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Abstract—The effectiveness of multilayer perceptron (MLP)
networks as a tool for the classification of remotely sensed images
has been already proven in past years. However, most of the studies
consider images characterized by high spatial resolution (around
15–30 m) while a detailed analysis of the performance of this
type of classifier on very high resolution images (around 1–2 m)
such as those provided by the Quickbird satellite is still lacking.
Moreover, the classification problem is normally understood as
the classification of a single image while the capabilities of a single
network of performing automatic classification and feature extrac-
tion over a collection of archived images has not been explored so
far. In this paper, besides assessing the performance of MLP for
the classification of very high resolution images, we investigate on
the generalization capabilities of this type of algorithms with the
purpose of using them as a tool for fully automatic classification
of collections of satellite images, either at very high or at high-
resolution. In particular, applications to urban area monitoring
have been addressed.

Index Terms—Features extraction, high-resolution imagery,
information mining, neural networks (NNs).

I. INTRODUCTION

N EURAL networks (NNs) started playing a significant
role in the field of remote sensing after which a new

learning algorithm was proposed. The idea of the backpropa-
gation algorithm was originally developed by Werbos [1] and
reintroduced by Rumelhart et al. [2]. Since the early nineties,
several studies aimed at evaluating the performance of NNs
by comparison with traditional statistical methods to remote
sensing applications, and in particular to image classification.
Benediktsson et al. [3] considered the two approaches in clas-
sification of multisource remote sensing data. They concluded
that in multisource classification, where we do not always know
the distribution functions, NNs can be more appropriate than
statistical algorithms. Bishof et al. [4] as well as Paola and
Schowengerdt [5] compared methods for multispectral (MS)
classification of Landsat Thematic Mapper (TM) data, and both
found that with proper training, a NN was able to perform
better than the maximum-likelihood classification. However,
even if these studies seem to show that NN performance is
comparable or better than that provided by other techniques,
they are mainly focused on high-resolution Landsat images and
on the use of a single NN for classifying and/or extracting
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specific features from a single image, namely the image from
which the examples training the network are taken. Conversely,
a detailed analysis of the pixel-based classification yielded by
this type of algorithms on very high resolution images such as
those provided by the Quickbird or Ikonos platforms is still
lacking. Moreover, the potentialities of a single NN as a tool
for automatic and sequential processing of images contained
in archives have been scarcely investigated until now. With
processing here, we mean that the network might be used to
retrieve from the archive all the images that contain or do not
contain a specific class of land cover, or where the ratio between
areas corresponding to different classes is within/out predefined
ranges. In other words, the network allows the identification
of high-level (object or region of interest) spatial features
from the low-level (pixel) representation contained in a raw
image or image sequence, hence addressing scientific issues
characteristic of the image information-mining field [6], [7].

In this paper, as a first step, we want to assess and op-
timize the NN approach for the pixel-based classification of
a single very high resolution image, such as one of those
provided by the Quickbird satellite. Later, we move to the
conceptually most innovative part of this paper which is to
investigate on the capabilities of supervised NN in providing
automatic classification on a collection of images, therefore
their potentialities from an image information-mining point of
view. This means to stress their generalization capabilities, that
is the capabilities to obtain good generalization to new input
patterns from the patterns on which the nets have been trained.
Several issues interfere with the objective of designing NN able
to generalize on images not used in the training phase. The
robustness of the spectral information despite such problems
has to be investigated and such an analysis needs to concur
with the design of the NN. Addressing this point, in this paper,
we consider both very high (Quickbird) and high (Landsat)
resolution images and a specific application domain which is
the feature extraction and information discovery on urban areas.
In fact, monitoring changes and urban growth over time is one
of the major areas of scientific research in remote sensing that
have a strong interaction with the policy cycles and that would
improve environment and security monitoring [8]–[10]. A large
volume of satellite data for such purposes is available, but
despite there being many competing automatic approaches, it is
difficult to fully and automatically address the problems raised
by the different application scenarios. In this paper, the aim of
the classification is to distinguish among areas made of artificial
coverage (sealed surfaces) including asphalt or buildings, and
open spaces such as bare soil or vegetation.
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II. NEURAL NETWORK ALGORITHM

