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ABSTRACT 
 
Neural networks algorithms have already shown good 
capabilities in handling nonlinear inversion problems in 
hyperspectral remote sensing. In this study we investigate 
on their potential in solving spectral unmixing.  A Multi-
Layer Perceptron (MLP) neural network scheme is trained 
for the implementation of a pixel-based classification 
algorithm. Subsequently, for the output response,  the 
“winner-takes-all” rule is replaced by a more soft 
interpretation able to give the percentage with which, each 
of the considered land cover classes, may be associated to 
the analysed pixel. In an experimental set-up addressing 
multi-temporal and multi-angular CHRIS-PROBA imagery, 
the results obtained with such a technique have been 
compared  with those yielded by Linear Spectral Unmixing 
(LSU), up to date one of the most frequently used approach 
for dealing with the unmixing problems. 
 

Index Terms— Spectral Unimixing, Hyperspectral, 
Neural Networks 
 

1. INTRODUCTION 
 
In hyper-spectral imagery, mixed pixels are a mixture of 
distinct substances, and they exist for one of two reasons. 
First, if the spatial resolution of a sensor is low enough that 
disparate material can jointly occupy a single pixel, the 
resulting spectral measurement will be some composite of 
individual spectra. Second, mixed pixels can result when 
distinct materials are combined into homogeneous mixture. 
This circumstance can occur independently of the spatial 
resolution of the sensor.  

The basic premise of mixture modeling is that, within a 
given scene, the surface is dominated by a small number of 
different materials, all having relatively constant spectral 
properties, the so-called endmembers. If we assume that 
most of the spectral variability within a scene results from 
the varying proportions of the endmembers, it consequently 
follows that some combinations of their spectral properties 
can model the spectral variability observed. If the 

endmembers in a pixel appear in spatially segregated 
patterns similar to a square chessboard, the adopted model is 
basically linear. In this case the spectrum of a mixed pixel is 
a linear combination of the endmember spectra weighted by 
the fractional area coverage of each endmember in a pixel. 
This model can be expressed by: 
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where x is the received pixel spectrum vector, S is the 
matrix whose columns are the M = 1,…,i endmembers, a is 
the fractional abundance vector and w is the additive 
observation noise vector. Otherwise, if the components of 
interest in a pixel are in an intimate association, like sand 
grains of different composition in a beach deposit, light 
typically interacts with more than one component as it is 
multiply scattered, and the mixing between these different 
components is a nonlinear process. Which character (linear 
or nonlinear) dominates the spectral signature of mixed 
pixel is still an unresolved issue. Several applications have 
demonstrated that the linear approach is a useful technique 
for interpreting the variability in remote sensing data [1]. 
Despite the obvious advantages of using a nonlinear 
approach for intimate mixtures, it has not been widely 
applied to remotely acquired data, because the particle size, 
together with composition, and alteration state of the 
endmembers are essential controlling parameters of the 
solutions. For this reason, the Linear Mixing Model is 
considered to be the most frequently used model for 
representing the synthesis of mixed pixels from distinct 
endmembers [2].  

The complete unmixing problem can be decomposed as 
a sequence of three consecutive procedures: 
 
• Dimensionality reduction: Reduce the dimensionality 

of the input data vector; 



• Endmember determination: Estimate the set of 
distinct spectra in the scene; 

• Inversion: Estimate the fractional abundances of each 
mixed pixel from its spectrum and the endmember 
spectra. 

 
If dimensionality reduction, by itself, is not a necessary step 
for unmixing, it is natural to retain it as a stage of unmixing 
because this technique may expedite subsequent processing 
phases. 
 

2. METHODOLOGY 
 
In the proposed study the implementation of both the 
dimensionality reduction and the inversion phases rely on 
neural networks algorithms therefore more in general we 
can say that the study proposes a neural network approach 
for pixel unmixing . Neural networks models have been 
already proven to own good properties in handling complex 
nonlinear problems. They learn their discriminating 
relationships directly from the data and do not require 
particular a-priori knowledge on the quantities to be 
estimated. It has already been shown how, in the context of 
hyperspectral imagery, neural networks represent a rather 
competitive family of algorithms for the classification of the 
data [3]. They have also been successfully applied for the 
design of one of the first end-to-end processing scheme 
dedicated to hyperspectral imagery provided by the 
Compact High-Resolution Imaging Spectrometer (CHRIS), 
on board of the Project for On-Board Autonomy (PROBA) 
satellite [4].  

As shown in [5], dimensionality reduction can be 
performed by NN trough an auto-associative architecture. 
The particular network topology employs three hidden 
layers, including an internal “bottleneck” layer of smaller 
dimension than either input or output. The network is 
trained to perform the identity mapping, where the input is 
approximated at the output layer. Since there are fewer units 
in the bottleneck layer than the output, the bottleneck nodes 
must represent or encode the information in the inputs for 
the subsequent layers to reconstruct the input. Hence a 
feature extraction from the input vector is performed and the 
network is said to provide a nonlinear principal component 
analysis (NLPCA). 

