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Introduction

What is Faraday rotation

SAR antenna - Cause

- The satellite-target propagation path
crosses the ionosphere

- lonosphere is an anisotropic medium
due to the charged particles in
a persistent Earth magnetic field

—> The polarization plane of the radio wave
rotates

- Effects

- Reciprocity does not hold

—> Error in the estimation of calibration
distortion

- Polarimetric techniques (e.g.
decompositions) can be affected
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Faraday rotation

Prediction from TEC data

SAR antenna

- Prediction of FR:

Q= % B cos(y )sec(6,) TEC

- Q: one-way FR angle

- K: constant

- f: frequency

- TEC: total electron content
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Faraday rotation

Estimation from SLC data

- FR model (assuming polarimetric calibration of the system)
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Faraday rotation
Estimation from SLC data

- FR model (assuming polarimetric calibration of the system)
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Faraday rotation

Proposed approach: estimation from unfocussed raw data (A)

L1.1
SLC data

SAR

processor

— SLC formation involves several steps (example ESA PALSAR verification processor)

- Orthogonalisation of the signals

- Range focussing

- Doppler centroid estimation

= Azimuth focussing (Stolt interpolation)
—> Polarization channel coregistration

- Some operations might be nonlinear in the polarization components
- The Faraday rotation estimation might be corrupted (B)
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Faraday rotation

Proposed approach: estimation from unfocussed raw data (A)

L1.1
SLC data

SAR
processor

- SLC formation integrates pulses coming from different portions of the ionosphere

ionosphere

RAW image

SLC image
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Faraday rotation

Proposed approach: estimation from unfocussed raw data (A)

L1.1
SLC data
SAR

processor

- The physical relationship between transmitted and received pulses subject to
FR is valid on each polarimetric sample of raw data
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Faraday rotation

Proposed approach: estimation from unfocussed raw data

- Same estimation methods of SLC data

- Estimation of FR angle using the relationship of circular basis change applied to

unfocussed raw data
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Results on ALOS-PALSAR

Pauli RGB of SLC
product
(PALSAR L1.1)

—> PALSAR acquisition

- South Italy

—> DESCENDING pass
- Local time: 10:15 am
- April 2008
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Comparison RAW vs. SLC

RAW data preprocessing

L1.0
RAW data
Faraday

rotation
estimation

gain and offset | interference

compensation removal
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Comparison RAW vs. SLC

Faraday rotation maps

L1.1 SLC data

L1.0

RAW data Faraday

rotation
gain and offset | interference | estimation

compensation ' removal

COMPARISON
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Comparison RAW vs. SLC

Faraday rotation Maps
L1.1 SLC data

L1.0

RAW data Faraday

rotation
gain and offset interference | estimation

compensation removal

COMPARISON




Comparison RAW vs. SLC

Histograms of estimated FR

—> SLC data (PALSAR L1.1)

Q=-8.10°
o =093

> RAW data (PALSAR L1.0)

Q=-794
o =0.85
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Comparison RAW vs. SLC

Range profiles
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Comparison RAW vs. SLC

Azimuth profiles

0 0.5 1 1.5 2
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Comparison RAW vs. SLC

Extensive analysis

- 30+ polarimetric PALSAR products

Q2 before focusing [deg]
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Comparison with TEC data

- 30+ polarimetric PALSAR products
- TEC data from ftp.aiub.ch

FR estimated by circular basis change FR estimated from TEC data

20 ! ! !

Number of PALSAR products
Number of PALSAR products

Q [deg] | / Q [deg]

TEC prediction is biased with
respect to FR estimation
f2esa from data products
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Effect of the polarimetric calibration

- Comparison between un-calibrated and calibrated products using the distortion
matrices written in the product header (Shimada, 2007)

; estimates over calibrated and
"""""""" T un-calibrated SLC data 7

() estimated on un-calibrated products [deg]

—5 0 5
Q) estimated on calibrated products [deg]
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Conclusions
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- FR estimated from RAW data vs. SLC data
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— FR model and estimation methods are the same for RAW and SLC estimation
— Mean value and variance of FR angles are very close

— No particular range/azimuth trend has been observed

— Impact of the distortion matrices is negligible

— Prediction from TEC data is slightly biased

— Investigation of the spatial variation of TEC from RAW data is in progress

Practical implications

— FR estimated from RAW data can be used to improve the focusing in low
frequency SAR

— Mean value of FR angle can be annotated in the product header of RAW data
and copied into the header of SLC data

.~eSsa 21



Introduction

Dual Polarimetry VS Full Polarimetry

- f
0= % N B cos ) sec By dh [radians) (1)
0
where K is a constant of value 2.365 x 10* in S.L units, B is the
magnetic flux density, IV is the electron density. and ¢ and fy are
the angles the wavenormal makes with the earth’s magnetic field
and the downward wvertical, respectively [see Fig. 1(c)]. From
(1), it is obvious that FR increases with increasing wavelength
(the FR magnitude is 16 times greater at L-band than at C-band).
It should be noted that the microwave signal is rotated by {2 in
the same sense each time it traverses the ionosphere (see Section
V). For SAR, the total FR will, therefore, be double the one-way
FR experienced by a passive microwave sensor.
A good approximation to {2 is given by

K & —
0= — x Beosysecfy x TEC (2)
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A dual-pol mode has the same transmitting charc Q = iarg(zuzg‘-_]

M, M, cos sinfl]
I | —sinQ cnafl_'. (3)

M, M

S Su cosf)  smnf)

Sy 5, [—-snf) cosfd
Nonzero Faraday rotation causes the cross-pol measurements
M, and M, to be non-reciprocal. an effect that can be
exploited for Faraday rotation retrieval In this paper two
different Faraday rotation estimation methods are applied. One
of the approaches extracts the Faraday rotation angle 1 by
solving the equation system 1n equation 2 directly (see [8]):

g-ly o (M, -M,) w
2 (M, +M_)

Ly

A more robust version of this approach uses spatial
averaging to reduce the influence of speckle on the estimated
£} angle The second approach mtroduced by Bickel and Bates
[9] transforms A to a circular basis Z via

'z n Zp LoJjl | My Myl j 5)
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From Equation (5) £2 can be denived by calculating

same receiving characteristics of a quad-pol mod..
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