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Abstract—This paper describes an algorithm aimed at moni-
toring the soil moisture and the growth cycle of wheat fields using
radar data. The algorithm is based on neural networks trained by
model simulations and multitemporal ground data measured on
fields taken as a reference. The backscatter of wheat canopies is
modeled by a discrete approach, based on the radiative transfer
theory and including multiple scattering effects. European Remote
Sensing satellite synthetic aperture radar signatures and detailed
ground truth, collected over wheat fields at the Great Driffield
(U.K.) site, are used to test the model and train the networks. Mul-
titemporal, multifrequency data collected by the Radiometer-Scat-
terometer (RASAM) instrument at the Central Plain site are used
to test the retrieval algorithm.

Index Terms—Crops, neural networks, radar, retrieval, scat-
tering model.

I. INTRODUCTION

I N THE LAST decades, important advances have been
achieved in the agricultural applications of synthetic

aperture radar (SAR). Since the 1970s, several ground-based
experiments proved a significant radar sensitivity to crop
parameters, and results were summarized in [1]. Further
experimental studies were carried out by means of airborne
SAR campaigns. Finally, the launches of the European Remote
Sensing (ERS) satellites, RADARSAT, and the Japanese Earth
Resources (JERS) satellites made it possible to monitor crop
cycles continuously by means of spaceborne SARs [2]–[5].

In parallel, crop scattering models are being refined. Veg-
etation elements such as leaves, stems and ears have been
represented as discrete elements and their scattering and ab-
sorption cross-sections computed by theories developed for
canonical shapes, such as discs and cylinders [6]–[8]. Fur-
ther developments are in progress, leading to a more detailed
description of crop structure [9]–[11].

From the application point of view, the objective is to estimate
the soil moisture and important vegetation variables, such as
leaf area index (LAI: m /m ) and biomass (kg/m ) by means
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of SAR signatures. Three main steps may be identified in
this process [12]: 1) to adopt a suitable radar configuration;
2) to establish a reliable relationship between the backscatter
coefficient and the field variables; and 3) to solve the
inverse problem. As far as the first step is concerned, low
frequencies, typically L-band, proved to be suitable for soil
moisture monitoring, while the ERS configuration (i.e., C-band,
VV polarization, 23 ), in spite of its limitations, may lead to
interesting results for monitoring some crops, such as wheat
and rice [2], [4]. The second step is still in progress. There have
been important advances, but some studies indicate that further
refinements are required [2], [11]. Finally, the third step is
very complex, since depends on several soil and vegetation
variables. Although some variables, such as the dimensions
of leaves and stems, may be less interesting for applications,
they still influence . Therefore, inversion methods based
on simple relationships between and biomass (or LAI)
tend to be unreliable. A more advanced approach is based
on the combination of neural networks with electromagnetic
models [13]–[15]. Neural networks are composed of many
nonlinear computational elements (called neurons) operating
in parallel and linked with each other through connections
characterized by multiplying factors. This structure makes neural
networks inherently suitable for addressing nonlinear problems.
In contrast to methods that use empirical models, the derivation
of particular rules or statistical a priori information on the data
to be processed is not necessary in this approach. The neural
network establishes the inverse mapping and the input–output
discriminant relations during the training phase on the basis
of data generated by the electromagnetic model.

In this paper, neural networks are adopted to retrieve soil
and vegetation variables. The training is done by using a model
that is based on the radiative transfer theory and combines scat-
tering contributions by means of the matrix doubling algorithm.
The model is able to compute both the backscattering coeffi-
cient (active version) and the emissivity (passive version). A
detailed description of the active model foundations is given
in [16]. In the same paper, the model is tested against exper-
imental data collected at L-band over sunflower fields. In the
present paper, the model is adapted to represent wheat fields,
which are characterized by specific modeling problems, related
to their high stem density and vertical structure [2], [11]. The
model is tested against signatures collected at 5.3 GHz (C-band)
by ERS-2 SAR, and trains algorithms using experimental data
collected at 3.1 GHz (S-band), 4.6 GHz (C-band), and 10.2 GHz
(X-band).
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As previously stated, several soil and vegetation variables in-
fluence the backscattering coefficient. A procedure based on a
full inversion of all variables, assumed to evolve independently,
would be too cumbersome. The retrieval procedure proposed in
this paper does not lead to unmanageable numerical complexity,
although the model adopted ensures a detailed electromagnetic
description of the canopy. The procedure is structured into sev-
eral steps, as indicated below. First of all, three wheat fields, for
which detailed ground truth and ERS-2 signatures were avail-
able, are used to test the model. Then the model, using the same
ground data (reference) as input, generates a set of multitem-
poral outputs at S-, C-, and X-band. This multitemporal dataset
trains two different neural networks, to retrieve soil moisture
and vegetation variables, respectively. Finally, the networks op-
erate on radar signatures collected at a test site. The first network
estimates soil moisture on a day-by-day approach. The second
network, using retrieved soil moisture as input, estimates the dif-
ferences between the crop cycle of the reference site and the crop
cycle of the test site and, hence, the time evolution of its vege-
tation variables. Finally, the results are compared with ground
truth measured at the test site. No a priori information about the
test site is used in the retrieval procedure.