NN models are mainly specified by the net topology and
training rules [11]. The term topology refers to the structure
of the network as a whole: the number of its input, output, and
hidden units and how they are interconnected. Among various
topologies, multilayer perceptrons (MLPs) have been found to
have the best-suited topology for classification and inversion
problems [12]. These are feedforward networks where the input
flows only in one direction to the output, and each neuron of a
layer is connected to all neurons of the successive layer but has
no feedback to neurons in the previous layers. As far as the
numbers of hidden layers and of their units are concerned, the
topology providing the optimal performance should be selected.
In fact, if the number of neurons is too small, the input-output
associative capabilities of the net are too weak. On the other
hand, this number should not be too large; otherwise, these
capabilities might show a lack of generality being tailored too
much on the training set, and the computational complexity of
the algorithm would be increased in vain. It turns out that a fair
compromise has to be found. The number of hidden layers is
another issue to be considered. It has been shown that networks
having two layers of weights, i.e., one hidden layer of neurons,
and sigmoidal hidden units can approximate arbitrarily well
any functional continuous mapping, provided the number of
hidden units is sufficiently large [13], [14]. However, how much
the inclusion of an additional hidden layer might improve the
classification performance is still an open issue. In this paper,
we followed a rather heuristic approach. We systematically
analyzed the performance of the network varying either the
number of hidden layers (one or two) or the number of hidden
units and selecting the best topology on the base of the accuracy
results obtained on a set of examples not considered for the
training. The weight or strength of each connection has to
be determined via learning rules to approximate an unknown
input-output relation. These rules indicate how to pursue min-
imization of the error function measuring the quality of the
network’s approximation on the restricted domain covered by
a training set (i.e., a set of input-output examples). A typical
error function which can be considered in this context is the
sum-of-squares error function (SSE) [13], given by a sum over
all patterns, and over all outputs, of the form

SSE =
N∑

n=1

c∑

k=1

{yk(xn;w) − tnk}2 (1)

where yk(xn;w) represents the output of unit k as a function
of the input vector xn and the weight vector w, N is the
number of testing patterns, and c is the number of outputs.
The quantity tnk represents the target value for output unit k
when the input vector is xn. In our case, the minimization
of the error function has been pursued by a scaled conju-
gate gradient algorithm [15]. This is a member of the class
of conjugate gradient methods, general-purpose second-order
techniques that help to minimize goal functions of several
variables. Second-order indicates that such methods use the
second derivatives of the error function, while a first-order
technique, like standard backpropagation, only uses the first
derivatives. It should be mentioned that most of the neural

simulations were provided by the Stuttgart Neural Network
Simulator package [16]. For the specific purpose of the im-
age classification, a training set with a statistically significant
number of pixels for each class has been generated. The learn-
ing of the NN has then been carried out by feeding it with pairs
of vectors (patterns): the input vector contains the reflectances
of the different channels of the MS image, and the output vector
contains the corresponding known class of surface. To avoid
saturation within the network it has been necessary to scale all
the values of the input vector in the range between −1 and 1.
The scaling has always been carried consistently on the entire
dataset available. At the same time, the component of the output
vector corresponding to the true class has been set to 1 while
the others to 0. Once the NNs have been trained, they have
been used for the classification of new data not considered
in the training set. In the test phase, a competitive approach
(winner-and-take) has been considered to decide on the final
classification response.

III. SINGLE-IMAGE CLASSIFICATION

The QuickBird commercial remote sensing satellite provides
images consisting of four MS channels with 2.4-m resolution
and a single panchromatic band with 0.62-m resolution. The
four MS bands collect data at the red, green, blue, and near-
infrared wavelengths, and the data in each band are stored
with 11-bit quantization. A QuickBird image taken over the
Tor Vergata University campus, located in Italy, southeast
of Rome, on March 13, 2003, has been initially considered.
In the remainder of this paper, we will refer to this image with
the name QB1. A view of the area is shown in Fig. 1. Besides
the buildings in the campus, different residential areas belong-
ing to the outskirts of the southeast side of the city can be
distinguished in the image.

