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On Neural Network Algorithms for Retrieving
Forest Biomass From SAR Data
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Abstract—We discuss the application of neural network algo-
rithms (NNAs) for retrieving forest biomass from multifrequency
(L- and P-band) multipolarization (hh, vv, and vv) backscattering.
After discussing the training and pruning procedures, we examine
the performances of neural algorithms in inverting combinations
of radar backscattering coefficients at different frequencies and
polarization states. The analysis includes an evaluation of the ex-
pected sensitivity of the algorithm to measurement noise stemming
both from speckle and from fluctuations of vegetation and soil pa-
rameters. The NNA accomplishments are compared with those of
linear regressions for the same channel combinations. The appli-
cation of NNAs to invert actual multifrequency multipolarization
measurements reported in literature is then considered. The NNA
retrieval accuracy is now compared with those yielded by linear
and nonlinear regressions and by a model-based technique. A di-
rect analysis of the information content of the radar measurements
is finally carried out through an extended pruning procedure of the
net.

Index Terms—Forest biomass, neural networks, synthetic aper-
ture radar (SAR).

I. INTRODUCTION

I N RECENT years, research in remote sensing has led to
the development of methods for retrieving forest parame-

ters from backscattering data collected by synthetic aperture
radar (SAR). This effort stems from the importance of forestry
monitoring in facing several environmental problems, in par-
ticular for rapid damage assessment (in southern Europe forest
fires destroy vast areas each year) and disease detection (in rela-
tion to a severe acidification stress in some regions). Moreover,
on a global scale, as they comprise about 90% of the terres-
trial biomass, forests play a crucial role in hydrologic, climatic
and biochemical cycles [1]–[3]. Besides, forest stand parame-
ters may be useful information for the timber industry, as well
as for environment management agencies.

A major problem in forest biomass retrieval from SAR data is
the contamination of radar measurements by a number of other
environmental variables. To mitigate the effect, multifrequency
and multipolarization datasets have been mainly considered,
collected by airborne (AirSAR) [4]–[8] and shuttleborne
(SIR-C/X-SAR) [9]–[12] SAR. Some attempts to exploit
single-channel satellite intensity data have also been reported
[13]–[15], with promising results attained when data taken at
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two frequencies (for the European Remote Sensing satellite and
the Japanese Earth Resources Satellite) are combined [16], or
when measurements are taken at lower frequencies (e.g., VHF)
[17]. Multitemporal interferometric satellite measurements
are now being also favorably considered for forest monitoring
[18]–[21].

Retrieving forest stand volume or biomass from backscat-
tering data has often been carried out by implementing linear
and nonlinear multiple regressions [4], [8], [9], [22]–[24]. To
overcome the ill-posedness of the problem, a methodology ex-
ploiting a priori classification of arboreous vegetation and ex-
tensive use of a biophysical model has been proposed and tested
[11]. According to the high accuracy of the reported results,
such a retrieval scheme is expected to allow progress in forest
parameters estimation. However, its performance is dependent
on the precision of antecedent classification, and moreover, its
extension to a global context is somewhat hampered by the cited
“regional nature of the allometric relationships.”

An alternative approach, based on neural network algorithms
(NNAs), which are becoming commonly available and readily
usable, has been devised to retrieve environmental parameters
from radar data [25]–[30]. Their use in remote sensing has been
often found effective, since they can simultaneously handle
nonlinear mapping of a multidimensional input space onto the
output one and cope with complex statistical behavior. Indeed,
it has been shown that a multilayer perceptron (MLP) [31]
with a single hidden layer and nonlinear activation functions is
capable of approximating any real-valued continuous function,
provided a sufficient number of units within this hidden layer
exists [32]. However, while a general MLP can form arbitrary
mappings, in practice, finite network size demands that only an
approximation to the optimal solution can ever be achieved. In
addition, an NNA is apt to be, and in most cases has been, used
essentially as a black box; hence, the underlying processes
that give rise to the network behavior and performance are not
discerned. An additional criticism stems from the long time
usually required by the training phase.

