzoli

et al. (2000). In general, the total emissivity trends well

reproduce the experimental ones. Fig. 3 indicates that the

relative importance of vegetation emission increases with

frequency, as expected, but it is also higher at V polarization

than at H polarization, due to the vertical structure of ear and

stem. At L band, V polarization, the vegetation contribution

is important in the central part of the cycle, while soil

emission dominates at the beginning and at the end. This

behavior is interesting for applications.

Based on the indications of Fig. 3, we have used subsets

of radiometric data appearing to be particularly sensitive to

the variables to be retrieved: L band, both polarizations,

angular range from 10j to 50j for soil moisture; L and X

bands, V polarization, angular range from 20j to 40j for

vegetation variables.

In principle, C band data could also be helpful. How-

ever, we have been forced to discard them, in this study,

since they showed some calibration problems (Ferrazzoli et

al., 2000).

Fig. 3. Simulated trends using the model with 1993 ground data as input. From top to bottom: emissivity at L band, 30j; emissivity at C band, 30j; emissivity

at X band, 30j. Polarization: horizontal (left side), vertical (right side).
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2.3. The neural network

The neural network simulator (SNNS) developed at the

University of Stuttgart (Germany) (Zell et al., 1995) forms

the basic software for the retrieval algorithms implementa-

tion. As far as the topology is concerned, multilayer

perceptrons with two hidden layers have been used (Fig.

4), while a sigmoid function has been applied as activation

function of the networks units. The training of the neural

networks has been carried out by feeding it with a pair of

vectors: the input vector contains the simulated emissivities

(no noise added), the output vector contains the quantity to

be retrieved from them. The set of training vectors has

been generated by using the electromagnetic model

described above. Training with the electromagnetic model

allows to vary the input and output parameters freely

within the established bounds and ensures the consistency

of the training data (Dawson, 1994). If we would use

measured data for the training phase, it would be difficult

to find the data corresponding to a variety of conditions. A

scaling procedure has been applied to either the input or

the output vector values, while the minimization of the

error function during the training phase has been pursued

by a scaled conjugate gradient (SCG) algorithm (Møller,

1993). This is a member of the class of conjugate gradient

methods, general purpose second order techniques that

help to minimize goal functions of several variables.

Second order means that such methods use the second

derivatives of the error function, while first-order techni-

ques like standard back-propagation only use the first

derivatives.

2.4. The retrieval procedure

The neural network software described in Section 2.3 has

been used to retrieve soil moisture and vegetation variables

from radiometric measurements. In both cases, the follow-

ing sequence has been applied.

(1) The model generates a set of simulated emissivities

corresponding to various frequencies, polarizations and

angles, and to several possible conditions of soil and

vegetation in the field. This model output data set is used

to train the network.

(2) The neural network performs the inversion. In the

case of soil moisture, the estimation is straightforward, i.e.

given the emissivities measured for a certain day, the net

estimates the soil moisture corresponding to that day. For

vegetation variables, a different procedure has been adopted.

The net receives multitemporal emissivities as inputs in this

case. In the output, some parameters describing the time

trend of the vegetation variables are estimated. Once the

values of these parameters are known, and by using some

assumptions which will be illustrated later, the time trend of

each single vegetation variable is derived.

(3) Retrieved variables are compared with those meas-

ured at the site.

Table 1 indicates the input data required by the model. It

may be useful to remind that the product between leaf

density and leaf area gives the Leaf Area Index (in m2/m2).

Assuming all the listed variables to vary in a completely

random fashion and independently from each other would

lead to an unmanageable physical scenario. On the other

hand, such an assumption would not be realistic, since

most of vegetation variables evolve following some cyclic

trends and some correlations among each other. Therefore,

some a priori assumptions have been adopted for the

vegetation variables. In particular, the 1993 multitemporal

vegetation data set has been assumed as a reference and the

biomass trend has been assumed to show a ‘‘bell’’ shape

similar to that of the reference. It means that the time

behaviour of the vegetation variables measured in the 77

DoYs mentioned in Section 2.1 is assumed to be repre-

sentative of the growing cycle of wheat crops. By using

such an assumption, the generation of data by means of the

model hinges on the variation of the values of some

significant parameters of the ‘‘bell’’, such as the width

and its time location. In other words, a correspondence

between the DoY of the vegetation cycle considered as a

reference (for which we have vegetation measurements

available) and the DoY of the new generated vegetation

cycles is established.

