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Abstract—This paper reports on an investigation aimed at overpasses can improve the accuracy, since they are affected by
evaluating the performance of a neural-network based crop classi- the peculiar variations induced in backscattering by the growth
fication technique, which makes use of backscattering coefficients cycle of a given plant [9]-[11].

measured in different C-band synthetic aperture radar (SAR) To be successful, suitable classification algorithms should be
configurations (multipolarization/multitemporal). To this end, X ’ > . .
C-band AirSAR and European Remote Sensing Satellite (ERS) used, which are capable of exploiting the information embedded
data collected on the Flevoland site, extracted from the European in multipolarization and multitemporal SAR measurements. A
RAdar-Optical Research Assemblage (ERA-ORA,) library, have variety of classification schemes have been proposed and used,
been used. The results obtained in classifying seven types of cropsgqme recent examples of which can be found in [12]-[14].
are discussed on the basis of the computed confusion matrices. . . .
The effect of increasing the number of polarizations and/or ~ DU€ 0 several interesting and peculiar features, neural net-
measurements dates are discussed and a scheme of interyeaWork algorithms (NNAs) have also been considered for classi-
dynamic classification of five crop types is considered. fication purposes [15]-[17]. With respect to statistical methods,
Index Terms—Crop classification, neural networks, synthetic neural networks use an e§§eptially diffe'rent approach, so that
aperture radar (SAR). they do not rely on probabilistic assumptions neither need par-
ticular requirements about normality in datasets.
This paper reports on an investigation aimed at a systematic
evaluation of the information content, hence of the classifica-
HE POTENTIAL of synthetic aperture radar (SAR) in distion potential, of different consistent sets of C-band backscat-
criminating among different agricultural crop species hdsring coefficients of agricultural fields. Multipolarization data
been demonstrated in several studies [1]-[3]. The accuracycensist of the set of measurements collected over Flevoland,
classification depends on the sensitivity of the used backscabe Netherlands, by the National Aeronautics and Space Ad-
tering coefficients to the differences of the biomorphologicaninistration Jet Propulsion Laboratory (NASA/JPL) AirSAR
structures of the plants, hence to the different interaction bgystem during the 1991 MAC-Europe campaign, while mul-
havior between the electromagnetic wave and the structuretitgémporal data over the same site were acquired by the Eu-
the canopy [4]. ropean Remote Sensing Satellite 1 (ERS-1) SAR in the years
It has been experienced that measurements taken by a SKR3, 1994, and 1995. The data used in this study have been
system in a single configuration, that is one image at given frextracted from the European Radar-Optical Research Assem-
guency, polarization and incidence angle, are often inadequitege (ERA-ORA) Library, assembled through a concerted ac-
to attain the required accuracy of classification. Given the d#en funded by the European Commission within the Research
pendence of the scattering mechanisms in vegetation canogied Technology Development Programme on Environment and
on frequency, polarization and incidence angle, improvemeniimate (Fourth Framework Programme) in the field of space
are expected by multifrequency and/or multipolarization and/tgchniques applied to environmental monitoring and research
multiangle measurements [5]-[8]. Alternatively, multitempordlL8]. The classification algorithm, consisting of a multilayer
single-frequency, single-polarization data collected by repeategural network with feedforward configuration, has been fed by
sets of data of varying completeness. The corresponding varia-
tion of classification accuracies of selected crop species, as ex-
) . ) ) . ressed by the confusion matrices, is discussed and related to the
Manuscript received April 2, 2002; revised March 27, 2003. This work hds . .
been partially supported by Agenzia Spaziale Italiana (ASI). The data have b ¥Re of input measurements. The results obtained by the neural
made available through the ERA-ORA Concerted Action, funded by the BTet are compared with those of a maximum likelihood algorithm
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methods to cope with the dependence of the crop backscat- TABLE |
tering coefficients on the incidence angle. A viable consistent DATASET CHARACTERISTICS
approach could be bqseq onaneural qet trained with multian— AITSAR 1991 | ERS (95 vs."95) | ERS (93 + 94 vs. 95)
measurements. In principle, the learning process and the N~c ™ iining  test | training  test | training Tost
linear inputs combination taking place in the net is expected Tpaiey 10 2 3 3 13 3
be equivalent to alternative methods like the application of cor maize 2 2 8 4 0 0
pensation functions or the use of ratios between backscatter grass 11 8 21 9 68 30
coefficients. potato 28 25 15 15 109 30
The classification is carried out onper-field basis, rather rape 4 3 1 1 Y 0
than at the pixel level. Although the method we describe can  s-beet 23 19 18 12 95 30
also used on pixels and segments, both the variability of the sc_¥¢at 3 18 19 1 123 30
total 111 79 87 55 413 128

