Calibration of Dual-Pol SAR data: a possible approach for Sentinel-1

Marco Lavalle¹⁻³, B. Rosich³, T. Ainsworth⁴, E. Pottier², D. Solimini¹

¹DISP, Tor Vergata University, Rome, Italy
 ² IETR UMR CNRS 6164, University of Rennes 1, Rennes, France
 ³European Space Agency, ESA-ESRIN, Frascati, Italy
 ⁴Naval Research Laboratory, Remote Sensing Division, Washington D. C. 20375

PollnSAR Workshop 26-31 Jan 2008

Outline

- Introduction: ESA Sentinel-1 C-band SAR
- Dual-pol radiometric calibration
 - Dual-pol distortion model
 - Response of passive calibration targets
 - Estimation of polarimetric distortion parameters
- Performance using Sentinel-1 system parameters
 - Performance results
 - Design and location of calibration targets

Conclusions

Sentinel-1 C-band SAR

Key parameters

Parameter	Value	
Revisit time	12 days	
Center frequency	5.405 GHz	
Bandwidth	< 100 MHz	esa
Polarization	HH/HV – VV/VH	
Antenna azimuth size	12.4 m	
Antenna elevation size	0.821 m	
Spatial resolution	> 5 m	
Pulse width	< 100 us	
PRF	1000-3000 Hz	

Sentinel-1 C-band SAR

Dual Polarimetric modes

Objective

To provide a polarimetric calibration procedure of dual-pol data

- when the SAR does not operate the full-pol mode
- using passive calibration targets

- 1. Dual-pol distortion model
- 2. Response of some calibration targets
- 3. Performance according S-1 system parameters

Full-Pol Distortion Model

Transmitted and received field

Full-Pol Distortion Model

Distortion parameters

$$\begin{pmatrix} M_{HH} & M_{HV} \\ M_{VH} & M_{VV} \end{pmatrix} = Ae^{j\phi} \begin{pmatrix} 1 & \delta_2 \\ \delta_1 & f_1 \end{pmatrix} \begin{pmatrix} \cos \Omega & \sin \Omega \\ -\sin \Omega & \cos \Omega \end{pmatrix} \begin{pmatrix} S_{HH} & S_{HV} \\ S_{VH} & S_{VV} \end{pmatrix} \begin{pmatrix} \cos \Omega & \sin \Omega \\ -\sin \Omega & \cos \Omega \end{pmatrix} \begin{pmatrix} 1 & \delta_3 \\ \delta_4 & f_2 \end{pmatrix} + \begin{pmatrix} N_{HH} & N_{HV} \\ N_{VH} & N_{VV} \end{pmatrix}$$

- \rightarrow System distortion parameters
 - → X-talk: $\delta_1, \delta_2, \delta_3, \delta_4$ → Channel imbalance: f_1, f_2

6 system distortion parameters

 \rightarrow Calibration matrices can be estimated using distributed target

- → Target reciprocity: $S_{ij} = S_{ji}$
- \rightarrow Reflection symmetry: $\langle S_{ii}S_{ij}^* \rangle = 0$
- \rightarrow Known HH-VV phase difference (eg. surface scattering = 0)

Dual-Pol Distortion Model

→ Dual-pol model = (Full-pol model) x $(1 \ 0)^{T}$

 $\Rightarrow \text{ Case of H-transmission}$ $\begin{pmatrix} M_{HH} \\ M_{VH} \end{pmatrix} = Ae^{j\phi} \begin{pmatrix} 1 & \delta_2 \\ \delta_1 & f \end{pmatrix} \begin{pmatrix} \cos \Omega & \sin \Omega \\ -\sin \Omega & \cos \Omega \end{pmatrix} \begin{pmatrix} S_{HH} & S_{HV} \\ S_{VH} & S_{VV} \end{pmatrix} \begin{pmatrix} \cos \Omega & \sin \Omega \\ -\sin \Omega & \cos \Omega \end{pmatrix} \begin{pmatrix} 1 \\ \delta_3 \end{pmatrix}$ $\text{Cross-talk:} \quad \delta_1, \delta_2, \delta_3 \\ \text{Channel imbalance:} \quad f \end{pmatrix}$ 4 system distortion parameters

 \rightarrow The receiving distortion matrix is the same as in full-pol mode (e.g. HH/HV)

Dual-Pol Distortion Model

Azimuthally distributed target

 \rightarrow Measured scattering elements (assuming reciprocity and zero FR)

$$M_{HH} = S_{HH} + (\delta_2 + \delta_3)S_{VH} + \delta_2\delta_3S_{VV}$$
$$M_{VH} = \delta_1S_{HH} + (\delta_1\delta_3 + f)S_{VH} + f\delta_3S_{VV}$$