Inevitably, the algorithm involves some approximations,
which are critically discussed in the paper. However, it has the
advantage of fully exploiting the potential of multitemporal
data and training the network with model outputs that consider
the evolution of all vegetation variables.

Recently, a similar algorithm was tested using radiometric
measurements and the passive version of the same electro-
magnetic model [17]. In that paper, two wheat fields were
considered. Ground data from the first field were used as a
reference, while radiometric data from the same field were
used to test the retrieval of soil moisture and vegetation vari-
ables. Radiometric data from the second field were used to test
only soil moisture retrieval, due to limitations in the available
experimental data (see [17] for details). In the present paper,
the retrieval procedure is tested three times using three com-
pletely independent reference datasets. Moreover, the retrieval
is based on radar, instead of radiometric, signatures. This is
important for applications, since the resolution of spaceborne
radiometers is not sufficient for agricultural applications.

Section II describes the experimental data, collected by the
ERS-2 SAR over wheat fields at the Driffield (U.K.) site and
by the Radiometer-Scatterometer (RASAM) scatterometer from
wheat fields in the Central Plain (CH) site. Section III describes
the electromagnetic model used to train the retrieval algorithm,
which is described in Section IV. Section V displays and dis-
cusses the results obtained.

II. EXPERIMENTS

Two datasets are considered in this work. ERS-2 signatures
collected at the Great Driffield site in 1997, as well as detailed
ground truth, are used to test the electromagnetic model and
train the networks. RASAM signatures and ground data col-
lected at the Central Plain site in 1988 are used to test the re-
trieval procedure. Both Great Driffield and Central Plain data
were made available in the framework of an ECC Concerted
Action, named ERA-ORA.

In order to train the network with a multitemporal dataset of
sufficiently short sampling time, ground truth collected at the
Avignon site in 1993 [18] are used as an auxiliary reference.

A. Driffield Site

In 1997, several fields were monitored at the Great Driffield
site by ERS-2 SAR. Only descending orbit images were
considered, giving eleven images within the duration of the
field campaign. These were standard ESA PRI products. Data
were corrected for local incidence angles using a DEM and
calibrated using the National Remote Sensing Centre, Ltd.,
software package TSAR. Field averaged backscattering values
were extracted using a digitized map of field boundaries for the
area, which had been verified on the ground. Further details are
given in [2].

The important soil and vegetation variables were measured
during the campaign. In particular, multitemporal signatures of
three wheat fields (numbered here as 2, 3, and 5) are available.
Radar data are accompanied by detailed ground truth. Vegeta-
tion variables were measured at two sites in each field. Fresh
and dry biomass were measured over a representative sample
of plants in each site. Soil moisture was measured by taking
samples on the top 5 cm, using a can of known volume. For
soil measurements, the sampling density varied from 2–12 sam-
ples per field, depending on soil conditions. Measurements cov-
ered also soil roughness, as well as dimensions and moisture of
leaves, stems, and ears. Detailed information on the field mea-
surements and satellite data are available in [2]. Some aspects
that are important to the objective of the present work are sum-
marized below.