tering patterns associated with a given type of vegetation or w.
local soil conditions and the influence of the speckle, which de-
pends on the number of independent looks and is very small for
entire fields, possibly limits the generality of the results. How- ‘i -

e ~ .\\\\ N —
ever, some major civilian applications of remote sensing in se\ NN ></\§ ’ \ 7 \\\\ ‘\»/ //,
eral European Countries, can count on gheriori knowledge R *"Sz_—/‘ 4
of the position and delineation of cultivated parcels to be class ** \‘\\ ;{\\\ > \‘Q&:‘\V ,‘l@ ;i

fied. This is the case, for instance, for the control of area-base Q =
agricultural subsidies, for which the field boundaries are pro ™ % .

.@W”ﬁ'ﬂ{ X% '5*?'
\%\»a.\?i‘ i q. Q,A.‘*ﬁ',',‘

N\
vided by the farmers [19]. \0 \%"§ : ’ﬁ’:’f@ v";v :ga %g%
# ‘\" "‘:"3 f ) V(,;::‘;-
Sov e ?f el
Il. DATASETS ‘ \:3:32‘ ‘{éf‘f “‘/ ’l 2 /' ‘"'
ST w w
The data collected by the AirSAR are at three frequencies, F \ f," % 3:03 m ’ m
(0.45 GHz), L- (1.3 GHz), and C- (5.3 GHz) band and fully po- \ \ /i‘o, j ,“Q‘w&‘\ s
larimetric. They are also partially multitemporal, since in 1991 \\o /.. f.;’g% \,\: \ 22%/ I/
the Flevoland site was overflown four times in summer time \\\\\ W?,,,,i SR S. //
i.e., on June 15 and on July 3, 12, and 28. In the following, onl \W‘o ?‘&\“‘, 7
C-band measurements are considered, in view of a more dire \\\ ‘//'” @_ «
comparison with the multitemporal ERS data. The C-band in & ~ o'
tensity measurements, extracted from the ERA-ORA ensemb 0 T

of data, have been rearranged in subsets of varying complexit
starting from the single configuration system, i.e., vv polariza-
tion one date, and subsequently adding further polarizations @angl 1. Neural network feedforward topology.
number of overpasses, up to the complex which includes co-
(hh, vv) and crossthv) polarizations for all four overpasses.
The subsets of data containing both vv and hh polarizations
have been subsequently augmented by the inclusion of the cor-
responding relative phase to appreciate the contribution of this
kind of information to the classification.

ERS data are single frequency and single polarization, but
they cover the whole year with the 35-day repeat cycle of the
satellite, hence including the observation of both the early
stage and the senescence of the various crops. The ERA-ORA
database makes available three years of measurements (1993 to
1995) for both ascending and descending orbits. 1

Numerous crops were present on the Flevoland site in the
mentioned years, including maize, sugarbeet, potato, oil-seed he classification algorithm makes use of an artificial neural
rape, barley, wheat, lucerne, onions, peas, flax, beans, carroetwork [20] with feedforward configuration. The neural
grass, and bush. Out of them, we generally selected the cropswork simulator (SNNS) developed at the University of
with the higher number of fields to increase the statistical sigtuttgart, Germany [21], has provided the basic software for
nificance of the results. The number of fields for each crop amwplementing the algorithm. The net consists of a multilayer
set of radar data are detailed in Table I. perceptron with two hidden layers, as shown in Fig. 1.