Our work is focused onto clarifying some features and dis-
cussing the performances of NNAs for retrieving forest biomass
density from multifrequency multipolarization SAR data. Par-
ticular attention is paid to the robustness of the algorithms with
respect to perturbations of the nominal vegetation and soil con-
ditions, as well as to one kind of noise intrinsic to SAR mea-
surements. NNAs are tested in estimating biomass from actual
measurements taken over diverse forest types (from boreal to
tropical), with the main purpose of appreciating the performance
of a neural net when put to use in a real and global context. We
point out that this retrieval problem is considered to be difficult,
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especially if one takes into account the observed noticeable sat-
uration of the single backscattering coefficients versus biomass,
even at lower (P-band) radar frequencies, and the number of
variables which affect the measurements. With respect to this, a
set of neural net algorithms tuned to each relevant class of vege-
tation is expected to yield better results than a unique algorithm.
However, it is still interesting to estimate the performance and
assess the limits of a single retrieval scheme of a more general
applicability.

This paper is organized with the following scheme.

• First, we study the use of NNAs trained on model simula-
tions to invert simulated backscattering values.

• Then, we consider the use of NNAs trained on experi-
mental data to invert real measured backscattering values.

• Finally, the use of NNAs trained on model simulations to
invert experimental (conifer) data is discussed.

Our simulation analysis concerns the estimate of the biomass
of conifer stands from L- and P-band co- and cross-polarized
backscattering coefficients ( ). The retrieval tool is a feedfor-
ward two-hidden-layer perceptron with one, three or six input
elements and a single output. The simulated are computed
by an electromagnetic model developed at Tor Vergata [33]. To
simulate the natural variability of the soil and vegetation pa-
rameters, perturbations in soil moisture content (SMC) and un-
derstory biomass density (UBD) have been selected among the
many possible choices. Random fluctuations of SMC and of
UBD have been generated and superimposed to their nominal
values to obtain perturbed sets on which the NNAs have been
tested. Similarly, the effect of speckle has been introduced by
generating random fluctuations of backscattering about its nom-
inal value. The sensitivity of the NNA to these kinds of pertur-
bation in the surface or in the measurement conditions has been
analyzed, keeping the commonly used statistical regressions as
a benchmark. The feasibility of using NNAs, trained both with
experimental and with model data, for retrieving real-world data
taken on different forest types, including conifers, poplar, and
mangrove, is then considered. A discussion on the information
content of the individual radar channels and frequencies is fi-
nally conducted by comparing NNA retrieval accuracies for dif-
ferent sets of real measurements.

II. HOW NNAS PERFORM ON NOISY DATA

Backscattering from natural surfaces is heavily affected by a
number of variables, so that the information content of on a
single parameter is often mixed up and difficult to retrieve. If
vegetation biomass is sought for, both essentially temporal fac-
tors, like rain or drought, and spatial factors, like soil roughness
or plant type, join to reduce the overall sensing accuracy. The
problem is further compounded by speckle, which increases the
fluctuations of measured , adding to system noise and cali-
bration errors. Algorithms, which, besides exploiting different
pieces of information, are robust, must then be invoked to try to
overcome this burden.

Multiple-input NNAs at least match the exigency of profiting
by several measurements. Their robustness with respect to per-
turbations in the nominal measurement conditions remains to be
evaluated.

This aspect is examined in the simulation analysis reported in
the following.

A. Training and Testing the NNA

The Stuttgart neural network simulator (SNNS) developed
at the University of Stuttgart (Germany) [34] has provided the
basic software for the algorithm implementation. As far as the
topology is concerned, we referred to results reported in [28],
which show that a feedforward configuration with two hidden
layers of 18 and 16 nodes respectively is a convenient starting
topology when six input measurements are available. A possible
network overdimensioning due to this choice can be controlled
by subsequent application of the pruning procedure. When using
a lower number of radar channels, the NN topology simplifies
correspondingly.

The training of the NNA has been carried out by feeding it
with sets of vector pairs and modifying the weights of the con-
nections to minimize the error function. The input vectors con-
tain the simulated radar measurements, while the output vectors
contain the quantity to be retrieved from them. In this case, the
input is a set of six simulated values ( , , at both
L- and P-band), and the output is the value of the corresponding
biomass.

Minimization of the error function has been pursued by
a scaled conjugate gradient (SCG) algorithm [35]. This is
a member of the class of conjugate gradient methods, gen-
eral-purpose second-order techniques that help to minimize
goal functions of several variables. Second-order indicates that
such methods use the second derivatives of the error function,
while a first-order technique, like standard backpropagation,
only uses the first derivatives.

To determine when the training had to be stopped, we applied
the “early stopping” procedure [36, ch. 9]. The performance of
the net during the learning phase was monitored simultaneously
both on the training and on the test set. For the training set,
the overall error keeps on decreasing with increasing epochs,
approaching a limiting value. Conversely, the error on the test set
reaches a minimum value, after which it starts increasing if we
continue the training. Once reached this minimum, the learning
phase was interrupted.