As far as the endmember determination is concerned, 
this has been based on the selection of the classes 
characterizing the final land cover maps. Finally, the 
abundances estimation was carried out through the analysis 
of the output of the classification provided by the neural 
network algorithm trained using as input the nonlinear 
principal components provided by the bottleneck layer of 
the AANN and as output the desired classification response. 
For this latter, in the learning phase, no mixed training 

pixels have been used and the following standard code was 
considered: the output unit associated to the actual land 
cover class had value “1” while the remaining ones  had 
value “0”. Although the network is trained considering 
binary values in the output vector, the activations functions 
of its processing units are the real valued sigmoidal 
functions, providing an output value in the range [0,1]. 
Therefore such a value can be considered as an abundance 
measurement. More analytically the abundance ai 
corresponding to i-esm class is given by the following 
expression: 
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where ok indicates the neural network output associated to 
the k-esm endmember and M is the total number of 
endmembers, in this case M = 10. 
 

 
3. MATERIAL AND DATA SET 

 
The chosen test site is the area surrounding Tor Vergata 
University and the town of Frascati. This is a mainly flat 
area located in the southeast of Rome, Italy, which 
represents an interesting heterogeneous landscape. The 
neural network methodology was applied to a combination 
of hyper-spectral multi-angular and multi-temporal CHRIS-
PROBA mode-3 acquisitions. Each acquisition consisted of 
18 measurements and a set of 72 measurements was 
obtained adding a 36° acquisition to a 3 dates set of 
measurements taken at nadir.   

The multi-temporal dataset was composed by three 
acquisitions, taken on February 28, 2006, August 19, 2006 
and October 9, 2006. Such dates are, in principle, 
particularly suitable to sample the crops' growth cycle, 
hence to catch the differences among the multi temporal 
signatures associated to each land cover type. It should be 
added that the images underwent atmospheric calibration 
and other pre-processing stages such as destriping according 
to the procedures indicated in [4]. The number of nodes in 
the NLPCA bottleneck layer was chosen through a 
comparison with a standard PCA. The selected topology 
consists of 72-25-5-25-72 nodes. In fact, it resulted that the 
first 5 PCA components contained almost the 99% of the 
whole statistical information. The choice of 25 units for the 
two intermediate layers resulted from a comparison of 
various network topologies. In a successive step the 5 
nonlinear components have been used to produce the land 
cover map of the test area. This time the MLP topology is 
formed by two hidden layers of 36 units while the following 
classes have been considered for the output: vineyards 



(VY); pasture (PS); permanent crops (PC); industrial (IN); 
dark asphalt (DA); maize (MA); built-up area (BU); bright 
asphalt (BA); agricultural area (AA). 

 
 

4. RESULTS 
 
The neural algorithm classification has been trained using a 
training set and a test set of 3300 and 1975 patterns, 
respectively. The number of training epochs necessary to 
get the network trained is about 130, which is significantly 
lower respect to the case where the 72 measurements are 
given straightforward to the net. 

The abundances estimation was obtained through the 
analysis of the output of the classification of the neural 
network algorithm adopting the procedure explained in the 
previous section. The value of each output was used as an 
estimator of the fractional abundances of each class. The 
technique was compared through a quantitative exercise 
with the Linear Spectral Unmixing (LSU) method [6]. In 
particular a ground-truth in terms of percentages of 
abundances of the considered classes was determined by 
visual inspection using a very high resolution panchromatic 
Quickbird image for a certain number of pixels. It should be 
noted that the considered CHRIS-PROBA imagery pixel 
size resolution is 18 m, so the panchromatic Quickbird 
characterized by a less than 1 m resolution can be 
recognized as suitable for producing the ground-truth 
reference. Table 1 reports the mean and the standard 
deviation values of each endmember considering the whole 
set of measured CHRIS-PROBA pixels.  

In Fig. 1 we report some examples of results obtained on 
selected pixels extracted from the data set. It can be noted 
that the LSU was unable to correctly estimate the 
abundances of the elements, providing values always above 
0 also in those pixels where the corresponding elements are 
not present. This behavior can be explained considering that 
standard unmixing methodologies such as LSU, to produce 
good result, require the endmembers to be the most 
uncorrelated as possible. Usually the endmembers extracted 
from the image, correspond to macroscopic objects in the 
scene such as water, soil or vegetation. Differently, in our 
case, the endmembers correspond to classes that may be 
very correlated each other, leading a standard unmixing 
technique to a wrong result. On the other hand, the 
unmixing technique using neural network provides a good 
accuracy even if the chosen endmembers are closely 
correlated. In Table 2 we report the quantitative assessment 
in terms of RMSE (Root Mean Square Error)  computed 
over the entire data set considering all classes. From the 
reported values we see that NN seems to be definitely more 
effective than LSU. 

 

Mean  St. Dev.
VY 0,17  0,26 
PS 0,16  0,30 
PC 0,17  0,26 
IN  0,06  0,21 
DA  0,10  0,26 
MA  0,00  0,00 
BU  0,12  0,24 
BA  0,16  0,29 
AA  0,07  0,15 

 
Table 1. Statistics of the abundances values for the 
considered data set. See the text for the class code. 
 

LSU  NN 
RMSE  0.35  0.08 

 
Table 2. RMSE evaluated for the estimation of the 
abundances of the pixels in the considered data set using the 
neural network and the LSU approaches. 
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Fig. 1: Examples extracted from the data set of ground-truth and estimated abundances 
 
 