Our first purpose was to design an optimum NN able to
classify the MS image. The considered land cover classes were
buildings, roads, vegetated areas, and bare soil where the latter
class includes non-asphalted road and artificial excavations.
The inclusion of additional classes was discarded for several
reasons: the considered classes are those that better describe the
area under observation and are in themselves sufficient to detect
significant features; the choice of a small number of classes
enables an easier quantitative comparison of the performance
obtained using a single net for a single image classification,
with the one obtained using a single net for multiple images
classification. In this latter case, we think that the choice of
a number of four classes represents a rather ambitious target.
It also has to be noted that a recent study analyzing satellite
image classification experiments of 15 years pointed out that
the idea postulating that the higher the number of classes used
in a classification experiment, the more difficult the classifi-
cation becomes, is not supported by the experimental results
shown in this paper [17]. Once the classification problem has
been configured, a first investigation consisted in analyzing
the spectral behavior of the different considered surfaces. The
selected pixels characterizing one class belong to polygons
manually drawn in the image. It should be noted that, at the
very high resolution of the images, the edges or boundaries
between individual land cover objects were fairly sharp and it
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Fig. 1. Quickbird image of the Tor Vergata University Campus, Rome, and its surrounding (© DigitalGlobe, distributed by TELESPAZIO).

Fig. 2. Spectral analysis from image QB1 for the classes buildings (dashed
line), asphalted surface (solid line), bare soil (dash–dotted line), vegetation
(dotted line).

was usually easy to locate and assign a specific pixel to a land
cover class. The mean values of the spectral signatures of the
four categories are shown in Fig. 2. The figure clearly shows
potentiality in discriminating between the classes. These stem
from the spectral properties related to the different molecular
resonance mechanisms which characterize the materials. With
the same data considered for the sensitivity analysis we were
able to generate a training set with a statistically significant
number of pixels for each of the four categories. The training
datasets were generated considering about 24 400 pixels. The
design of the network was made putting particular care in
the selection of the number of hidden units to be considered
in the net. To this purpose, the plot illustrated in Fig. 3 was
produced, where the SSE value over a test set of more than

Fig. 3. SSE values calculated over the test set changing the number of hidden
neurons in a two-hidden-layers topology. The number of units is the same in
both layers.

3000 patterns and corresponding to different numbers of hidden
units is reported. It can be seen that, if we consider both the
SSE error and the network complexity, the best results were
obtained with a 4-20-20-4 topology. Indeed, the increase of the
number of hidden units did not change significantly the SSE
error. A similar plot is reported in Fig. 4 where now a single
hidden layer is considered. Again the best result are obtained
putting around 20 neurons in the hidden layer; however, this
topology is slightly worse if compared with the two-hidden-
layers topology. This indicates that the second layer can be able
to extract additional information from what already elaborated
by the first one. The topology 4-20-20-4 was then finally
selected and used to classify the entire image (3 506 832 pixels).
Fig. 5 shows the classification map derived with the described
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Fig. 4. SSE values calculated over the test set changing the number of hidden
neurons in a one-hidden-layer topology.

Fig. 5. Classification map of the image QB1 using the optimized topology.
Black: asphalted surfaces; white: buildings; dark gray: bare soil; light gray:
vegetation.

TABLE I
CONFUSION MATRIX OBTAINED FOR IMAGE QB1 WITH THE 4-20-20-4

TOPOLOGY. OVERALL NUMBER OF PIXELS: 81 510.
OVERALL ERROR 5998 (7.36%)

procedure. The classification accuracy has been assessed by
visual comparison with the original high-resolution image and
by direct inspections on site. We stress the fact that our working
area is located in the Tor Vergata University campus, which
is almost in the center of image QB1, so direct inspection on
site could be rather accurate. More in detail, a ground truth
map, corresponding to a subset of the image, has been manually
elaborated. We observed that the classification provided by the
network is rather accurate and with a high level of resolution. In
particular, we reached a 93% level of accuracy in the considered
subimage. The whole confusion matrix is reported in Table I.
Once the network topology for this kind of problem has been

TABLE II
CHARACTERISTICS OF THE QUICKBIRD IMAGES USED IN THE WORK.