A crop density value CD (i.e. stem, ear and leaf density

per m2) has been considered as well. This parameter has

Table 1

Major input parameters for the electromagnetic model

System parameters Frequency (GHz)

Polarization

Incidence angle (degrees)

Soil parameters Volumetric moisture content (%)

Surface height standard deviation (cm)

Surface correlation length (cm)

Vegetation parameters Moisture of stems, ears, leaves (%)

Radius and height of stems and ears (cm)

Length, width and thickness of leaves (cm)

Density of stems, ears and leaves (N/m2)

Fig. 4. Neural network feedforward topology.
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been put into relationship with a density factor K defined as

follows:

K ¼ CD

CDref

ð1Þ

where CDref is the crop density of the reference site. K has

been assumed to be constant during the crop cycle, bounded

within the range 0.5 <K < 1.5.

As far as soil moisture is concerned, the realistic range

from 6.25% to 37.5% has been considered for the training

phase. The height standard deviation r has been assumed to

be a priori unknown, but constant during the cycle, with a

value internal to the realistic interval 0.5–1.5 cm. For the

sake of simplicity, a unique value of 5 cm has been assumed

for correlation length lc; this simplification does not heavily

violate the generality of the SMC retrieval procedure, since

the effects of lc variations are moderate at L band (used to

retrieve SMC) and, in any case, similar to those of slight and

opposite variations of r (Ferrazzoli et al., 2000).

2.4.1. Soil moisture retrieval

As previously described, a set of simulated emissivities

has been generated by running the model with a correspond-

ing set of input variables. On the basis of the previous

considerations and the indications derived by the trends of

Fig. 3, we selected for the model a particular input set,

described in the central column (Problem 1 column) of

Table 2. All the possible combinations of the described

inputs have been considered together with 77 sets of

vegetation variables corresponding to the 77 DoYs for

which vegetation data were available. The corresponding

emissivities have been computed yielding a total of 180180

values.

As far as the neural network is concerned, the role of

inputs and outputs is reversed with respect to the model. In

the training phase, the input–output pairs of the emissivities

computed by the model and the corresponding values of

SMC have been used to compute the neural network

coefficients. The latter establish a correspondence between

multipolarization multiangle L band emissivities and SMC

values, in a simulated scenario of uncertainty about vegeta-

tion status and of the values of r and K.

In the test phase, the soil moistures corresponding to the

dates of radiometric measurements have been considered as

unknowns to be retrieved. A set of measured emissivities (at

the same frequency, polarizations and angles as those of the

training phase) has been fed to the trained network, giving

as output the estimated SMC values. The retrieved SMCs

have then been compared with the values measured on site

at various depths.

The network topology illustrated in Fig. 4 has in this case

the form 10-8-6-1. The 10 input nodes correspond to

emissivities measured at one frequency, two polarizations

and five angles; the hidden nodes are processing units, the

output node gives the SMC. The retrieval is performed by

the same network for all DoYs with radiometric measure-

ments available.

2.4.2. Vegetation variables retrieval

The retrieval of vegetation parameters is performed in a

completely different fashion with respect to the soil mois-

ture one. In this case, instead of directly retrieving (on a day

by day basis) the parameter of interest from the measured

emissivities, its whole time series is derived by means of the

time series of the emissivities, taking advantage of the

capabilities of a multitemporal observation. As previously

stated, the crop cycle to be retrieved has been assumed to

have a shape similar to that of the reference one (see Fig. 1),

but with possible variations in time duration and time shift.

Therefore, if the expression

Yr ¼ f ðDrÞ ð2Þ

gives the trend of a vegetation variable Yr throughout the

DoY=Dr of the cycle used as reference, for the same

vegetation variable Y belonging to a general cycle with

DoY=D, we can assume that the same expression holds:

Y ¼ Kf ðDÞ ð3Þ

with the following correspondence between the two time

scales:

Dr ¼ aðD� D0Þ þ bþ D0: ð4Þ

The density factor K is defined in Eq. (1) and D0 is the day

of the beginning of the reference cycle (110 in our case).

Therefore, if the general trend of a variable is assumed to be

characterized by variations in width (related to a), maximum

value (related to K, since the density affects the total

biomass) and time location of the maximum (related to b),

the parameters to be retrieved are a (‘‘cycle duration

factor’’), b (‘‘time shift’’ of the cycle) and K (‘‘density

factor’’), and their estimation is performed starting from a

set of emissivities measured during the cycle.