B. Generation of Simulated Data

The training of the NNA, as well as the computation of the
coefficients of the regressions used for comparison, need a suf-
ficiently wide ensemble of coupled input–output data. However,
radar measurements and, especially, the corresponding ground
truth may be quite expensive to obtain over a statistically sig-
nificant range of cases. Hence, the perspective of using theo-
retical models of backscattering in the processes of training and
testing retrieval algorithms is an appealing one. A main problem
lies in the accuracy with which a model is able to reproduce the
measurements. Two limits are apparent. First, electromagnetic
computations make use of a number of approximations to cope
with the complexity of the real vegetation. Second, the relevant
information on the structural and biophysical characteristics of
the stands to be simulated must be included. This is clearly un-
feasible on a global basis, but can be attempted only for rela-
tively homogeneous types of vegetation, provided the relevant
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allometric information is available. In the following, we restrict
ourselves to the case of conifers.

The generation of the sets of training vector pairs is carried
out by using the vegetation scattering model developed at Tor
Vergata [33], in conjunction with relevant relationships among
the various components of a pine forest [37]. With reference to
a six-input NNA, the model computes backscattering at hh, ,
and vv polarizations for L- and P-bands from ground data. Each

vector coupled to the corresponding biomass value trains the
net. Here, our purpose is to investigate on the expected perfor-
mances of NNAs when dealing with noisy radar data. As out-
lined above, noise can be of natural origin or due to the radar
system. We have selected the soil moisture content and the un-
derstory biomass density among the many natural factors that af-
fect backscattering measurements, while speckle has been con-
sidered as a significant originator of system noise. We point out
that actual measurement perturbations stem from the various
and numerous sources altogether. However, separately consid-
ering the effect of the three chosen parameters makes the anal-
ysis much more manageable.

Sets of data corrupted by natural and system noise have been
generated as follows.

Different stands with 171 values of dry above-ground
biomass, varying from 1 kg m (roughly corresponding to
25 m /ha) to 18 kg m ( 450 m /ha) with step 0.1 kg m ,
have been assumed for our ensemble of simulated conifer
forests. The reference value assigned to SMC is 20% by
weight. Then, to reproduce the natural variability of soil
humidity, two different sets of 20 random SMC values have
been generated with Gaussian distributions, both centered on
the nominal 20% value. The two sets are characterized by two
different standard deviations, a small one, i.e., by
weight and a large one, i.e., by weight. For each
SMC value, the forest backscattering coefficients have been
computed for each biomass, at hh, , and vv polarizations for
both L- and P-bands. The obtained sets of 3420 vectors form
two statistical ensembles to be used to train the NNA. A second
pair of 3420 vector sets, obtained by other independent
random SMC generations with the same average and standard
deviations as the training sets, forms the NNA evaluation
sets. An analogous procedure has been followed to generate
training and evaluation sets of , assumed perturbed by
fluctuations of the understory biomass density. The reference
value assigned to UBD is 1.5 kg m and the Gaussian
distributions have standard deviations kg m
and 0.5 kg m , respectively. Finally, the effect
of speckle, representative of the system noise, has been taken
into account by the following procedure. The backscattering
coefficients of the forest stands, assumed homogeneous and
untextured, have been computed for each value of biomass
and for the reference values of SMC and UBD. Then, for each
of the 1026 we generated a random process having mean
value equal to that and obeying a corresponding gamma
distribution [38]. Each distribution has been characterized by
a value of the order parameter in the range 1–1024, chosen
to simulate measurements spanning from the quite noisy
single-look observations to the relatively stable ones, as is the
case when the ’s are averaged over the many pixels of a large
stand.

TABLE I
ERROR RMS (KILOGRAMS PER SQUARE METER) OF BIOMASS OF SIMULATED

CONIFER STANDS WITH VARIABLE SMC RETRIEVED BY LR AND NN
ALGORITHMS FROM SETS OF � AT P-BAND, L- BAND, OR BOTH. (TOP LINE)

ALGORITHMS TRAINED WITH LOW SMC VARIABILITY AND TESTED WITH

SAME LOW SMC VARIABILITY. (SECOND LINE) BOTH TRAINING AND

TEST WITH HIGH SMC VARIABILITY. (BOTTOM LINE) TRAINING WITH

LOW, TEST WITH HIGH SMC VARIABILITY

TABLE II
ERROR RMS (KILOGRAMS PER SQUARE METER) OF BIOMASS OF SIMULATED

CONIFER STANDS WITH VARIABLE UBD RETRIEVED BY LR AND NN
ALGORITHMS FROM SETS OF � AT P-BAND, L- BAND, OR BOTH. (TOP LINE)