Fig. 1 shows the temporal evolution of volumetric soil mois-
ture content (SMC), crop biomass, LAI, and backscatter coeffi-
cient measured by ERS-2, for the three fields. It is evident that
soil drying and crop growing occur almost simultaneously in
springtime and early summertime. Both effects tend to decrease
the backscattering coefficient. Therefore, inversion of a single
parameter by means of empirical methods is not reliable, but
physical models are required to isolate the different effects. For
all three fields, a minimum is observed at day of year (DoY)

150, followed by a slight increase in . The biomass has its
highest values between DoY 150 and 200.

Fig. 2 compares the trends of geometrical variables, such
as leaf width, stem diameter, and ear diameter in the three
fields. Although with some differences, the time evolutions
in the three fields are similar. Therefore, developing retrieval
algorithms based on a reference field, as it is done in this paper,
appears to be a reasonable procedure. Of course, the accuracy
of the algorithm will be improved if the reference and test
fields are in the same climatic zone and of the same species
and variety.

B. Central Plain Site

RASAM is a microwave radiometer/scatterometer system. It
operated over several fields in Switzerland between 1984 and
1991. Signatures were collected at frequencies of 2.5, 3.1, 4.6,
7.2, 10.2, and 11.0 GHz, at several angles between 10 and 70 ,
and at VV, HH, HV, and VH polarizations [19]. Ground data
covered some significant parameters such as soil moisture, soil
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Fig. 1. Multitemporal trends of variables measured over three fields at Great Driffield. (Top left) Volumetric soil moisture content (percent). (Top right) Biomass
(kilograms per square meter). (Bottom left) LAI. (Bottom right) Backscatter coefficient (decibels) measured by ERS-2 SAR.

Fig. 2. Multitemporal trends of variables measured over three fields at
Great Driffield. (Top to bottom) Leaf width (centimeters), stem diameter
(millimeters), and ear diameter (millimeters).

roughness, crop height, crop biomass, etc. In this paper, the re-
trieval procedure is tested using multitemporal signatures col-
lected over a wheat field in 1988 at the Central Plain site.

Fig. 3 shows the time evolution of soil moisture content,
biomass, and . Two frequency bands, i.e., 3.1 GHz (S) and
10.2 GHz (X), two polarizations, i.e., VV and HH, and an angle
of 30 are selected in the figure. The SMC exceeds 0.25 m /m
during the whole period, with some limited and rapid variations
observed when the crop was developed. The effects of these
SMC variations on are moderate at S-band, HH polarization,
while they are not evident at VV polarization or X-band. As far

as general trends are considered, a minimum similar to the
one observed in Fig. 1 for ERS is noted at S-band (particularly
for VV polarization), while at X-band the trend is monotonic
decreasing, except at the start of the measurements.

III. MODEL

The model assumes the vegetation medium to be a ho-
mogeneous half-space with rough interface, representing the
soil, overlaid by an ensemble of discrete lossy scatterers,
representing the plant constituents. Details of the model are
given in [16], while its main aspects are summarized below.

The procedure may be subdivided into various steps.

• First of all, the bistatic scattering coefficient of soil, as well
as the bistatic scattering cross sections of vegetation ele-
ments, are computed. For soil, the integral equation model
[13] with an exponential correlation function, is adopted.
The scatterers, which represent the plant constituents, are
described as dielectric elements of canonical shape, such
as discs and cylinders. For discs, representing leaves, the
physical optics approximation is adopted [7]. Cylinders
represent stems and ears. For these kinds of scatterers,
computations are carried out assuming the internal field
to be the same as that of an infinite length cylinder [8].

• The canopy is subdivided into homogeneous layers,
selected in accordance with its geometrical structure.
Two layers are taken for wheat. The upper layer is filled
with vertical cylinders, representing ears, and discs,
representing flag leaves. The lower layer is filled with
thin vertical cylinders, representing stems, and discs, rep-
resenting other leaves. The total number of discs per unit
area is obtained as the ratio between LAI and single disc
area. The fraction of discs in the upper layer (with respect
to total discs) is set equal to the fraction of flag leaves
(with respect to total leaves). Each layer is subdivided
into several thin sublayers. For each sublayer, scattering
and transmission matrices are defined, according to the
procedure described in [16]. Matrix elements are related
to bistatic scattering cross sections of scatterers filling
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Fig. 3. Multitemporal trends of variables measured over one field at Central Plain. (Top left) Volumetric soil moisture content (percent). (Top right) Biomass
(kilograms per square meter). (Bottom left) Backscatter coefficient (decibels) measured by RASAM at 30 , VV polarization. (Bottom right) Backscatter coefficient
(decibels) measured by RASAM at 30 , HH polarization.

the sublayer, which must be computed for a discrete set
of incidence and scattering directions. Relevant formulas
are given in [16].