The state of the soils was generally moist during the first 3 A possible network overdimensioning and consequent loss
weeks and dry in the second three weeks. On its turn, the statefb§eneralization properties can be curbed by the pruning pro-
representative crops from mid-June to July evolved as followsedure. Our classification exercise has first been carried out

0.968 1.000

* maize:crop cover develops from 5% to 90%, height from
10-160 cm;

* potato: crop cover develops from 50% to 90%, height
from 30-55 cm;

» sugar beetcrop cover develops from 20% to 90%, height
from 15-45 cm;

» wheat: crop cover was stable at 90%, height from
80-95 cm.

. NEURAL NETWORK CLASSIFICATION ALGORITHM
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Fig. 2. Scatter plots, versusc? of seven crop types on the Flevoland MAC-Europe test site; measurements refer to incidence#ngled < 62°;
acquisition dates are June 15, 1991 (left) and July 12, 1991 (right).

through the network in its full configuration, subsequently bin the full multitemporal exercise and the dynamic classification
using a pruned topology. scheme.

Training has been pursued by a scaled conjugate gradient ] o o
(SCG) algorithm. This is a member of the class of conjugafe Multipolarization in Classification
gradient methods, general-purpose second-order techniqueBiscriminating among crops requires a suitable sensitivity of
that help minimizing goal functions of several variableshe radar to the biophysical peculiarities of the plant types. A
Second order indicates that such methods use the seceoshprehensive survey of the radar response of several common
derivatives of the error function, while a first-order techniquesrops is given by Ferrazzoli [4]. His review also contains con-
like standard backpropagation, only uses the first derivativesderations and suggestions on the choice of SAR parameters
By using the SCG method, the nets have generally been traifed effective monitoring of cultivated surfaces and, in partic-
after a few hundreds of epochs, i.e., the training phase was valar, stresses the importance of cross-polarization. Fig. 2 reports
short-time consuming. Here, for the purpose of classificatiotwo examples of scatter plot§, versuss?, relative to the first
in the training phase the component of the output vect@une 15) and third (July 12) 1991 AirSAR data acquisition over
corresponding to the true class has been set to one while Bievoland. The diagrams show that the signatures of the crops
others to zero. In the test phase, a winner-and-take approaes only partially separable at a relatively early stage, whereas,
has been considered. in this plane, discrimination becomes generally apparent as the

A direct comparison against the results yielded by a differeplants grow up. Clustering of rape plants, sugar beet, and wheat
classification technique using some of the 1991 Flevolangiparticularly manifest. Given these features, the ENVISAT Ad-
AIrSAR dataset has been carried out. This technique followanced SAR (ASAR), which has cross-polarization capability,
a maximum likelihood (ML) approach using a joint Gaussiais expected to yield some significant progress in crop moni-
distribution (on the decibel values) [8]. Indeed, by applicatiotring: in particular, the combined use of the partial polarimetric
of the K-S test, a Gaussian distribution for intensity values emodes in the frame of a multitemporal approach is expected to
pressed in decibels has been found to be appropriate. Detail$mprove the amount of information.
the method, as well as on the distributions of phase differenceFor our analysis on the effect of multipolarization, we se-
and coherence magnitude and on the influence of the spedkieted the measurements collected on the third date, when the
on the distributions, are reported in the cited paper. Note thsgnatures of the well developed plants appear to be well sepa-
the extension to multitemporal data is straightforward. rated (Fig. 2). The data refer to the higher angles of incidence,
i.e., from about 45to 62°, since the number of fields imaged
in this range was relatively large. We add that the intensity of
backscattering at high incidence angles is essentially sensitive