Dual-Pol Distortion Model

Azimuthally distributed target

 \rightarrow Measured scattering elements (assuming reciprocity and zero FR)

$$M_{HH} = S_{HH} + (\delta_2 + \delta_3)S_{VH} + \delta_2\delta_3S_{VV}$$
$$M_{VH} = \delta_1S_{HH} + (\delta_1\delta_3 + f)S_{VH} + f\delta_3S_{VV}$$

 \rightarrow Observed covariance elements (assuming azimuthal symmetry)

$$O_{11} \cong |S_{HH}|^{2}$$

$$O_{12} \cong (\delta_{1}^{*} + f^{*}\delta_{3}^{*})S_{HH}|^{2} + (f^{*}\delta_{2} + f^{*}\delta_{3} - 2f^{*}\delta_{3}^{*})S_{VH}|^{2}$$

$$O_{22} \cong |f^{2}||S_{VV}|^{2}$$

$$\left|f^{2}\right|\delta_{3}^{*}O_{11} + f\left(\delta_{1}^{*}O_{11} - O_{12}\right) + \left(\delta_{2} + \delta_{3} - 2\delta_{3}^{*}\right)O_{22} = 0$$

We need 3 additional equations

Trihedral

Oriented Dihedral

ightarrow Ideal response

$$[S_d] = A_d(\theta, \phi) e^{j\phi_d(\theta, \phi)} \begin{pmatrix} \cos 2\psi & \sin 2\psi \\ \sin 2\psi & -\cos 2\psi \end{pmatrix}$$

 \rightarrow Dihedral oriented at 45 deg

$$\begin{bmatrix} S_d \end{bmatrix}_{\psi=\pi/4} = A_d e^{j\phi_d} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

ightarrow Measured response using the dual-pol model

$$\widetilde{M}_{HH}^{d} = \delta_{2} + \delta_{3}$$

$$\widetilde{M}_{VH}^{d} = \delta_{1}\delta_{3} + f \cong f$$

$$4$$

х

Estimation of distortion parameters

First approach

- \rightarrow Distributed target + trihedral + 45-dihedral
- ightarrow Combining the four equations the solution is unique

Estimation of distortion parameters from dual-pol data

ightarrow Dual-pol distortion parameters

$$\begin{split} f &= \widetilde{M}_{VH}^{d} \\ \delta_{1} &= \widetilde{M}_{VH}^{t} - \widetilde{M}_{VH}^{d} \frac{\widetilde{M}_{VH}^{d*} \widetilde{M}_{VH}^{t*} O_{11}^{*} + \widetilde{M}_{HH}^{d*} O_{22}^{*} - O_{12}^{*}}{2O_{22}^{*}} \\ \delta_{2} &= \widetilde{M}_{HH}^{d} - \frac{\widetilde{M}_{VH}^{d*} \widetilde{M}_{VH}^{t*} O_{11}^{*} + \widetilde{M}_{HH}^{d*} O_{22}^{*} - O_{12}^{*}}{2O_{22}^{*}} \\ \delta_{3} &= \frac{\widetilde{M}_{VH}^{d*} \widetilde{M}_{VH}^{t*} O_{11}^{*} + \widetilde{M}_{HH}^{d*} O_{22}^{*} - O_{12}^{*}}{2O_{22}^{*}} \end{split}$$

Gridded Trihedral

Second approach

- → Classical trihedral with gridded base wires or thin plates (Ainsworth, 2006)
- → The polarization parallel to the grid is reflected (→)
- → The polarization perpendicular to the grid is absorbed (→)
- → Back plates have the same effect as in the classical trihedral
- → Grid spacing *d* is small compared to the wavelength x

Gridded Trihedral

Second approach

 \rightarrow General scattering matrix (Sheen, 1992)

$$[S_{gt}] = \frac{A_{gt}e^{j\phi_{gt}}}{\sin^2(\phi) + \cos^2(\phi)\sin^2(\theta)} \begin{pmatrix} \sin^2(\phi) & -\sin(\phi)\cos(\phi)\sin(\theta) \\ -\sin(\phi)\cos(\phi)\sin(\theta) & \cos^2(\phi)\sin^2(\theta) \end{pmatrix}$$

Estimation of distortion parameters

Second approach

 \rightarrow Measured response in the dual-pol mode:

→ H-gridded trihedral:

 \rightarrow V-gridded trihedral:

$$\widetilde{M}_{HH_{1}}^{gt} = \delta_{2}\delta_{3}$$

$$\widetilde{M}_{VH_{1}}^{gt} = \delta_{3}f$$

$$\widetilde{M}_{VH_{2}}^{gt} = \delta_{1}$$
4

 \rightarrow Equations from: 1 simple trihedral + 2 gridded trihedrals

Dual-Pol Data Calibration

Dual-pol VS single- and quad-pol calibration

\rightarrow Single Polarization

→ Trihedral Corner Reflector

\rightarrow Quad Polarization

 \rightarrow Trihedral Corner Reflector + Distributed target

→ Dual Polarization → Trihedral Corner Reflector + (Distributed target) + Additional targets Oriented dihedral Gridded trihedral Performance of the targets as seen by S-1?