• For soil, a scattering matrix is defined, and its elements are
computed as a function of bistatic scattering coefficient.
The same angle discretization as the one adopted for the
canopy, is applied. Relevant formulas are given in [16] also
for this case.

• Once all the scattering and transmission matrices are
available, the matrix doubling algorithm is used, under
the assumption of azimuthal symmetry [13]. First of all,
the algorithm is used iteratively, in order to combine the
sublayer matrices and compute scattering and transmission
matrices of the two layers constituting the canopy. Then,
the same algorithm is used to combine the matrices of
the two layers and, afterwards, to combine canopy and
soil matrices. In this way, the scattering matrix of the
whole soil-vegetation medium is computed.

• Finally, the backscattering coefficient is computed by
means of the scattering matrix, for any required angle.
The relevant formula is given in [16].

The following inputs are required by the model:

• soil permittivity;
• soil height standard deviation;
• soil correlation length;
• number of stems and ears per square meter;
• leaf area index;
• stem, ear, and leaf permittivity;
• height and diameter of stem and ear, assumed to be

vertical;
• length, width, and thickness of leaves;
• orientation distribution of leaves.

Most of the data were directly available from ground truth mea-
sured at Great Driffield [2]. Soil permittivity was computed by
volumetric soil moisture, using the semiempirical model de-
scribed in [1]. Stem, ear, and leaf permittivities were computed

by gravimetric moistures using a well-established semiempir-
ical model [20]. No detailed information was available for leaf
orientation. The Eulerian angle of the discs was assumed to
follow a distribution, with . This cor-
responds to a predominantly erectophyle assumption, which is
reasonable for wheat leaves.

Ground data collected during a previous experiment at Avi-
gnon site [18] indicated that stems and ears are partially hollow
in the late season. In [18] a reduction factor, based on weight
measurements, was applied to stem and ear diameters to account
for this effect. A similar reduction factor was applied to Driffield
data, by using a correspondence between the time development
of Driffield variables and the time development of the Avignon
variables [18]. Formulas used to establish this correspondence
will be described in detail in Section IV.

The model was tested against ERS 2 SAR signatures mea-
sured at Driffield, since ground data at this site were sufficiently
detailed to be used as inputs. Fig. 4 shows the comparison be-
tween simulated and measured backscatter coefficients for the
three wheat fields. Some observations may be derived from the
figures. Some discrepancies, related to surface model inaccura-
cies, are observed in the very early days, when the fields were
essentially bare soils. The model correctly reproduces the de-
creasing trends observed in spring and early summer, which
are due to the simultaneous effects of soil drying and vegeta-
tion growth. Wheat geometry is dominated by vertical elements,
such as ears and stems. At C-band, 23 and VV polarization,
these mainly produce absorption of the incoming wave, associ-
ated with weak direct backscattering. A minimum is observed
at DoY 150, due to strong attenuation of soil backscattering,
partially compensated by weak backscattering due to flag leaves
and multiple interactions among leaves. In the late part of the
cycle, experimental data and simulations agree in indicating a

increase, which is due to an increase of soil moisture and a
decrease of canopy attenuation. The latter is due to vegetation
drying. However, the values at the end of the cycle are lower
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Fig. 4. Comparison between experimental and simulated multitemporal trends
of backscatter coefficients (decibels) at Great Driffield. (Top to bottom) Field 2,
field 3, and field 5.

than wintertime values, since a residual canopy attenuation is
present.

By considering all the radar acquisitions over the three fields
for which simultaneous ground truth were available, a total rms
error of 2.0 dB is obtained. This error arises mainly from surface
model inaccuracies in the first days of the year, when fields were
bare soils.

IV. RETRIEVAL ALGORITHM

This section describes two retrieval algorithms, based on
neural networks trained by the model illustrated in the previous
section. The neural network simulations are based on the
Stuttgart University neural network simulator (SNNS).1 The
topology is formed by a multilayer perceptron with two hidden
layers, while a sigmoid function is applied as the activation
function of the network units [21]. The general aspects of the
procedure are presented before dealing with its application to
our specific sites.