A main purpose of this investigation is assessing the bendbtthe vegetation canopy, given the low contribution from the un-
that a per-field neural-network classification algorithm derivederlying soil, whose state is less influential. The data were sub-
from the availability of SAR measurements at more than one paivided into independent training and test sets for the number of
larization, with and without phase information, and/or at morfields detailed in columns 2 and 3 of Table I, respectively. For
than one date. For a consistent analysis of the results, all maayiven date of overflight, the number of linear polarizations in
surements are at C band, taken by the AirSAR in the multipoldreth sets was increased from the single vv to three, vv, hh, and
ization and limited multitemporality case, and by the ERS SARv. The neural network algorithm was trained by each training

IV. IMPACT OF DATA FEATURES ONCLASSIFICATION
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TABLE I
CONFUSIONMATRIX DESCRIBINGNNA CROP CLASSIFICATION PERFORMANCE
ALGORITHM INPUT: ONE POLARIZATION (o0 ), ONE DATE (JuLy 12, 1991),
AIRSAR, FLEVOLAND. TOTAL NUMBER OF SAMPLES. 79. CORRECTLY
CLASSIFIED: 44. OVERALL ACCURACY: 55.7%

TABLE IV
CONFUSIONMATRIX DESCRIBINGNNA CROP CLASSIFICATION PERFORMANCE
ALGORITHM INPUT: TWO POLARIZATIONS (o0, o) ), ONE DATE (JuLy 12,

1991), ARSAR, F_LEVOLAND. TOTAL NUMBER OF SAMPLES: 79. CORRECTLY
CLASSIFIED: 68. OVERALL ACCURACY: 86.1%

classified true class classified true class
as barley maize grass potato rape s.beet wheat as barley maize grass potato rape s.beet wheat

barley 2 1 3 0 0 1 8 barley 3 1 4 0 0 0 0

maize 0 1 0 5 0 0 0 maize 0 0 0 0 0 0 0

grass 0 0 f ]‘L g g ; grass 0 0 3 0 0 0 0

potato 1 0 potato 1 1 1 25 1 0 2

rape 0 o o0 0 2 0 0 ra 0 0 0 0 2 0 0

s.beet 0 0 0 5 1 18 1 pe 0

wheat 1 0 1 1 0 0 4 s-beet 0 0 0 0 19 0
wheat 0 0 0 0 0 0 16

TABLE Il
CONFUSIONMATRIX DESCRIBINGNNA CROP CLASSIFICATION PERFORMANCE TABLE V

ALGORITHM INPUT: THREE POLARIZATIONS (o},,, 02, &} ), ONE DATE (JuLY
12, 1991), ARSAR, AEVOLAND. TOTAL NUMBER OF SAMPLES: 79.

CORRECTLY CLASSIFIED: 72. OVERALL ACCURACY: 91.1%

CONFUSIONMATRIX DESCRIBINGNNA CROP CLASSIFICATION PERFORMANCE
ALGORITHM INPUT: TWO POLARIZATIONS (5}, 0%, ) PLus hh — wv
PHASE DIFFERENCE ONE DATE (JuLy 12, 1991), ARSAR, FLEVOLAND.
TOTAL NUMBER OF SAMPLES. 79. CORRECTLY CLASSIFIED: 67.

classified : true class OVERALL ACCURACY: 84.8%
as barley maize grass potato rape s.beet wheat

barley 3 0 3 0 0 0 0 classified true class

maize 0 2 0 0 1 0 0 as barley corn grass potato rape s.beet  wheat

grass 1 0 5 0 0 0 0 barley 3 0 2 0 0 0 1

potato 0 0 0 25 0 0 2 corn 1 2 0 0 0 0 0

rape 0 0 0 0 2 0 0 grass 0 0 4 0 0 0! 2

s.beet 0 0 0 0 o 1 0 potato 0 0 0 25 0 1 1

wheat 0 0 0 0 __0 0 16 rape 0 0 0 0 1 0 0

s.beet 0 0 0 0 2 18 0

subset and used to classify the test fields by each subset of wheat 0 0 2 0 0 0 14

data relative to the same number of polarizations. This proce-

dure was carried out both for a single overpass and using the : . .