ALGORITHMS TRAINED WITH LOW UBD VARIABILITY AND TESTED WITH

SAME LOW UBD VARIABILITY. (SECOND LINE) BOTH TRAINING AND

TEST WITH HIGH UBD VARIABILITY. (BOTTOM LINE) TRAINING WITH

LOW, TEST WITH HIGH UBD VARIABILITY

C. Tests on NNA Robustness

Our discussion on the potential capability of the NNAs in re-
trieving biomass from backscattering measurement corrupted
by natural noise is based on the simulated performance of the
algorithms either properly or incorrectly trained, while the case
of system noise is examined by feeding the net with three dif-
ferent levels of speckle. Moreover, we analyze the NNA perfor-
mances for different availability of radar channels, i.e., we as-
sume that three different sets of measurements are available:
either , , and at either L- or P-band, or all at both
bands. In these cases, the algorithms are both trained and eval-
uated by sets of three- and six-component vectors as input,
and corresponding biomass as output. To assess the possible im-
provements of neural network algorithms over more standard re-
trieval schemes, the performance of linear regressions between
the logarithm of the biomass and the backscattering coefficients
in decibels [4], [39] has been evaluated and used as a bench-
mark. To this end, the regression coefficients have been com-
puted from the same input/output datasets used for training the
corresponding NNAs, and the evaluation has been carried out
on the same NNA test set.

In the first study we simulate conifer forest stands whose un-
derlying soil has a variable moisture content, due, for instance,
to meteorological, seasonal, or climatic effects. Three cases are
considered.

• SMC has small variability (standard deviation 1% by
weight);

• SMC has large variability (standard deviation 10% by
weight);
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Fig. 1. Error rms (kg � m ) of biomass of simulated conifer stands retrieved by (left) neural network and (right) linear regression algorithms from sets of
speckle-affected � at P-band, L- band, or both, versus parameter L of speckle gamma distribution.

• SMC has indeed a large variability (10%, as before), but
the algorithms have been incorrectly trained for the small
(1%) variability case.

Table I compares the retrieval rms errors produced by a linear
regression algorithm (LRA) with those originated by a neural
net (NN) for the three aforementioned cases. Some points are
worth to highlight. When trained properly, the accuracy of the
NNA is generally better than that of a LR by more than one order
of magnitude. In case of incorrect training, a NNA still performs
considerably better than an LRA. The availability of copolar and
cross-polar measurements at both L- and P-band leads to the
best performance in the retrieval, especially for NNAs operating
on noisy data. A peculiar difference is shown by the two algo-
rithms: when inverted by LRAs, L-band data lead to lower errors
than P-band data. The opposite is true for NNAs. We put forward
the following explanation. The natural noise we are simulating
consists in fluctuations of soil conditions. P-band is more sensi-
tive than L-band to this kind of deviation from the nominal mea-
surement conditions, due to its enhanced penetration through
the vegetation canopy. Hence, we expect that the retrieval from
L-band data be more accurate than that from P-band, were this
type of noise the only source of error. However, being the sensi-
tivity of L-band to forest biomass lower than that of P-band, this
effect may be counterbalanced. Radar sensitivity, commonly in-
tended as variation of backscattering for a given variation of the
sought parameter, is not always adequate to predict the retrieval
accuracy, since this latter does depend on the retrieval algorithm,
especially when multiple inputs are used. In fact, in this case, if
we inspect the retrieved values in different ranges of biomass
(such results are not reported here for the sake of conciseness)
we note that at high biomass the performance of both algorithms
degrades more at L- than at P-band, but the LRA suffers consid-
erably more than the NNA. The result is that the higher sensi-
tivity of P-band measurements to arboreous biomass is better
exploited by the NNA, thus succeeding in counterbalancing the
effect of the varying soil moisture.

This simulation suggests that a neural network algorithm may
be more robust than a linear regression with respect to soil mois-
ture variations in retrieving forest biomass.

An analogous study has been carried out to investigate the
performance of NNAs when, for given forest stands, the condi-
tions of the understory are different, thus changing the relative
contributions to scattering and attenuation mechanisms. Again,
three cases are considered.

• UBD has small variability (standard deviation 0.05 kg m ).
• UBD has large variability (standard deviation 0.5 kg m ).
• UBD has indeed a large variability (0.5 kg m , as before),

but the algorithms have been incorrectly trained for the small
(0.05 kg m ) variability case.