ALL THE ACQUISITION TIMES ARE AROUND 10:00–10:30 A.M.

optimized and the performance assessed, we move to investi-
gate the capability of a unique network to provide classification
on different images rather than on a single one. To underline
the complexity of this new problem, we tested the already
designed network, positively processing the QB1 image, on
another QB image. The choice of this new image should follow
some similarity criteria with respect to the already classified
one. For example, it would not be very meaningful to consider
a new image characterized by land cover classes, such as water,
not appearing in the QB1 image, hence not memorized at
all by the network during its training process. The failure of
the NN in this case can be given for granted, and this test
would not provide much information in the evaluation of the
network generalization capability. Therefore, we decided the
other direction of selection and chose as a test image a QB
image quite similar to QB1. Indeed, the new QB image (QB2)
is taken on the same area of the first one, but in a different
season and at a slightly different incident angle. In Table II,
the basic information of the two images analyzed so far and of
those that will be considered in the following of this paper are
summarized. If the already trained network fails in generalizing
over this image it will be very probably unsuccessful with many
other QB images, even if taken on similar urban scenarios.
In Fig. 8(a), we show the result of the classification of the QB2
image by using the net trained on patterns retrieved from image
QB1. For the sake of completeness and for a better interpreta-
tion of the results, we also produced the classification, reported
in Fig. 8(b), that would be obtained replying on the image QB2
the single-image classification methodology considered for the
image QB1, therefore relying on a network (4-20-20-4), trained
with examples belonging to the same image that one wants
to classify. The classification map shown in Fig. 8(b) seems,
as expected, rather accurate. Indeed, the misclassification per-
centage computed over the same image subset considered for
QB1 is 95% thus resembling the one obtained in the former
case. The classification result shown in Fig. 8(a) is completely
different. Although the network recognizes many patterns and
assigns the correct class to the corresponding pixels, entire
objects are misclassified: the bare soil class and the built areas
class are definitely overestimated, and the general noise level
produced by the classification is significantly increased. From a
quantitative point of view, the misclassification rate computed
over the subset test image is 56%. Fig. 6 may contribute to
understand the classification performance. We can observe that
even if the shapes of the signatures resemble those plotted in
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Fig. 6. Spectral analysis from image QB2 for the classes buildings (dashed
line), asphalted surface (solid line), bare soil (dash–dotted line), vegetation
(dotted line).

Fig. 2, which still enables some possibility of distinction among
classes, the ranges of the digital number values are significantly
different, generating confusion when the network gives out
its classification response. Thus, the classification of the QB2
image obtained using a network trained on another image, even
if taken on the same scenario, is not satisfactory. This means
that to design a network able to provide good accuracy over
images not considered in the training phase is an ambitious
goal, even if the classification is performed on a limited number
of classes.

IV. CLASSIFICATION ON A COLLECTION OF IMAGES

A. Quickbird Images

Three more Quickbird images have been considered in this
case for an overall number of five images. As shown in Table II,
the five images are of similar size but include different years,
different sites, and different seasons. Besides the QB1 and QB2
images centered on the Tor Vergata University campus, we have
one image (QB3) looking at northeast suburbs, a fourth image
quite close to the old town (QB4), and a fifth image (QB5)
which has been taken on a small urban area a few kilometers
away from Rome. A pixel-based classification algorithm has
again been implemented to distinguish among the four main
classes: buildings, asphalted surfaces, vegetated areas, and bare
soils. In previous section, we showed that a successful classifi-
cation performance relies on a proper training and design of the
network. In particular, it is important that the patterns included
in the training set could significantly represent all potential
scenarios that might be encountered during the application
phase, in other words resemble the statistics of the classification
problem. To this purpose, a larger archive of spectral signatures
has been generated. Images QB1, QB3, and QB5 have been
considered for the training, and about 26 000 examples have
been collected for the generation of the network learning set.

The optimal performance both in terms of classification
accuracy and of training time has been again determined by
an extensive search whose results are illustrated in Fig. 7. With
regard to the number of hidden layers, we relied on the previous
result indicating a topology with two hidden layers was more
effective, so the final selected topology was again 4-20-20-4.