ensemble of data collected by al fogr overpgsses g A C-band polarimetric spaceborne system is expected to op-
As expected, the classification performance improves wi ate in the near future, hengg It 'S also |n'.[erest|ng t(.) .analyze

adding more polarizations. In case measurements are relafiV® performance of the classification algorithm exploiting the

to a single date, the overall accuraggA) increases from h — vv relative phase. By comparing the confusion matrices
OA = 55.7% when onlys?. polarization is used (Table I1) of Tables V and Ill, we notice a moderate decrease of accuracy

to OA = 91.1% when e;‘bloitingogv, o0 ando? data When using the phase information in place of the cross-polar
(Table 11). The results in Table Il suggest that the single vhackscattering. Indeed, this latter is mainly affected by the ori-
polarization is moderately able to discriminate among class@itation and by the spatial distribution of the elements in the
of canopies with essentially dissimilar geometries, as tfant canopy, whereas the relative phase depends in a com-
ramified potato, the wide-leaf sugar beet, the small-stem rapeunded and possibly elusive fashion on a number of crop fea-
seed plants [3]. Barley and wheat, characterized by a simitdfes and on the soil reflection.
vertical cylindrical structure, tend to be confused. Analogous
results are obtained by the ML-based method. The accuracyBf Multitemporality in Classification
this latter,0 A = 46.8% for single polarization and 88.6% for . L . . . .
three polarizations, is moderately lower than that of the neural,l) Multlpolar|zat|on A'r,SAR_ Data:Like using m“'t'P'e po-
net. larizations, a corresponding increase of accuracy is expected
At present, no satellite provide& measurements at three po_When the input to the classification algorith_m _consists of mea-
larizations; hence, it can be interesting to consider the classfiréments taken on more than one date, sifice affected by
cation capability of an algorithm using’s at two pairs of po- the variation of scattering induced by the temporal evolution of
larizations, as ENVISAT is making available. The performandgoth canopy structure and water content. Since in the course
of the two-pol algorithm can be appreciated from the confusiéi the 1991 MAC-Europe experiment the AirSAR overflew the
matrix in Table IV. A comparison of Table IV with Tables Il Flevoland site on four different days, in principle the data are
and Il points out the high discriminating potential of cross-pdnultitemporal. However, the duration of the campaign, limited
larization, particularly sensitive to the random orientation dp one and a half month in the summer, was too short to pro-
the canopy scattering elements, and the moderate improventirte a really multitemporal dataset. A favorable circumstance
brought into by the addition of?, . Again, the accuracy of the was that the dates of the overflights fell within the period of
