Faraday rotation estimation from unfocussed ALOS-PALSAR raw data

Marco Lavalle¹⁻³, E. Pottier², D. Solimini¹, N. Miranda³

¹DISP, Tor Vergata University, Rome, Italy ² IETR UMR CNRS 6164, University of Rennes 1, Rennes, France ³European Space Agency, ESA-ESRIN, Frascati, Italy

PollnSAR Workshop 26-31 Jan 2008

Outline

Introduction

► FR prediction and estimation methods

Unfocussed raw data analysis

- Results on ALOS-PALSAR
- Conclusions

Introduction

What is Faraday rotation

→ Cause

- → The satellite-target propagation path crosses the ionosphere
- → Ionosphere is an anisotropic medium due to the charged particles in a persistent Earth magnetic field
- → The polarization plane of the radio wave rotates

\rightarrow Effects

- ightarrow Reciprocity does not hold
- → Error in the estimation of calibration distortion
- → Polarimetric techniques (e.g. decompositions) can be affected

Prediction from TEC data

 \rightarrow Prediction of FR:

$$\Omega \cong \frac{K}{f^2} B \cos(\psi) \sec(\theta_0) TEC$$

- $\rightarrow \Omega$: one-way FR angle
- \rightarrow K: constant
- \rightarrow *f*: frequency
- \rightarrow *TEC*: total electron content

Estimation from SLC data

 \rightarrow FR model (assuming polarimetric calibration of the system)

$$\begin{pmatrix} M_{HH} & M_{HV} \\ M_{VH} & M_{VV} \end{pmatrix} = A e^{i\phi} \begin{pmatrix} \cos \Omega & \sin \Omega \\ -\sin \Omega & \cos \Omega \end{pmatrix} \begin{pmatrix} S_{HH} & S_{HV} \\ S_{VH} & S_{VV} \end{pmatrix} \begin{pmatrix} \cos \Omega & \sin \Omega \\ -\sin \Omega & \cos \Omega \end{pmatrix}$$

Estimation from SLC data

 \rightarrow FR model (assuming polarimetric calibration of the system)

$$\begin{pmatrix} M_{HH} & M_{HV} \\ M_{VH} & M_{VV} \end{pmatrix} = A e^{ij\phi} \begin{pmatrix} \cos\Omega & \sin\Omega \\ -\sin\Omega & \cos\Omega \end{pmatrix} \begin{pmatrix} S_{HH} & S_{HV} \\ S_{VH} & S_{VV} \end{pmatrix} \begin{pmatrix} \cos\Omega & \sin\Omega \\ -\sin\Omega & \cos\Omega \end{pmatrix}$$

1. From HV-VH difference

$$\Omega = \frac{1}{2} \tan^{-1} \left(\frac{M_{HV} - M_{VH}}{M_{HH} + M_{VV}} \right)$$

2. From circular basis change (Bickel and Bates, 1965)

Proposed approach: estimation from unfocussed raw data (A)

→ SLC formation involves several steps (example ESA PALSAR verification processor)

- \rightarrow Orthogonalisation of the signals
- \rightarrow Range focussing
- \rightarrow Doppler centroid estimation
- → Azimuth focussing (Stolt interpolation)
- ightarrow Polarization channel coregistration

 \rightarrow Some operations might be nonlinear in the polarization components

 \rightarrow The Faraday rotation estimation might be corrupted (B)

Proposed approach: estimation from unfocussed raw data (A)

 \rightarrow SLC formation integrates pulses coming from different portions of the ionosphere

8

Proposed approach: estimation from unfocussed raw data (A)

→ The physical relationship between transmitted and received pulses subject to FR is valid on each polarimetric sample of raw data

$$\begin{pmatrix} W_{HH} & W_{HV} \\ W_{VH} & W_{VV} \end{pmatrix} \models \begin{pmatrix} \cos \Omega & \sin \Omega \\ -\sin \Omega & \cos \Omega \end{pmatrix} \begin{pmatrix} R_{HH} & R_{HV} \\ R_{VH} & R_{VV} \end{pmatrix} \begin{pmatrix} \cos \Omega & \sin \Omega \\ -\sin \Omega & \cos \Omega \end{pmatrix}$$

Proposed approach: estimation from unfocussed raw data

- ightarrow Same estimation methods of SLC data
- → Estimation of FR angle using the relationship of circular basis change applied to unfocussed raw data

$$\begin{pmatrix} W_{LL} & W_{LR} \\ W_{RL} & W_{RR} \end{pmatrix} = \begin{pmatrix} 1 & j \\ j & 1 \end{pmatrix} \begin{pmatrix} W_{HH} & W_{HV} \\ W_{VH} & W_{VV} \end{pmatrix} \begin{pmatrix} 1 & j \\ j & 1 \end{pmatrix}$$

$$\Omega = \frac{1}{4} \arg \left(W_{_{LR}} W_{_{RL}}^* \right)$$

Results on ALOS-PALSAR

Pauli RGB of SLC product (PALSAR L1.1)