For generating the time series necessary to train the

neural network, we used Eq. (4) letting a vary in the range

0.7–1.3 and b in the range � 10 to 10. The simulated

emissivities have been taken for the so obtained values of

Dr and by using, for the soil moisture, the time series of

values previously estimated. The other inputs to the model

Table 2

Selected input sets to the model for problem 1 (soil moisture retrieval) and

problem 2 (vegetation variables retrieval)

Parameter Problem 1 Problem 2

Frequency 1.4 GHz 1.4 and 10.65 GHz

Polarization H and V V

Incidence angle 10–50j, step 10j 20j, 40j
Soil moisture 6.25–37.5%, step 1.25 values retrieved

in problem 1

Surface standard

deviation

0.5, 1, 1.5 cm

Growth factor 0.5, 1, 1.5
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have been considered as indicated in Problem 2 column of

Table 2. Again, the 77 sets of vegetation variables

corresponding to the 77 DoYs (from DoY 109 to DoY

185) for which vegetation data were available have been

also used.

The retrieval is carried out using radiometric data of ND

days as input. The number ND and the specification of the

days of the multitemporal simulated emissivity sequences

have been chosen to match-up the available measurements.

Such sequences, in conjunction with the vectors containing

the corresponding values of a, b, K and r (which has also

been included in the retrieval scheme), have been used to

compute the network coefficients. The latter establish a

correspondence between multitemporal sets of two-fre-

quency multiangle V polarization emissivities and sets of

a, b, K and r values. Once these values have been estimated

starting from the measured emissivities at the same fre-

quency, polarizations and angles as those of the training

phase, the multitemporal values of any vegetation variable

Y may be retrieved. The retrieved time series will be given

by:

Y ðDÞ ¼ KYr½aðD� D0Þ þ bþ D0�

for stem, ear and leaf density (and LAI), and by:

Y ðDÞ ¼ Yr½aðD� D0Þ þ bþ D0�

for geometrical variables and moistures of stem, ear and

leaf.

It is worth to note that once the correspondence (Eq.

(4)) between D and Dr is established, the preceding

formulas provide an estimation of the vegetation parame-

ters along the whole crop cycle. This means that the

retrieval is also extended to times when the emissivities

are not measured.

The network considered for this problem has 16 input

nodes corresponding to two frequencies, one polarization,

two angles and ND = 4; 12 and 8 units in the first and in the

second hidden layer, respectively; four output nodes corre-

sponding to a, b, K, r. Similar networks have been consid-

ered with ND = 8 and ND = 16.

3. Results and comments

3.1. Soil moisture

The procedure described in Section 2.4.1 has been

applied to retrieve two sets of SMC values corresponding

to different days of year 1993 and 1996. These two sets

cover the time periods represented in Figs. 1 and 2.

As previously stated, the retrieval network had been

trained by a model under the simplifying assumption of

describing the soil as a half-space. Since SMC had been

measured at several depths, the unique retrieved value has

been compared with data measured at various depths. The

comparison between retrieved and measured SMCs for year

1993 is shown in Fig. 5. Two periods may be identified.

During the first period, from about DoY 120 to about DoY

Fig. 5. Comparison between measured and retrieved multitemporal trends of soil moisture in 1993.
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160, SMC variations with time were slow. Moreover, since

all measurements were carried out in daytime under rela-

tively stable conditions, the variations of SMC with depth

were limited. In this period, the retrieved time series well

reproduces the measured one. The last samples belong to the

irrigation period (from about DoY 160 to about DoY 185),

characterized by rapid variations and stronger differences

associated to variations of depth. Here some discrepancies

are observed since, during irrigation, even small time differ-

ences between radiometric and ground acquisitions may

produce appreciable discrepancies between the measured

SMC (used in the test) and the value really assumed by

SMC during the radiometer observation. Moreover, the

model assumption of vertical stems and ears looses validity

in the maturity stage, since enhanced bending effects had

been observed.

Fig. 6 shows the rms error in the retrieved soil moisture

(in m3/m3) as a function of depth of direct measurements.