ML technique is lowerQ A = 72% against 86.1%). full development of the crops, so that, in spite of the short time
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TABLE VI TABLE VIII
CoNFUSIONMATRIX DESCRIBINGNNA CROP CLASSIFICATION PERFORMANCE ~ CONFUSIONMATRIX DESCRIBING NNA CROP CLASSIFICATION PERFORMANCE
ALGORITHM INPUT: ONE POLARIZATION (¢?_ ), FOUR DATES (JUNE 15, JuLY ALGORITHM INPUT: TWO POLARIZATIONS (o)}, 0% ) PLus hh — vv
3,12, 28, 1991), RSAR, FLEVOLAND. TOTAL NUMBER OF SAMPLES: 79. PHASE DIFFERENCE FOUR DATES (JUNE 15, Ly 3, 12, 28, 1991),
CORRECTLY CLASSIFIED: 67. OVERALL ACCURACY: 84.8% AIRSAR, AEVOLAND. TOTAL NUMBER OF SAMPLES. 79. CORRECTLY
CLASSIFIED: 75. OVERALL ACCURACY: 94.9%
classified true class
as barley corn  grass potato rape s.beet wheat classified true class
barley 3 1 0 0 0 0 0 as barley corn grass potato rape sbeet wheat
corn 0 0 1 0 0 0 0 barley 4 0 1 0 0 0 1
grass 0 0 6 0 0 0 2 corn 0 2 0 0 0 0 0
potato 0 0 1 23 0 1 0 grass 0 0 6 0 0 0 0
rape 0 0 0 0 3 0 0 potato 0 0 1 25 0 0 0
s.beet 0 0 0 2 0 18 2 rape 0 0 0 0 3 0 0
wheat 1 1 0 0 0 0 14 s.beet 0 0 0 0 0 19 1
) wheat 0 0 0 0 0 0 16
TABLE VII
CONFUSIONMATRIX DESCRIBINGNNA CROP CLASSIFICATION PERFORMANCE TABLE IX
ALGORITHM INPUT: THREE POLARIZATIONS (07, 07, 07, ), FOURDATES  gymMMARY OF PERFORMANCE OF THENNA CROP CLASSIFICATION ALGORITHM
(JUNE 15, iy 3, 12, 28, 1991), RRSAR, FLEEVOLAND. TOTAL NUMBER OF USING VARIOUS POLARIZATIONS AND DATES, JUNE AND JuLy 1991,
SAMPLES: 79. CORRECTLY CLASSIFIED: 76. OVERALL ACCURACY: 96.2% AIRSAR, FLEVOLAND ¢n1, v» DENOTEShh — VW RELATIVE PHASE;
_ % CONNECTIONS|S THE PERCENTAGE OF THEINITIAL NUMBER
classified true class OF CONNECTIONSLEFT AFTER PRUNING
as barley maize grass potato rape s.beet wheat
barley 4 0 0 0 0 0 0 Combination # Errors | Error % | % connections
maize 0 2 0 0 0 0 0 1vv 35 443 15
grass B 0 7 0 0 0 0 1vv, lhv ) 13.9 20
potato g PO O Ihh, 1hv 9 1.4 18
rape :
. 3
s.beet 0 0 0 0 0 19 1 Lvv, lhh 13 165 2
wheat 0 0 0 0 0 0 16 IVV, lhh, lhv 7 8.9 23
1vv, 1hh, 1¢nh vo 12 15.2 31
. . . . . 1vv, 1hh, 1hv, ¢y 6 7.6 33
interval, the information content of the data is considerable. | 2hh. Jhv vy . 8.9 23
deed, when using®, measured on all four overflight dates, we 2W’ 2hv - 8.9 24
obtain an overall classification accuraty4d = 84.8% (81% 3hh’ hv 5 63 2
with ML), with the confusion matrix shown in Table VI. This %W' 3hy 5 6.3 2
result suggests that the imprinting by the 43-day evolution ;wv’ ) 12 15.2 2%
the p_Iaqts gn the smgl_e vV polarization is sufficient tq r'a|se tr 4vv, 4hv 5 6.3 12
discrimination cgpa_blllty up to values close to that of joined cc 4hh, 4hv 4 51 31
and cross-polarizations. o . 4vv, 4hh 6 16 40
As expected, the use of all pola_rlzat_lons further increases 4vv, 4hh, 4hv 3 38 23
accuroacy (Table VII) up_ to the qune high yal@A = 96.2% 4vv, 4hh, 4dnh vo 4 51 28
(91.1% for the ML algorithm). Itis worth pointing out that suct 4, 4hh, 4hv, 4B vo 2 25 28

