

Compact Polarimetric SAR Interferometry: observations and reconstruction algorithms

Marco Lavalle¹⁻³, E.Pottier ², D.Solimini¹, Y.-L. Desnos³

¹DISP, Tor Vergata University, Rome, Italy ² IETR UMR CNRS 6164, University of Rennes 1, Rennes, France ³European Space Agency, ESA-ESRIN, Frascati, Italy

PollnSAR Workshop 26-31 Jan 2008

Outline

Introduction

- Compact polarimetric SAR interferometry
- Results of the PolInSAR reconstruction
 - ESAR airborne data
 - PALSAR space borne data
- Synthesis of compact-pol data
 - Effects of the SAR processor
 - Effects of the SAR receiver
- Conclusions

Introduction

Compact Polarimetry

- \rightarrow Compact polarimetry
 - ightarrow Compromise between full-pol and dual-pol
 - → Trasmits the same polarization (not H or V) at each PRF

\rightarrow Main characteristics

	Full-pol	Compact-pol	Dual -pol
Swath width	half	double	double
Data volume	double	half (?)	half
Information	double	hybrid	half

\rightarrow Compact SAR

- \rightarrow No airborne campaign or space borne missions
- \rightarrow Future Argentinean satellite SAOCOM
- \rightarrow ALOS-2?

Introduction

Compact Polarimetry VS Full Polarimetry

Full Polarimetry (FP)

Compact Polarimetry (CP) egg. rt/4moutte

A compact-pol dataset can be easily simulated from a full-pol dataset

Objective of the work

To compare the PolInSAR performance of Compact-Pol with Full-Pol using L-band data

How

Reconstruction of the pseudo full PolInSAR information aims

- to extract the HH-HV-VV channels from compact-pol data
- to easily compare them with the full-pol channels

Compact Polarimetry

Reconstruction of full polarimetric information

Reconstruction of full PolInSAR information

Reconstruction of Full PolInSAR information

CP scattering vectors

4×4 C-PolInSAR covariance matrix

$$k_{(\pi/4)_{1}} = \begin{pmatrix} S_{HH_{1}} + S_{HV_{1}} \\ S_{VV_{1}} + S_{HV_{1}} \end{pmatrix}$$

$$k_{(\pi/4)_{2}} = \begin{pmatrix} S_{HH_{2}} + S_{HV_{2}} \\ S_{VV_{2}} + S_{HV_{2}} \end{pmatrix}$$

$$J_{4} = \left\langle \begin{bmatrix} k_{(\pi/4)_{1}} \\ k_{(\pi/4)_{2}} \end{bmatrix} \begin{bmatrix} k_{(\pi/4)_{1}} \\ k_{(\pi/4)_{2}} \end{bmatrix}^{*T} \right\rangle = \begin{bmatrix} J_{11} \\ J_{12} \end{bmatrix} \begin{bmatrix} J_{12} \\ J_{22} \end{bmatrix}$$

$$J_{12} = \begin{bmatrix} j_{11} & j_{12} \\ j_{21} & j_{22} \end{bmatrix}$$

$$\begin{cases} j_{11} = S_{HH_1}S_{HH_2}^* + S_{HH_1}S_{HV_2}^* + S_{HV_1}S_{HH_2}^* + S_{HV_1}S_{HV_2}^* \\ j_{12} = S_{HH_1}S_{VV_2}^* + S_{HH_1}S_{HV_2}^* + S_{HV_1}S_{VV_2}^* + S_{HV_1}S_{HV_2}^* \\ j_{21} = S_{VV_1}S_{HH_2}^* + S_{VV_1}S_{HV_2}^* + S_{HV_1}S_{HH_2}^* + S_{HV_1}S_{HV_2}^* \\ j_{22} = S_{VV_1}S_{VV_2}^* + S_{VV_1}S_{HV_2}^* + S_{HV_1}S_{VV_2}^* + S_{HV_1}S_{HV_2}^* \end{cases}$$