The rms retrieval errors reported in Table II show a pattern
rather consistent with those obtained in case of SMC variations,
although the natural noise has now a different origin. When
trained properly, the accuracy of the NNA is generally better
than that of the LR by more than one order of magnitude. In
case of incorrect training, a neural net still performs consider-
ably better than a linear regression. The availability of copolar
and cross-polar measurements at both L- and P-band leads to
the best performance in the retrieval, while both algorithms per-
form better on P-band measurements.

The third simulation regards the effect of speckle, which, to-
gether with thermal and calibration errors, is a source of mea-
surement noise. LR and NN algorithms, trained with a speckle-
affected dataset, have inverted another independently generated
set. Both sets are characterized by the same levels of multiplica-
tive noise, assumed uncorrelated between different channels.

The results, summarized in Fig. 1, indicate that, again, the
retrieval by a neural net appears more accurate than the one
by a linear regression. Using six measurements, at both L- and
P-band, yields the higher accuracy, P-band remaining superior
to L-band in case of a single-frequency three-polarization
system. As expected, the diagrams point out the need of
averaging the measurements over a sufficiently large area, e.g.,
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Fig. 2. Backscattering coefficients versus biomass taken from plots published in [5], [6], [23], and [40]. (Left) L-band, (right) P-band, (top) � , (middle) � ,
(bottom) � . (Diamonds) Conifer stands. (Squares) Poplar. (Crosses) Mangrove.
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of the order of 1 ha for the AirSAR, to attain an acceptable
accuracy. Indeed, any retrieval algorithm normally uses values
computed over forest stands including many pixels.

As a concluding remark, we point out that the above results
for simulated data have been obtained by a neural net in its
basic configuration. The optimization of the NN topology, as
described in the following Section III-B, is expected to further
improve the performance of the algorithm.

III. TEST ON EXPERIMENTAL DATA

The indications deduced from the above results, albeit prob-
ably useful, are still based on simulations and regard the effects
of a small number of parameters out of the many that may enter
into play. The question on what can be expected by a single NNA
when operating on global real-world data remains open. To try
to give an answer, we have used NNAs to retrieve the biomass
of a set of different forests from actual radar measurements. The
general frame of this analysis is the same as in the previous sec-
tion, with input data formed by copolar and cross-polar mea-
surements at L- and P-band. The performance of the NNA is
now compared against those of both linear and nonlinear regres-
sions, and also of a model-based retrieval procedure.

A main difficulty encountered in this kind of study is the
scarcity of data, and in particular of ground measurements, that
can be found in literature. Even if all available data are joined
together and some suitable strategy is implemented, this poses
an obvious limit to the statistical significance of the conclusions.

A. Experimental Dataset

We searched the open literature for published L- and P-band
multipolarization forest backscattering coefficients accom-
panied by corresponding ground truth measurements. The
radar data we found are stand-averaged ’s obtained by the
NASA/JPL AirSAR in the course of different campaigns over
five different geographic locations. The sets of data refer to the
following:

• Landes forest near Bordeaux, France, collected on August
16, 1989 [5];

• Horsterwold forested area in The Netherlands, collected
in August 1989 [6];

• Duke University forest near Durham, NC, collected on
September 2, 1989 [5];

• Bonanza Creek experimental forest in the proximity of
Fairbanks, AK, collected on May 6, 1991 [23];

• coastal tropical mangrove forest in French Guyana, col-
lected on June 11, 1993 [40].

Hence, the radar measurements we assembled refer to different
types of forest in diverse climatic conditions. The Landes forest
contains plantations of maritime pine; the Horsterwold data
refer to poplar stands; the Duke forest has naturally grown
loblolly pine; the Bonanza Creek forest is a natural one of white
and black spruce, with eventual contamination by other species
(mainly balsam poplar, alder, and birch); and the Guyana forest
is a uniform evergreen mangrove forest. Most data refer to flat
areas or relatively low topographic relief, with a local incidence
angle in the range 35 to 50 . The considered radar acquisitions
were accompanied by ground data collection, which provide the