A. General Aspects

A reference site, for which a multitemporal set of detailed
ground data is available, must be selected for training the neural
network. For each Day of Year of the reference site DoY ,
the model is run to simulate ’s at the required frequencies,
polarizations, and angles. Vegetation inputs are given by the
ground data measured at the reference site. Moreover, computa-
tions are carried out for various situations of soil moisture and
soil height standard deviations. Correlation length is dealt with

1http://www-ra.informatik.uni-tuebingen.de/SNNS/

by averaging over soil scattering matrices computed for a real-
istic range between 3 and 8 cm. We also introduce a “density
factor” in the computations, to allow for simulation of ’s
for fields with a different number of plants per square meter
than that at the reference site . The density factor is defined
as .

In summary, for a given reference site and for each radar con-
figuration (i.e., for each required set of frequencies, polariza-
tions and angles), the model generates an output file containing
simulated ’s for the following scenarios:

• volumetric soil moisture: from 0.05–0.4 m /m , step
0.01 m /m ;

• soil height standard deviation: 0.5 and 1 cm;
• vegetation variables taken from datasets measured for

each DoY ;
• .

The total number of simulated samples is 61 746.
1) Soil Moisture Retrieval: First of all, soil moisture is re-

trieved. A first neural network is adopted, which reverses the
role of inputs and outputs with respect to the model. In the
training phase, the input–output pairs of the ’s computed by
the model and the corresponding values of soil moisture are used
to compute the neural network coefficients. The latter establish a
correspondence between ’s and soil moisture values, in a sim-
ulated scenario of no a priori knowledge about vegetation status
and soil roughness. In the test phase, the soil moistures corre-
sponding to the dates of the radar measurements at the test site
are considered as unknowns to be retrieved. A set of measured

’s (at the same frequency, polarizations and angles as those
of the training phase) is fed to the trained network, giving the
estimated soil moistures as outputs. The network shows input
nodes, corresponding to ’s measured at the radar configura-
tions used. The hidden nodes are processing units and one output
node gives the retrieved soil moisture. The retrieval is performed
by the same network for all days with radar data available at the
test site.

2) Vegetation Variables Retrieval: As previously stated, the
model generates a set of simulated ’s, covering several DoYs
and several conditions of the soil variables and at the selected
frequencies, polarizations, and angles. The basic concept of the
retrieval procedure is to assume that other fields of the same
crop type will have a similar growth cycle, but shifted in time
and/or with different duration. That is, if DoY represents
the trend of a vegetation variable throughout the reference field
crop cycle, we assume that the following expression holds for a
vegetation variable of a generic field of the same crop

DoY DoY (1)

The correspondence between the two time scales is established
by an inverse relationship such as

DoY DoY DoY DoY (2)

DoY is a generic day of a field growth cycle, and DoY is
selected in a central location of the reference field cycle. is
the factor which modifies the width of the time trend, and the
parameter which modifies the time location of the cycle.
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Several time series of backscattering coefficients are simu-
lated by varying , and within realistic ranges. The simu-
lated time series, in conjunction with the corresponding values
of , and , are then used to compute the network coeffi-
cients. As a result of the training phase, multitemporal sets of
backscatter coefficients are associated with crop cycles which
may differ from the reference cycle in crop density, and also in
temporal location and temporal duration. At this stage, the soil
moisture values retrieved by the first network are used.

After the training phase, the retrieval procedure is tested at
a test site. A multitemporal set of ’s measured at the same
frequencies, polarizations and angles as those of the training
phase, is taken.

As far as vegetation parameters are considered, the network,
using experimental ’s as input, estimates the differences be-
tween the multitemporal ground data for the test field and those
for the reference field. The outputs provided by the network are
the factor (where the T denotes “test”), and the pair of pa-
rameters and containing information about the temporal
evolution of the test cycle. Vegetation variables at the test site
may be computed as a function of , and according to
the procedure indicated below.

Let be the value of a vegetation variable to be retrieved
for a given Day of Year at the test site DoY . Some variables,
such as biomass and LAI, are dependent on density; in this case
we have

DoY DoY (3)

with

DoY DoY DoY DoY (4)

Other variables, such as dimensions and moisture of leaves,
stems, and ears are not dependent on the density. For these vari-
ables, formula (3) is modified to

DoY DoY (5)

while formula (4) is not modified. In this way, all vegetation
variables may be estimated for the whole test cycle.