The rms has been computed both considering the whole

period (continuous line) and after removal of the last four

samples, collected during irrigation (dashed line). Fig. 6

indicates that the rms error increases with depth and con-

firms the assumption that L band is mostly sensitive to the

moisture content of an upper layer of few centimeters

(Jackson, O’Neill, & Swift, 1997; Jackson & Schmugge,

1989). Moreover, it may be observed that removing the

irrigation samples leads to an evident rms error decrease and

to a reduced depth effect.

In Fig. 7, we report the results corresponding to SMC

values estimated for year 1996. The agreement is quite

satisfactory also in this case, especially for samples taken at

0–1 cm depth. The corresponding rms errors are slightly

lower than the 1993 values shown in Fig. 6. However, it

must be considered that most of observations were done

with short vegetation, as indicated in Fig. 2.

In general, the retrieval is successful. It must be stressed

that detailed a priori knowledge of soil roughness and

vegetation status is not required. What we have assumed

to be a priori known is the crop type and the shape of the

crop growing cycle.

3.2. Vegetation variables

The procedure described in Section 2.4.2, in conjunction

with the SMC values retrieved as described in Section 3.1,

has been used to retrieve the a, b, K and r parameters. The

inversion scheme has been applied only to 1993 data, since

Fig. 6. The rms error in soil moisture retrieval vs. depth of measurement

samples. Continuous line: all 23 days. Dashed line: first 19 days.

Fig. 7. As in Fig. 5 for trends of 1996.

Table 3

Results of the vegetation retrieval algorithm using different numbers of ND

(a, b and K are dimensionless, r in cm)

ND a b K r

4 1.16 � 3.3 1.00 0.55

8 1.06 � 3.2 1.01 0.63

16 1.05 � 2.1 1.00 0.61

Fig. 8. Comparison between measured and retrieved multitemporal trends

of Leaf Area Index in 1993.
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1996 data showed a significant lack of measurements in the

central part of crop cycle, which is evident in Fig. 2.

Only 16 out of the 23 days for which we had measure-

ments available have been considered in our test case. This

choice allowed us to reduce the algorithm complexity. Also

the cases with ND = 8 and ND = 4 have been tested. In such

cases, the 16-day sequences have been sampled with steps 2

and 4, respectively. The obtained results are reported in

Table 3. Since radiometric measurements used in this study

have been taken over the same biomass cycle used as

reference, which means DuDr, a fully successful result

would have been obtained with the following output values

from the retrieval procedures: a = 1, b = 0, K = 1. Taking the

LAI as an example of crop variable, Fig. 8 shows a

comparison between retrieved and measured time patterns

with ND = 16. The correspondence appears to be quite good.

Also the estimation of r, of about 0.6 cm, is satisfactory. In

fact, ground measurements indicated r to be in a range

between 0.5 and 0.9 cm.

3.3. Comments

The procedure adopted to retrieve soil moisture (Sec-

tions 2.4.1 and 3.1) proves to be quite effective, and may

be useful in the exploitation of data collected by future

spaceborne radiometers. In fact, in this first part of the

work, only L band signatures are used, and the retrieval is

performed for each single date. Moreover, a priori knowl-

edge of soil roughness and vegetation status is not

required. The soil is supposed to be covered by any

vegetation canopy belonging to an ensemble of realistic

cases. What we assume to be a priori known is the crop

type. This could be a limitation when operating over pixels

filled with various vegetation types. However, the proce-

dure could be extended to the case of mixed pixels. In fact,

the network could be trained by emissivity data simulated

for a mixture of vegetation types, and different fractions of

coverage could be assumed.

The second part of the procedure (Sections 2.4.2 and

3.2), focused on the retrieval of vegetation variables,

requires multitemporal dual band radiometric signatures

collected over specific fields. It must be recognized that

this acquisition mode is not achievable in a near future with

spaceborne radiometers. However, the availability of a

detailed data set, such as the one collected at Avignon site,

has allowed us to develop and test a new algorithm whose

validity is not necessarily restricted to passive microwave

signatures. The retrieval scheme may be also applied to

active systems, since the model is able to simulate also the

backscatter coefficient (Ferrazzoli et al., 1991) and the

numerical procedure described above is not influenced by

the kind of instrument providing the measured data. Some

studies (Del Frate et al., 2001) lead to encouraging results,

indicating also that Avignon ground data may be used as a

valid reference if microwave measurements carried out over

other sites are considered.
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