biophysical characterization of the measured stands, including,
in particular, either the total above-ground dry biomass, or,
in one case, the bole volume. Since the trunk densities are
dependent on tree age and difficult to estimate [6], in this latter
case, we evaluated the biomass per unit area (kg m ) of the
poplar stands by simply multiplying the volume per unit area
(m ha ) by 0.04, which is a suitable factor according to our
experience. From the above published data, we selected 108
input-output experimental -biomass vector pairs with this
latter (output value) in the range 0.05 (clear-cut) to 30 kg m .
Note that care was exerted to include all dispersed values, to
be on the pessimistic side. The assembled input backscattering
coefficients , , and at L- and P-band are shown
in Fig. 2(a)–(f). As expected, the dispersion of values for
the same or close nominal values of biomass is apparent,
especially at P-band and for copolarization (vv, in particular).
This behavior stems from several factors. First of all, it is well
known that the relationship between biomass and backscatter
is nonunique, since this latter is affected by the structural and
dielectric properties of soil and stands, as stressed by [11]. An
additional reason lies in the incidence angle being not the same
(a variation of the order of 1–2 dB is typical for a variation
of 10 of the incidence angle [23], [41]). Moreover, since
we simply extracted the data from published diagrams, errors
in reading can be present, although we discarded potentially
ambiguous values. In absence of accidental oversights (we
assume published plots exempt from flaws), we estimate our
reading error below 1 dB. Finally, major sources of error reside
in the processes of measuring biomass and . Experimenters
report uncertainties in the biomass (or bole volume) evaluation
of 10% to 15% [5], [6], [40], rising to about 30% in one case
[23]. As far as backscattering is concerned, all considered
data were obtained by the same AirSAR system; hence, the
whole set is homogeneous from the point of view of the
measurement device, and the absolute radiometric calibration is
expected to be of the same order for all data. Indeed, when the
experimenters followed the POLCAL procedure [42], nominal
calibration uncertainty is estimated about and 1.2 dB at
P- and L-band, respectively [43]. The reported characterization
of errors in biomass measurements and radar calibration, the
use of the same SAR system, and the averaging of over
whole stands should lead to a relatively homogeneous data
population. Nevertheless, some unforeseen error could still be
present, as observed in the acquired by the AirSAR over
the Thetford Forest (U.K.) in 1989 [44], which prevented us
from including these data into our analysis, in spite of the
completeness of the corresponding detailed ground survey [45].
Probably this is not the case here, since the data assembled in
Fig. 2(a)–(f), after all appear statistically homogeneous.

We stress that the purpose of this section is to assess if a
single neural net algorithm can be meaningfully used to retrieve
biomass on a global scale, i.e., without having to adapt the al-
gorithm to each particular biome and vegetation feature.

B. Biomass Retrieval Results

The adopted configuration, training, and test procedures of
the NNAs are basically the same as in Section II-A. However,
an optimization of the net has been carried out before applying
it to the data inversion.
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Fig. 3. Six-input neural network. (Left) Initial. (Right) pruned.

The initial topology of the network has been simplified by
a pruning strategy which removes the ineffective connections
and units. To this end, the connection with the minimum weight
(in magnitude) in the initial configuration has been cut off and
the new network retrained for as many epochs as required by
the early stopping procedure. The same routine has then been
applied to the new configuration, the procedure of sequential
pruning and training being repeated for several cycles, until
further removal of connections resulted in an evident increase
of the retrieval error. In the course of the pruning process, the
changes of the weights were small when a weak connection was
removed, rising with the strength of this latter. The absolute
values of the weights gradually increased with the decreasing
number of connections, following the concentration of the asso-
ciative memory distributed among the elements of the net. The
weights were observed to have varied by one order of magni-
tude between the initial full net, with hundreds of elements, and
the final pruned net, with tens of elements.

With reference to the six-input configuration, reinitializing
and retraining the final net (details on the procedure are re-
ported in [46]) allowed us to attain an rms error almost 10%
lower than the one for the initial topology. Hence, the outcome
of pruning has been a slight improvement of the retrieval ac-
curacy, in addition to a considerable reduction (25 connections
against 744) of the number of neurons, hence of the computa-
tional effort. A comparison between the initial topology of our
six-input network and the one optimized by pruning is shown
in Fig. 3. The optimized algorithm has then been tested in the
retrieval exercise.

We subdivided the 108 input ( measurements) and output
(biomass) vectors into three equal subsets, distributed rather
uniformly in biomass, two of which, joined together, trained the
optimized NNA in turn, thus yielding three sets of weights for
the net. The NNA with each weight configuration was used to re-
trieve the biomass from the 36 remaining vectors, according
to the training and testing cross-validation strategy reported in
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TABLE III
ERROR RMS (KILOGRAMS PER SQUARE METER) OF BIOMASS RETRIEVED BY

NN, LR, NLR ALGORITHMS FROM VARIOUS SETS (P-BAND ONLY, L-BAND

ONLY, BOTH BANDS) OF EXPERIMENTAL � , � , AND �

[47, ch. 9]. This strategy results into three retrieval exercises
for which each of the three test patterns is independent from
the corresponding training sets. The overall 108 test patterns are
probably still a too small number to form a fully significant sta-
tistical set. Nevertheless, some consistent behavior can be iden-
tified from the obtained figures.