The proposed algorithm may be a step toward a complete so-
lution of the retrieval problem. In the model adopted here, the
backscattering coefficient is influenced by: soil moisture, sur-
face height standard deviation and correlation length, number
of plants per square meter, dimensions and moistures of leaves,
stems, and ears, and leaf orientation distribution, for a total of
14 variables. The number is even higher in models adopting
multiscale surface representations and/or coherent approaches.
A direct mathematical inversion of such a large system of re-
lationships is extremely difficult. On the other hand, methods
based on simple relationships between and a single vari-
able are heavily influenced by the specific properties of the
adopted datasets. The adopted algorithm is based on a com-
plete model simulation, including all variables influencing ,
without leading to an unmanageable retrieval procedure.

B. Specific Issues Concerning the Dataset

For both soil moisture and vegetation variables, the proce-
dures described above were applied three times, using each of

Fig. 5. Multitemporal trend of LAI over field 2 at Great Driffield. (Asterisks)
Measured. (Continuous line) Interpolated.

the three wheat fields at the Great Driffield site taken as refer-
ence. The wheat field in the Central Plain site was taken as the
test site.

Seven temporal samples of ground truth were available for
the whole crop cycle at Great Driffield. This number of sam-
ples was not sufficient since the procedure for vegetation vari-
able retrieval needs simulated data with a short sampling time.
In order to overcome this problem, the Great Driffield data were
interpolated with the aid of ground truth measured at Avignon
in 1993 [18], used as an auxiliary reference. Avignon ground
measurements were carried out with short sampling time (three
days on average). Moreover, after further processing, vegeta-
tion variables were provided for every DoY during the crop
cycle. A first processing, based on (1) and (2), was applied to
the time trend of variables measured at Avignon. In this way,
for each variable used as a model input, data measured at Great
Driffield were fitted. An example of the procedure is shown in
Fig. 5, where LAI samples measured at Great Driffield are com-
pared with a continuous trend obtained following the interpola-
tion procedure.

In the neural network training phase, the model was run for
every DoY using interpolated values of the vegetation vari-
ables as input. To generate the time series necessary to train the
network, we used (1) and (2), letting vary in the range 0.5–2,

in the range to , and the density factor in the range
0.5–1.5.

V. RESULTS

The method illustrated in Section IV was tested using
RASAM signatures from a wheat field in the Central Plain site.
For each of the two retrieval processes, i.e., soil moisture and
vegetation variables, we selected a set of radar configurations
suitable for the given application, using diverse information
sources, but avoiding the introduction of too many nodes in the
network.

For soil moisture we selected: 3.1 GHz, HH and VV, 20 and
30 . The topology of the network is 4-10-10-1. The learning
phase was limited to less than 20 min. The procedure described
in Section IV-A1 yielded three multitemporal sets of retrieved
soil moistures, each corresponding to one selected reference
field. The three retrieved multitemporal trends of soil moistures
are compared with that measured at the test site in Fig. 6. The
three comparisons show similar properties. In the time interval
from DoY to DoY , the soils were bare and
wet. The measured soil moisture was close to 0.4 m /m , with
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Fig. 6. Multitemporal trends of volumetric soil moisture content (m /m ).
(Top to bottom) Field 2 as reference, field 3 as reference, and field 5 as reference.
(Continuous line) Measured over the test field. (Dashed line) Retrieved by the
algorithm.

very limited variations. The retrieved soil moistures are high and
stable, although slightly underestimated. After DoY
the field was affected by two main effects: slight drying and
rapid vegetation growth (see Fig. 3). In this time interval, the al-
gorithm is unable to reproduce soil moisture trends. This is due
to the effect of vegetation, which causes the radar signal to be-
come insensitive to soil moisture variations. Fig. 3 shows that
the backscatter coefficients were scarcely influenced by varia-
tions in soil moisture. This is also related to the high density of
the test field, which showed a maximum biomass of more than
7 kg/m (see again Fig. 3). In [17], better results were achieved
for vegetation covered soils, but L-band signatures were also
available; the instrument had a different sensitivity, since it was
passive, and biomass values were lower. By taking only sam-
ples from DoY to DoY the following rms soil
moisture errors were computed:

• reference field 2: 0.0285 m /m ;
• reference field 3: 0.030 m /m ;
• reference field 5: 0.0305 m /m .