- \rightarrow PALSAR acquisition
 - \rightarrow South Italy
 - \rightarrow DESCENDING pass
 - \rightarrow Local time: 10:15 am
 - \rightarrow April 2008

RAW data preprocessing

Faraday rotation maps

Faraday rotation maps

Histograms of estimated FR

Range profiles

Azimuth profiles

Extensive analysis

 \rightarrow 30+ polarimetric PALSAR products

Comparison with TEC data

- \rightarrow 30+ polarimetric PALSAR products
- \rightarrow TEC data from *ftp.aiub.ch*

Effect of the polarimetric calibration

→ Comparison between un-calibrated and calibrated products using the distortion matrices written in the product header (Shimada, 2007)

Conclusions

\rightarrow FR estimated from RAW data vs. SLC data

- FR model and estimation methods are the same for RAW and SLC estimation
- Mean value and variance of FR angles are very close
- No particular range/azimuth trend has been observed
- Impact of the distortion matrices is negligible
- Prediction from TEC data is slightly biased
- Investigation of the spatial variation of TEC from RAW data is in progress

\rightarrow Practical implications

- FR estimated from RAW data can be used to improve the focusing in low frequency SAR
- Mean value of FR angle can be annotated in the product header of RAW data and copied into the header of SLC data

Introduction

Dual Polarimetry VS Full Polarimetry

$$\Omega = \frac{K}{f^2} \int_0^h NB \cos\psi \sec\theta_0 \, dh \, [\text{radians}] \tag{1}$$

where K is a constant of value 2.365×10^4 in S.I. units, B is the magnetic flux density, N is the electron density, and ψ and θ_0 are the angles the wavenormal makes with the earth's magnetic field and the downward vertical, respectively [see Fig. 1(c)]. From (1), it is obvious that FR increases with increasing wavelength (the FR magnitude is 16 times greater at L-band than at C-band). It should be noted that the microwave signal is rotated by Ω in the same sense each time it traverses the ionosphere (see Section V). For SAR, the total FR will, therefore, be double the one-way FR experienced by a passive microwave sensor.

A good approximation to Ω is given by

$$\Omega = \frac{K}{f^2} \times \overline{B\cos\psi\sec\theta_0} \times \text{TEC} \tag{2}$$

$$\begin{bmatrix} M_{hh} & M_{vh} \\ M_{hv} & M_{vv} \end{bmatrix} = \begin{bmatrix} \cos\Omega & \sin\Omega \\ -\sin\Omega & \cos\Omega \end{bmatrix}.$$

$$\begin{bmatrix} S_{hh} & S_{vh} \\ S_{hv} & S_{vv} \end{bmatrix} \cdot \begin{bmatrix} \cos\Omega & \sin\Omega \\ -\sin\Omega & \cos\Omega \end{bmatrix}$$
(3)

Nonzero Faraday rotation causes the cross-pol measurements $M_{\nu h}$ and $M_{h\nu}$ to be non-reciprocal, an effect that can be exploited for Faraday rotation retrieval. In this paper two different Faraday rotation estimation methods are applied. One of the approaches extracts the Faraday rotation angle Ω by solving the equation system in equation 2 directly (see [8]):

$$\Omega = \frac{1}{2} \tan^{-1} \left[\frac{(M_{vh} - M_{hv})}{(M_{hh} + M_{vv})} \right]$$
(4)

A more robust version of this approach uses spatial averaging to reduce the influence of speckle on the estimated Ω angle. The second approach introduced by Bickel and Bates [9] transforms *M* to a circular basis *Z* via

$$\begin{bmatrix} Z_{11} & Z_{12} \\ Z_{12} & Z_{22} \end{bmatrix} = \begin{bmatrix} 1 & j \\ j & 1 \end{bmatrix} \cdot \begin{bmatrix} M_{hh} & M_{vh} \\ M_{hv} & M_{vv} \end{bmatrix} \cdot \begin{bmatrix} 1 & j \\ j & 1 \end{bmatrix}$$
(5)

From Equation (5) Ω can be derived by calculating

A dual-pol mode has the same transmitting charc $\Omega = \frac{1}{4} \arg(Z_{12} Z_{21}^*)$. (6) same receiving characteristics of a quad-pol mod.