Table III reports the rms retrieval errors when multipolariza-
tion ( , , and ) measurements at either L- or P-band
are used, and compares the results with those obtained by si-
multaneously using the ’s at both bands. The results in the
table indicate that the neural net algorithm retrieves biomass
from actual measurements better than both linear and nonlinear
regression do and that P-band data yield a lower error. The avail-
ability of measurements at both L- and P-band leads to the best
performance, with an rms error equal to the 57% of the disper-
sion of the biomass test data. It should be noted that, instead, the
six-input LR algorithm yields a degraded estimate with respect
to the P-band three-channel LRA. Probably, this effect is only
partly related to the nonlinearity of the problem. Rather, it may
indicate that the more sophisticated processing accomplished by
the neural network is able to make use of the pieces of indepen-
dent information contained in the measurements, whereas the
regression algorithms suffer more from the noise and saturation
in the added L-band data than benefit from the additional em-
bedded information [48]. Fig. 4(a)–(c) allows a visual compar-
ison among the retrievals (by the optimized NN algorithm) from
L-, P-, and L- + P-band data, respectively. The correlation coef-
ficients for the three retrievals are , , and

, respectively. These figures are higher than the ones relative
to the retrievals by LRAs, i.e., , and ,
respectively (plots are not shown here). It is interesting to ap-
preciate how the biomass of the mangrove stands is fairly well
retrieved up to about 25 kg m , in spite of their quite peculiar
structure. The results obtained by nonlinear regressions deserve
some comments. When inverting either P- or P- plus L-band
data, a second-order algorithm does not yield any improvement
on the linear one, while the error for the third-order regression
is 4% higher. When inverting L-band data, which saturate ear-
lier with increasing biomass, a third-order regression performs
better (8%) than the second-order, but the fourth-order algo-
rithm is worse (the error is 12% higher). These results are con-
sistent with the observation [50, ch. 1] that the ability of a poly-
nomial to represent additional noisy data reaches an optimum
for a relatively small order. Anyhow, even when the nonlinear
regression gives more accurate results than the linear one, the
error is still higher than that given by the neural network algo-
rithm. This may indicate that the NN approach can be more than
yet another nonlinear regression technique.

As noted before, extensive measurement sets to use for
training are expensive to obtain. Hence, the possibility of using

Fig. 4. Biomass (kg � m ) retrieved by NNAs trained with experimental
data versus “true” biomass from channels. (a) � , � , and � at L-band.
(b) � , � , and � at P-band. (c) � , � , and � at both L- and P-band.
(Diamonds) Conifer stands. (Squares) Poplar. (Crosses) Mangrove.

theoretical models of backscattering in the training process
is appealing, since a variety of measurement conditions,
scattering features, and system noise can be simulated to teach
the retrieval algorithm to cope with the natural complexity
of observations. The main question at issue is how much
the obvious accuracy limits of a model is going to affect the
performance of an algorithm inverting real measurements.
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Fig. 5. Biomass (kg�m , conifers only) retrieved by a six-input NNA trained
with theoretical simulations versus “true” biomass from � , � , and � data
at both L- and P-band.

To investigate on the possibility of a theoretical training of
the neural retrieval algorithm, we restricted ourselves to the case
of conifers for which a model is available to us. The optimized
six-input NNA was trained by a set of L- and P-band backscat-
tering data simulated by the already mentioned vegetation scat-
tering model [33] and tested on the subset of experimental ’s
that were available for 77 conifer stands. Fig. 5 shows the results
obtained by the model-trained six-input NNA, which yields a
retrieval rms error of 4.6 kg m , i.e., slightly higher than the
one of the algorithm trained by the experimental data and in-
verting the full set of measurements. The correlation coefficient

is now correspondingly lower.
The availability of simulated backscattering coefficients

makes readily feasible a model-based retrieval exercise for the
same 77 conifer stands. To estimate the biomass of each stand,
we carried on an iterative procedure that minimized the least
square difference between measured ’s and those simulated
by the scattering model [33], already used to train the neural
net. The biomass retrieved by this method is affected by an rms
error of 6.1 kg m , i.e., 30% higher than the one yielded
by the NNA, trained by the same set of theoretical values and
applied on the same set of experimental data. The correlation
coefficient is consistently lower.