a high accuracy is achieved by using only C-band and linear =
larization data. Adding the hh vv phase information produces

a slightimprovement, bringing the accuracy to approach 97.5%etwork for as many epochs as required by the early stopping
However, ifo} is replaced by the the hih vv phase, the accu- procedure [20]. The same procedure has then been applied to the
racy slightly decreases (Table VIII). new configuration, repeating the sequential pruning and training

Again, it is interesting to limit the multidate algorithm inputdor several cycles, until further removal of connections resulted
to pairs ofc, anda? , like the data from ENVISAT. In this in an increase of the classification error with respect to that of
case, the accuracy increases from about 86% for one datahtefull net. The outcome of pruning has been a considerable re-
about 91% for two dates, up to 94% when the measuremedtsction (by at least 60%) of the number of connections, hence
acquired on the four dates are used. of the computational effort, for a given accuracy.

The above classification results have been obtained by usindable IX provides a synthetic overview of the performance of
the neural network in its full configuration (Fig. 1), i.e., with &ahe NNA when several combinations of multipolarization and
number of connections comparable to the number of data. Givenltidate measurements are employed in the classification ex-
the independency of the training and test sets, the classificat@ngise. The single-date measurements are those of July 12, when
performance is not expected to be biased by an overfitting éfie crop separability appears the highest, at least inthe o2,
fect, but the topology of the net may not be optimal. Hence waane.
carried out a pruning procedure by cutting off the connection The two dates are June 15 and July 28, i.e., with the largest
with the minimum weight (in magnitude) and retraining the netime span available, while the measurements taken on July 3 are
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Al TABLE X

s CONFUSION MATRIX DESCRIBING THE NEURAL ALGORITHM CROP

CLASSIFICATION PERFORMANCE ALGORITHM INPUT CHARACTERISTICS ONE

1 POLARIZATION (Vvv), 27 DATES, ERS MEASUREMENTS FLEVOLAND,

1995. ToTAL NUMBER OF SAMPLES: 55. GORRECTLY CLASSIFIED: 54.
OVERALL ACCURACY: 98.2%

N

7
¢ ’I‘J;ill" -
\ U ¢

sigma-0 (dB)
S
I
1

classified true class
15k SiNe Z Sugarbeet ] as barley maize grass potato rape s.beet  wheat
v Potato ---------- barley 3 0 0 0 0 0 0
maize 0 3 0 0 0 0 0
-20 ] | 1 ] 1 | 1 grass 0 0 9 0 0 0 0
50 100 150 200 250 300 350 potato 0 0 0 15 0 0 0
Day of Year rape 0 0 0 0 1 0 0
s.beet 0 1 0 0 0 12 0
wheat 0 0 0 0 0 0 11

Fig. 3. Trend ofs?, measured by ERS SAR for three kinds of crop in the
Flevoland site in the years 1993 to 1996.

Flevoland test site. The available data include acquisitions on
27 dates from DoY 10 to DoY 355. A training set of backscat-

skipped in the three-date case. Both the substantial |mpr0vemteérr1|1ng coefficients has been generated, with data relative to a

of accuracy brought in by the addl_tlon of the_cross—polarlzatlonnumber of fields including the same crops considered in Sec-
data in the single-date case and its further improvement wr}en .

. : fon IV-B.1. Then, the trained neural network has been used to
more than one date is considered, are apparent.

. . classify the remaining fields, which formed the independent test
Table IX also reports the final number of connections of the . . .

. o I set, as indicated in columns 4 and 5 of Table I, respectively. The
neural net, in percentage of the initial one, still yielding th

same classification accuracy. The reduction in the network Coﬁ?sulting confusion matrix is reported in Table X, which shows
meatl uracy. uctiont good classification performance, with only one field misclas-

plexity, hence in the computation time, is considerable in a(’S?]lfied (OA = 98.2%). Note that if the available priori infor-

cases. . . ) . .
. o . . mation, such as the sowing and harvesting dates in a given year,
2) Single-Polarization ERS DataThe polarimetiic data hints that on the earlier and later dates the crops are possibly

collected by the AirSAR cover only a limited period of Sum'absent, the corresponding measurements can be skipped.

mertime, hence are expected to introduce a bias into the abovq.he ML approach yields similar results, the percentage of
classification results. On the|r_S|de, the_ s!ngle—polarlzatmguccess being about 95% (four fields misclassified).
measurements by ERS, acquired at° 2Bcidence angle,

extend over the whole year, so that the classification process
can benefit from the full temporal evolution ef’,, which C. Interyear Dynamic Classification

Vv

follows sprouting, growth and possible decay or harvest of theThe above exercise refers toaposterioriclassification pro-

vegetation canopy, as sketched in Fig. 3 for three kinds of CrOR%dure. For other purposes, a real-time classification could be

