

Theory and PALSAR Observations of the PolInSAR $\pi/4$ mode

M.Lavalle^{1,2,3}, D.Solimini¹, E.Pottier², Y.-L. Desnos³

¹DISP, Tor Vergata University, Rome, Italy ² IETR UMR CNRS 6164, University of Rennes 1, Rennes, France ³European Space Agency, ESA-ESRIN, Frascati, Italy

ALOS PI Symposium 3-7 November 2008

Outline

Introduction

- Compact Polarimetric SAR Interferometry
- New approach for forest height estimation
- Results: PALSAR data
 - Full PolInSAR
 - Compact PolInSAR
- Conclusions

Introduction

Polarimetric SAR Interferometry: ALOS-PALSAR

- \rightarrow PolInSAR basic idea:
 - → InSAR coherence has different sensitivity according to polarization
 - → To discriminate among different components of the vertical structure of vegetation
- \rightarrow ALOS PALSAR
 - \rightarrow L-band
 - \rightarrow 46 days revisit time

Introduction

Compact Polarimetry VS Full Polarimetry

CP relaxes system constraints (antenna, downloading rate, swath, power consumption) but requires the reconstruction of the full polarimetric information to exploit PolSAR algorithms.

Objective of the work

To compare the PolinSAR performance of Compact-Pol with Full-Pol using L-band PALSAR data and forest height estimation

We will show:

- 1) A reconstruction algorithm of the Full PolInSAR information
- 2) A new approach for the forest height estimation

Reconstruction algorithm C-PolInSAR → F-PolInSAR

Compact Polarimetry

esa

Reconstruction of full polarimetric information

Compact PollnSAR

Reconstruction of full PolInSAR information

Compact PolInSAR

Reconstruction of Full PolInSAR information

CP scattering vectors

4×4 C-PolInSAR covariance matrix $k_{(\pi/4)_{1}} = \begin{pmatrix} S_{HH_{1}} + S_{HV_{1}} \\ S_{VV_{1}} + S_{HV_{1}} \end{pmatrix}$ $k_{(\pi/4)_{2}} = \begin{pmatrix} S_{HH_{2}} + S_{HV_{2}} \\ S_{VV_{2}} + S_{HV_{2}} \end{pmatrix}$ $J_{4} = \left\langle \begin{bmatrix} k_{(\pi/4)_{1}} \\ k_{(\pi/4)_{2}} \end{bmatrix} \begin{bmatrix} k_{(\pi/4)_{1}} \\ k_{(\pi/4)_{2}} \end{bmatrix} \right\rangle^{*T} \right\rangle = \begin{bmatrix} J_{11} & J_{12} \\ J_{12}^{*T} & J_{22} \end{bmatrix}$ $J_{12} = \begin{bmatrix} j_{11} & j_{12} \\ j_{21} & j_{22} \end{bmatrix}$ $j_{11} = S_{HH_1}S_{HH_2}^* + S_{HH_1}S_{HV_2}^* + S_{HV_1}S_{HH_2}^* + S_{HV_1}S_{HV_2}^*$ $\begin{cases} j_{12} = S_{HH_1} S_{VV_2}^* + S_{HH_1} S_{HV_2}^* + S_{HV_1} S_{VV_2}^* + S_{HV_1} S_{HV_2}^* \\ j_{21} = S_{VV_1} S_{HH_2}^* + S_{VV_1} S_{HV_2}^* + S_{HV_1} S_{HH_2}^* + S_{HV_1} S_{HV_2}^* \end{cases}$ $j_{22} = S_{VV_1}S_{VV_2}^* + S_{VV_1}S_{HV_2}^* + S_{HV_1}S_{VV_2}^* + S_{HV_1}S_{HV_2}^*$

8 observables < 18 unknowns !

Compact PolInSAR

Reconstruction of Full PolInSAR information

 \rightarrow Additional equations from symmetry properties (Nghiem, 1992)

- \rightarrow Two approaches:
 - rotation symmetry
 - reflection symmetry

C-PolInSAR observables Reflection symmetry rotation invariance of x-pol terms 6×6 reconstructed F-PolInSAR coherency matrix T_6^{ref}

Cross-coherency matrix:

$$\Omega_{12} = \frac{1}{4} \begin{pmatrix} j_{11} + j_{12} + j_{22} + 5j_{21} & 2(j_{11} - j_{22}) & 0 \\ 2(j_{11} - j_{22}) & 2(j_{11} + j_{22}) - 4j_{21} & 0 \\ 0 & 0 & j_{11} + j_{22} - j_{21} - j_{12} \end{pmatrix}$$

Reconstructed FP information

PALSAR example (Flevoland)

→ Pauli Decomposition: HH+VV, HH-VV, HV

Compact PolInSAR

Performance Evaluation Scheme

New approach for forest height estimation

Random Volume over Ground Model

Previous approach (Papathanassiou, 2001)

Random Volume over Ground Model

Inversion using PALSAR data

PollnSAR Scattering Model

Extensive parametric analysis

→PolSARProSIM:

- PolInSAR scattering model (Williams, 2006)
- Fully coherent SAR simulation

\rightarrow Input Parameters:

- Acquisition Geometry (altitude, baseline, inc. angle)
- Forest (height, density, tree type)
- Soil (roughness, moisture, slope)

POLSARPRO

PolSARproSIM

Extensive parametric analysis

\rightarrow Bio-physical parameters that impact on the PolInSAR coherence

 \rightarrow Baseline and incident angle known from the acquisition information

Model Analysis

Coherence vs Vegetation Height

- \rightarrow Simulated scenario:
- ALOS/PALSAR
- Baseline 100 m

Model Analysis

Coherence vs Local Terrain Slope

Model Analysis

Coherence vs Forest Density

Proposed Methodology

Proposed approach VS RVoG

Forest height estimation

Our approach

Coherent scattering model

Slow in computing the model output

Model inputs are trees height, azimuth terrain slope and forest density

Inversion uses the slope information from external DEM

Require the generation of LUT that depends on the baseline

RVoG inversion

Not coherent scattering model

Fast implementation and inversion

Model inputs are trees height, ground-tovolume ratio, canopy extinction

Fitting of the line can fail for small baseline dataset

Fully automatic

- **Google Earth**
 - \rightarrow 2 PALSAR PolInSAR acquisitions:
 - 13 Mar 2007 and 28 Apr 2007
 - Amazon/Belize (lat. -4.3°, lon. -56.3°)
 - Baseline 100 m

Amazon Forest

Best phase selection

Amazon Forest

30%

Max phase difference due to topography = 0.45 rad Max Error 20%

Preliminary Inversion Example

→ Vegetation height estimated from a vegetated area of the Amazon PALSAR dataset

Comparison with *Compact* Polarimetric SAR Interferometry

Results: Compact PolInSAR

Results: Compact PolInSAR

Results: Compact PolInSAR

Preliminary Inversion Example

→ Vegetation height estimated from a vegetated area of the Amazon PALSAR dataset

Conclusions

We have shown the performance of Compact PolInSAR using a new forest height estimation approach suitable for PALSAR data

→ Forest height estimation

- Based on tree height, terrain slope and forest density.
- Suitable for small baseline dataset (less decorelation impact)
- Require the generation of data-dependent LUT using PolSARProSIM

→ Compact PolInSAR

- CP linear is feasible for forest height estimation
- CP circular still not investigated

Reconstructed FP information

PALSAR example (Flevoland)

→ Pauli Decomposition: HH+VV, HH-VV, HV