Fig. 7. SSE values calculated over the test set changing the number of
hidden neurons in a two-hidden-layers topology designed for the classification
of a collection of Quickbird images. The number of units is the same in both
layers.

Indeed, with respect to the single-image processing case, most
of the physics characterizing the classification problem has
not changed, which involved minor implications in terms of
the topology to be selected. In Fig. 8(c) and (d), we report
the classification maps obtained by applying the trained NN
to the images QB2 and QB4 which did not contain any of
the pixels included in the training set. From both visual in-
spection on the original images and direct inspection on site,
we observed a general good agreement with the map gener-
ated automatically. All main features such as big roads and
buildings are individuated with good precision even though
some inaccuracies can be noted in the objects edge detection,
possible causes of disturb being represented by shadow effects.
A more quantitative analysis, computed on the same subarea of
image QB2 considered in Section II, gave an overall accuracy
rate of about 87%. Considering the encouraging results, and
given the availability of two images (QB1 and QB2) over the
same site, we tried to extend the described methodology to a
typical change detection exercise. The two images have been
coregistered using a set of about 30 ground control points and
considering the older image as a master. We remind that the
time interval between the two images is of one year. The two
corresponding classification maps, obtained by means of the
same network, have been used for the production of change
detection maps. In particular, the change detection was eval-
uated in terms of the pixels that migrated from vegetation,
bare soil or asphalted surface class to the building class in the
considered time window. As in this case, we are more interested
in an object-based result, the final change detection mask was
obtained after a postprocessing which removed all clusters of
pixels detecting changes but containing less than 20 elements.
The ground-truth confirmed that the changes corresponding
to the main detected structures were buildings constructed
in the considered time interval. An example of detection re-
sult is shown in Fig. 9 where the previous corresponding
classification maps are also reported. The corresponding confu-
sion matrix, reported in Table III and computed on the base of
the ground-truth, gives a high percentage of pixels in the diag-
onal. On the other hand, most of the pixels out of the diagonal,
more than a real failure of the classification algorithm, may be
a consequence of an imperfect coregistration of two images.
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Fig. 9. Change detection results. (Left) 2002 classification map results. (Center) 2003 classification map results. (Right) Change detection.

TABLE III
CONFUSION MATRIX OBTAINED FOR THE CHANGE DETECTION EXERCISE.

OVERALL NUMBER OF CONSIDERED PIXELS: 148 538.
OVERALL ACCURACY 93.2%

Fig. 10. Dataset geographic distribution of Landsat data.

B. Landsat Images

The objective of designing a single net enabling automatic
classification of large archives of datasets has been extended
to the case of Landsat imagery. The Landsat dataset consisted
of a collection of images containing urban areas and located
throughout the all five continents (Fig. 10). In this case, the
inputs to the algorithm are taken from six bands, measurements
corresponding to band 6 being discarded for its worse spatial
resolution. Again, we first analyzed the spectral signatures of
the main classes of urban land cover.

Despite the considerable distances among the geographic
locations a good stability of the spectral information has been
noted. For example in Figs. 11–13, we report the analysis for
the classes high-density residential, forest, and water, respec-
tively. For the three classes, the spectral behavior is calculated
starting from an overall number of about 25 000 pixels, dis-
tributed over nine considered different geographic areas (see
Table IV). We see that within the same class the shapes of
the signature are in general rather similar, and only a bias
value seems to characterize the different plots. On the other
hand, different classes have quite dissimilar spectral shapes.