8 observables < 18 unknowns

Reconstruction of Full PolInSAR information

 \rightarrow Additional equations from symmetry properties (Nghiem, 1992)

 \rightarrow Two approaches:

- rotation symmetry
- reflection symmetry

C-PolInSAR observables Reflection symmetry rotation invariance of x-pol terms $6 \times 6 \text{ reconstructed}$ F-PolInSAR coherency matrix T_6^{ref}

Cross-coherency matrix:

$$\Omega_{12} = \frac{1}{4} \left(\begin{array}{ccc} j_{11} + j_{12} + j_{22} + 5j_{21} & 2(j_{11} - j_{22}) & 0 \\ 2(j_{11} - j_{22}) & 2(j_{11} + j_{22}) - 4j_{21} & 0 \\ 0 & 0 & j_{11} + j_{22} - j_{21} - j_{12} \end{array} \right)$$

Performance Evaluation Scheme

Reconstructed FP information

Airborne E-SAR data (Traunstein, Germany)

|HH| |VV| |HV|

Coherence magnitude (HH)

Coherence phase (HH)

Row profiles

Row profiles

PolInSAR coherence HV

Row profiles

Results on ALOS PALSAR

Google Earth

- \rightarrow 2 PALSAR PolInSAR acquisitions:
- 13 Mar 2007 and 28 Apr 2007
- Amazon/Brasil (lat. -4.3°, lon. -56.3°)
- Baseline 100 m

Results: Compact PolInSAR

Min Phase

Results: Compact PolInSAR

Π

0

-π

Results on ALOS PALSAR

Preliminary inversion example

ightarrow Vegetation height estimated from a vegetated area of the Amazon PALSAR dataset

Effects of the SAR processor and receiver

Synthesis of Compact-pol data

Effects of the SAR processor and receiver

- \rightarrow Compact-pol data are usually synthesized from full-pol SLC data (C)
- ightarrow Synthesis of compact-pol data more close to the reality
 - ightarrow on raw data, before the SAR processor (B)
 - ightarrow on received signal, before the SAR receiver (A)

Effects of the SAR processor

PALSAR example (Flevoland)

|HH+VV|, <mark>|HH-VV|</mark>, |HV|

Effects of the SAR processor

PALSAR example (Flevoland)

- → Comparison CP synthesis before/after focusing
- \rightarrow Scatter plots of Stokes elements
- \rightarrow No reconstruction

SAR processor does not introduce particular effects

same processor for full-pol and compact-pol data

esa

Effects of the SAR processor

PALSAR example (Flevoland)

- → Comparison CP synthesis before/after focusing
- \rightarrow H/ α plane
- → Reconstructed pseudo full-pol information

(a) $\pi/4$: synthesis before focusing (b) $\pi/4$: synthesis after focusing

(e) Full Polarimetry

(c) $\pi/2$: synthesis before focusing (d) $\pi/2$: synthesis after focusing

→ Simplified receiver chain of a quad-pol SAR (attenuator values from PALSAR receiver)

→ Effects of the analogic/digital converter

- ightarrow HV has a shorter dynamic range compared to HH
- ightarrow CP return is a mixing of HH and HV return
- \rightarrow A/D introduces more quantization noise on HV

\rightarrow Example

- \rightarrow HV has half dynamic range than HH (half quant. levels)
- → Simple model for signal-to-quantization-noise ratio

Impact on the reconstruction algorithms?

Conclusions

Compact PolSAR/PolInSAR

- Reconstruction algorithms useful to compare CP with FP
- Good performance for PolSAR and PolInSAR case
- HH/HV/VV coherence trend preserved between CP and FP
- Forest Height inversion still possible using CP data
- → Effects of the SAR processor and receiver
 - SAR processor does not introduce distortions
 - A/D converter in SAR receiver increases the signal-to-quantizationnoise on HV/VH signals (about 6 dB)
 - Assessment of the effects of the quantization noise in progress