For vegetation variable retrieval, we selected: 3.1, 4.6, and
10.2 GHz, HH and VV, and 30 for eight days. The DoY
parameter of formula (4) was set to 170.
In this case, the topology of the network is 48-35-20-3. Less
then 20 min were sufficient to get the network trained also in
this case. The procedure described in Section IV yielded the
following values.

Fig. 7. Multitemporal trends of biomass (kg/m ). (Top to bottom) Field 2 as
reference, field 3 as reference, and field 5 as reference. (Crosses) Measured
over the test field. (Continuous line) Retrieved by the algorithm. (Dashed line)
Measured over the reference field.

• For reference field 2

• For reference field 3

• For reference field 5

Ground data measured at the test site were not used in the re-
trieval procedure, but were used to test the final results. Fig. 7
compares the biomass trends measured at the test field and those
obtained by applying (3) and (4) to the biomass trends mea-
sured at the three reference sites, respectively. Also, for sake
of comparison, the biomass trends measured at the reference
sites are shown. In all three cases, the time locations of re-
trieved trends match that measured, although those of the ref-
erence sites were appreciably different. Some discrepancies, up
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Fig. 8. Comparison between experimental backscatter coefficients (decibels) measured at (crosses) Central Plain and (circles) values obtained as a result of the
retrieval procedure. (Left) VV polarization. (Right) HH polarization. (Top to bottom) S-, C-, and X-band.

to about 1.5 kg/m , are observed in the maximum values, es-
pecially when fields 3 and 5 are taken as reference. This is
explained by the presence of a saturation effect, which causes
the backscattering coefficient to become insensitive to biomass
variations when the biomass is high. The problem has been dis-
cussed in several previous papers (e.g., see [12]). The test field
was dense, with a maximum biomass higher than 7 kg/m . The
algorithm estimates high values for all three cases, but the
precision of this estimate was reduced by saturation. In spite of
this problem, the algorithm produces a significant shift toward
the measured biomass trend, although the reference trends are
quite different from it in all three cases. It must also be noted
that a completely “blind” procedure was adopted. Retrieved data
were obtained using only data from reference sites and a theo-
retical model, without using any a priori information about the
test field.

Fig. 8 compares measured ’s with values generated by the
model for the same frequencies, polarizations, angles and soil
variables as the test site: the time series of ’s has been ob-
tained using the retrieved value and after application of the
transformation given by formula (4) to the time cycle of ref-
erence field 2. Underestimations of are observed at C-band
VV for some time intervals. This problem was already observed
in other works [2], where it was attributed to overestimation of
the attenuation at VV. This is also shown in [22], in which it
is stated that the sparse medium approximation may not be ap-
propriate for wheat, so that the attenuation cannot be estimated

accurately by the optical theorem. However, in Fig. 8 the cor-
respondence is generally good. The model is able to reproduce
the general frequency and polarization properties described in
Section 2.2. Moreover, a matching between multitemporal
trends is produced by the application of the algorithm, as de-
scribed in Section 4.1.

VI. CONCLUSION

An algorithm is proposed for retrieving soil moisture and the
multitemporal evolution of the properties of wheat crops, based
on ground truth from a reference field, a scattering model and
neural networks. The algorithm takes the evolution of all vege-
tation variables into account, yielding a retrieval process which
is fast and convenient. S-, C-, and X-band radar signatures are
used.

The accuracy of soil moisture retrieval is fair when the soil is
bare, but is reduced under developed vegetation. The availability
of lower frequencies (i.e., L-band) signatures would have miti-
gated this problem.

As far as vegetation is concerned, the algorithm reproduces
the biomass trend with reasonable agreement, although the ab-
solute accuracy is reduced by saturation effects.

In a future operational context, the retrieval procedure could
be improved by also using L-band, when available, and planning
the campaigns in such a way as to have a reference field with the
same general properties as those of the fields to be monitored
(e.g., same variety, same climatic conditions, etc.).
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This work is aimed at proposing and testing general algo-
rithms. Future research should analyze the potential of single
radar configurations.
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