C. NN-Based Sensitivity Analysis

The previous results give some hints on how a neural network
algorithm is expected to perform in the presence of natural vari-
ability or system noise. An interesting addition is contributed
by an extension of the NN pruning technique, which provides
a rather peculiar and straightforward method to examine which
frequency and polarization, in the chosen context, contain less
information on the biomass and, conversely, which are the chan-
nels crucial for the success of retrieval. This issue has been ad-
dressed by several previous studies, prevalently on the basis of
the radar sensitivity, i.e., of the increment of backscattering for
a given change of biomass of given types of vegetation. How-
ever, as already outlined in Section II-C, it is not obvious that
the results are independent from both the retrieval algorithm and

TABLE IV
RATING OF RADAR CHANNELS DEDUCED FROM THE ORDER

OF REMOVAL OF UNITS IN THE INPUT LAYER OF THE NETWORK

the set of measurement data that were used. To analyze the sen-
sitivity from another point of view, including the algorithm, we
considered the six-input neural network trained by the experi-
mental data and prolonged the pruning procedure to the input
layer, until five of the six components of the input vector were
removed (we remind that an input or hidden unit is removed
when it has lost all its connections). The result of this analysis
is synthetically reported in Table IV, where we specify the order
of removal of the input radar channels, which is inversely re-
lated to the order of importance of these later. We point out that
some researchers are wary of neural networks, often regarded
as black-boxes mainly because their internal dynamics remains
scarcely accessible. This is indeed the case, but the above re-
sults suggest that appropriate procedures can extract physical
information from an otherwise “blind” algorithm [49]. Here, the
NNA subjected to a prolonged pruning yields conclusions con-
sistent with previous theoretical and experimental findings [1],
[5], [51], i.e., the cross-polarized backscattering coefficients are
identified as the most important for the retrieval, P-band being
more sensitive than L-band.

It is clear that the results reported in this section were ob-
tained from a relatively narrow ensemble of experimental data,
mainly referring to conifers. The availability of richer sets of
calibrated radar measurement, together with the corresponding
ground data, is highly desirable to reach possibly sounder con-
clusions.

IV. CONCLUSION

This study concerns the application of neural network algo-
rithms to the retrieval of forest stand biomass from copolar and
cross-polar backscattering coefficients at both P- and L-band.
The use of NNAs has been considered in three situations, i.e.,
trained on model data to invert model values, trained on real data
to invert actual measurements, and trained on simulated data to
invert measured data. Simulations of selected natural and system
noise provided the means to critically appreciate the robustness
of the NNAs, with linear (after logarithmic transformations) re-
gressions regarded as benchmark. An assembly of AirSAR data
published in the open literature has yielded training and evalu-
ation sets for assessing the expected performance of the algo-
rithms when operating on real radar measurements, eventually
taken over diverse forest types, as may be the case when global
biomass monitoring is under consideration. A comparison be-
tween the NNAs and both linear and nonlinear regression algo-
rithms points out the overall superior performance of the neural
algorithm. Indeed, the mapping of the multidimensional input
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(three or six ’s) onto the biomass value is highly nonlinear
and difficult to retrieve, so that a properly designed and trained
NN is a valuable tool to implement this mapping. The neural
network was made as simple (and fast) as possible by means
of a fast learning (SCG) scheme and of a pruning procedure,
which, beside reducing by more than 95% the number of the
initial network connections, yielded an algorithm more precise,
hence with improved generalization properties. It has also been
shown how extending the pruning to the input layer can yield
a method for appreciating the information content of the indi-
vidual radar channels in a fast and straightforward manner. Fi-
nally, the use of an electromagnetic model in training the NNA
has been considered for the case of conifers. In this case, the
NN retrieval accuracy compares favorably also with that of a
model-based procedure. The skepticism sometimes manifested
on the ability of wave scattering models to reproduce backscat-
tering from forests is quite reasonable. In fact, we experienced
that in some case a model with carefully selected inputs, e.g.,
taking into account the links among several forest stand param-
eters (such as trunk density, height, and diameters) related to
the botanical growth processes, simulates measurements with an
accuracy sufficient to be serviceable. Efforts for broadening the
range of applicability of models are of great worth, since suc-
cessfully employing theoretical data in training the net would
definitely augment the generalization properties of neural algo-
rithms, hence their potential in global-scale retrieval.
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