The analysis carried out on other classes typical of urban and
suburban land cover confirmed the discrimination possibilities,
especially if similar classes, such as forest and short vegetation
areas, or high-density and low-density residential areas, were
grouped together. In this case, the final classification problem
was to discriminate among three classes: sealed, not sealed,
and water. The sealed fraction of an urban areas is indeed one
of the primary index for monitoring the urbanization process.
However, many big cities are characterized by large amount
of water surfaces, belonging to rivers, lakes, or sea. Therefore,
the addition of the class water could be significant to obtain
a better monitoring. More than 56 000 patterns have been
selected to train the final NN dedicated to the Landsat imagery
with examples extracted from an overall set of 14 images
including urban areas of 12 world big cities, 12 countries, and
4 continents. A description of the training set in terms of the
images and classes considered for each image is summarized
in Table V. Given the variety of geographical sites taken into
account, this classification problem is inherently more complex
with respect to the classification of Quickbird data. In order to
avoid overfitting, this shrinks the size of the optimum network
topology which, for this case, has been found to be 6-9-9-3 (see
Fig. 14). With this selected topology and considering medium-
speed CPU computing platforms we obtained an average rate
of processing of 800 pixels per second. This means less than
20 min for an image of 1000 × 1000 pixels, so basically we
can speak of near-real-time processing. In Fig. 15, we show
some examples of the results. The yielded accuracy seems to be
rather satisfactory at careful visual inspection. Water bodies are
detected rather precisely as the major parts of the urban lattice.
On the other hand, we noted some inaccuracies on areas which
appear as low residential areas at image visual inspection but
are labeled as unsealed areas in the classification map. Similar
results have been obtained selecting other images from the
available dataset. In any case, a more quantitative validation ex-
ercise could be performed on a limited area of the city of Rome,
where we could use the Quickbird very high resolution image as
ground-truth. The area chosen for the validation exercise does
not contain pixels used for the training of the final Landsat
network. In Table VI, we report the obtained corresponding
confusion matrix where we did not include pixels, such as
pixels on edges, whose real class could be not stated with
certainty. Given the totally automatic procedure, the overall
accuracy of about 82% might be recognized as encouraging and
establishes a benchmark for this kind of application.
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Fig. 11. Spectral analysis from Landsat measurements of the class high-
density residential for different cities in the world.

Fig. 12. Spectral analysis from Landsat measurements of the class forest for
different cities in the world.

Fig. 13. Spectral analysis from Landsat measurements of the class water for
different cities in the world.

V. CONCLUSION

It is well recognized that one of the major advantages of NNs
with respect to Bayesian and other statistically based classifiers
is that NNs draw their own input-output discriminant relations
directly from the data and do not require that a particular
form of a probability density function be assumed [18]. In this
paper, we exploited these characteristics of MLP networks for
automatic processing of large datasets of satellite imagery and
with particular interest for features extraction from urban areas.
In fact, this paper can be considered as a first step in demon-
strating how NNs can contribute to the development of image
information mining (IIM) in Earth observation. We considered
two types of satellite data: Quickbird data characterized by very
high spatial resolution and the Landsat data characterized by

TABLE IV
LEGEND OF FIGS. 11–13

TABLE V
LOCATION AND DATES OF THE LANDSAT IMAGES USED

FOR THE GENERATION OF THE TRAINING SET

Fig. 14. SSE values calculated over the test set changing the number of hidden
neurons in a two-hidden-layers topology for the classification of a collection of
Landsat images. The number of units is the same in both layers.

high spatial resolution. In both cases, the purpose was both to
yield accurate classification maps and to train the networks in
order to generalize out of the image dataset considered in the
training phase so that the new images could be processed in
near-real time. To that purpose careful spectral analysis over
statistically significant datasets have been carried out, and the
NN topologies have been designed avoiding possible effects of
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Fig. 15. Automatic classification map of the city of (a) Washington, DC (U.S.), (b) Berlin (Germany), (c) Tokyo (Japan), and (d) Rio de Janeiro (Brazil).
Black: water surface, gray: sealed surface, white: unsealed surface (open space).

TABLE VI
CONFUSION MATRIX OBTAINED FOR LANDSAT NEURAL ALGORITHM:

THE OVERALL ACCURACY IS OF ABOUT 82%

overfitting. The network performance seems to be satisfactory,
especially if we take into account that the procedures are
completely automatic. In fact, the maps automatically provided
on new images, which are not considered in the training phase,
show good agreement with those that would be obtained with
careful visual inspection or with the available ground-truth.
Even though, both for high and very high spatial resolutions,
the experiments have been carried out on similar scenarios, the
overall accuracies of 87% and 82% obtained for selected Quick-
bird and Landsat subareas, respectively, represent a benchmark
for successive studies. Finally, if images of the same area are
available at different times, the described technology seems also

to be useful for an automatic discoverage of changes, such as
new buildings, that occurred in the area under observation.
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