Performance Evaluation Sentinel-1

Gridded trihedral and oriented dihedral

Sentinel-1: antenna beamwidth

Sentinel-1: antenna stability

\rightarrow Antenna pointing stability

Yaw ($\Delta \phi_{y}$):	± 0.01 deg
Pitch ($\Delta \theta_p$):	± 0.01 deg
Roll ($\Delta \psi_r$):	± 0.01 deg

Beamwidth

\rightarrow Gridded trihedral RCS

 \rightarrow RCS assumed equal to the flat trihedral (Ruck, 1970)

$$\sigma_{gt}(\theta,\phi) \approx \frac{4\pi}{\lambda^2} l^4 \left(v - \frac{2}{v} \right)^2, \qquad v(\theta,\phi) = \cos\theta + \left(\sin\phi + \cos\phi \right) \sin\theta$$

→ Dihedral RCS (derived from Hayashi, 2006)

$$\sigma_{di}(\theta,\phi) \approx \frac{4\pi}{\lambda^2} a^2 b^2 \sin^2\left(\frac{\pi}{4} - \phi\right) \frac{\sin^2(u)}{u^2}, \qquad u(\theta,\phi) = \frac{2\pi}{\lambda} l\cos\theta\sin\phi$$

\rightarrow Beam width

 \rightarrow Elevation plane ($\theta\,$): GT and DIH have large beam width

 \rightarrow Azimuth plane (ϕ)?

Beam width on azimuth plane

 \rightarrow First criterium for S-1:

$$BW_{S-1} = \phi_a + \Delta \phi_y < BW_{trg}$$

→ Plot for $\theta = 30^{\circ}$ and $l = 10\lambda$

Polarimetric noise

esa

\rightarrow Average polarimetric noise:

- \rightarrow Coherent averaging of scattering vectors from different angular positions: <u>k</u> =
- → Compared with the requirement on the cross-talk level: $\delta_{reg} = -30 \, dB$

 S_{HH}

 S_{HV} S_{VH}

Polarimetric noise

Estimation of distortion parameters

Comparison of the two approaches

Distributed target + Trihedral +

Trihedrals and dihedrals are simple to construct

Oriented dihedral has a narrow beam width and it is difficult to orient

The dihedral has high polarimetric noise due to roll pointing error

Trihedrals and dihedrals are slightly affected by rain

Require the identification of azimuthally distributed targets in the SAR image

esa

Gridded trihedrals require accurate construction of the grid

Gridded trihedrals have large beam width

The average polarimetric noise is below the cross-talk requirement

The microwave absorber layer can be affected by rain

Do not use azimuthal symmetry assumption

 (\cdot)

Dual-Pol calibration

Possible approach for Sentinel-1 using passive targets

Dual-Pol Data Calibration

ightarrow Polarimetric calibration matrix

$$\begin{pmatrix} S_{HH}^{\text{cal}} \\ S_{VH}^{\text{cal}} \end{pmatrix} = \frac{1}{\underbrace{\delta_1 \delta_2 - f}} \begin{pmatrix} f & -\delta_2 \\ -\delta_1 & 1 \end{pmatrix} \begin{pmatrix} M_{HH} \\ M_{VH} \end{pmatrix}$$

→ The transmitting x-talk δ_3 is important for evaluating the reliability of dual-pol measurements

$$S_{HH}^{\text{cal}} = S_{HH} + \delta_3 S_{HV}$$
$$S_{VH}^{\text{cal}} = S_{VH} + \delta_3 S_{VV}$$

→ Faraday rotation can be corrected as optional step from external source (e.g. TEC data)

Conclusions

ightarrow Dual-pol distortion model

Contains 1 transmitting x-talk and 3 receiving distortion parameters

\rightarrow Estimation of distortion parameters from dual-pol data

- 1 trihedral and 2 gridded trihedrals are required
- Gridded trihedrals provide large beam width and polarimetric noise within the requirement

\rightarrow Calibration procedure

- Performed for each beam and for each mode
- Faraday rotation can be corrected as optional step