Inspection of the backscattering data suggests that, WhgLkiraple to provide an inventory of the crop fields as soon as
at the beginning of the year the agricultural crops are absegiscrimination becomes feasible. This is the case, for instance,
surface scattering dominates and the observed variationsypfhe operational control of subsidized agricultural surfaces, for
o° are mainly related to soil conditions (moisture effectgyhich the time constraint is severe, since the results of the clas-
essentially). As a consequence, small and irregular differencgation based on remote sensing data should possibly trigger
are observed among samples belonging to the same site ﬁméw in situ inspections of the fields [19].
year, while site-to-site or year-to-year variations may be larger,\ye adopted the following scheme of interyear dynamic
given the possible climatic differences. Once the vegetatigiygsification. The neural network algorithm has been ini-
develops on cultivated fields, typically after Day of Yeafially trained by the firste® measurement taken by ERS
DoY ~ 75, o undergoes large and consistent changes, Whighi Flevoland in 1993 and applied to classify the surface by
generally depend on the type of crop, as displayed in Fig. G&ing the first measurement acquired in 1995. The number of
After harvest, say afteDoY ~ 240, surface scattering againyaining measurements has been progressively increased by
prevails ands’ resumes its random fluctuations. As alreadyqding the subsequent 1993 measurements and augmented
observed for the AIrSAR partially multitemporal case, tim@y including the 1994 data at the closest available dates. The
series of backscattering data including the vegetation cy@lgyorithm, trained by the augmenting set of data, has been used
contains the imprinting of the kind of crop being observed ang classify the 1995 fields from the 1995 measurements at the
is suitable for classification. corresponding dates. This procedure simulates a continuous

To gain quantitative information on the potential of single-paipdate of classification following the availability of each new
larization radar measurements covering the whole lifetime of teatellite measurement. The number of fields of each crop used
vegetation in discriminating crops, a classification exercise hfgg training (with 1993 and 1994 data) and for testing the
been performed, using the ERS data collected in 1995 over #igorithm (with 1995 data) are reported in columns 6 and 7
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100 ’ ' ' T " ‘ ' ' here). Although the generally well established cultivation prac-
. tices are expected to produce relatively stable results, the partic-
ular climatic conditions of a year, if considerably different from
the usual, can delay the fields identification.

@®
o
T

*

V. CONCLUSION

[o2]
o
T

*

The results reported in this paper allow some insight into the
crop classification potential of multitemporal and multipolar-
ization radar measurements at C band. Our analysis has been
carried out both by using only intensity measurements, i.e.,
without phase information, consistently with the specifications
of present satellite instruments, and by including the-htwv
relative phase. Two sets of data taken over agricultural parcels
0 . Ll ; . . l : of Flevoland have been considered: a multipolarization set,

25 50 75 ‘O% 125 180 175 200 225 250 gequired by the AirSAR and a multitemporal one, obtained
ay of Year 1995 . . Lo
from ERS. The AirSAR data refer to high angles of incidence,
_ o at which backscattering is contributed essentially by vegetation,
E:Jgﬁbtr. Percentage of successfully classified fields versus measurerrwﬁile the ERS SAR measurements are at abolit 2@nce
are affected by the underlying soil too. The classification was
based on a neural network algorithm, trained by subsets of data
and tested on the remaining ones. Suitable comparison with a
of Table I, respectively. In this exercise, we did not considéechnique based on the maximum likelihood approach has also

maize and rape fields, since their number was not sufficientieen conducted. The neural networks have been systematically
be statistically significant. pruned to control the memorization effect. The outcome of

The obtained results, altogether shown in Fig. 4, are sumnf4Uning has been a general considerable reduction, by at least
rized as follows. The overall accuracy in classifying all field§0%; of the number of connections, hence of the computational
being imaged in 1995 remains below 50% up to DoY 116ffort, al_belt atf[aln_g the same accuracy. For the same mputs,
Starting from the 57% of global accuracy attained on DoY 14§e maximum-likelihood approach yields a lower classification

(six measurements), the fraction of correctly classified field*CUracy- ) . o
rises steadily to the maximum val@@A = 94% reached on As far as the benefits offered by multipolarization are con-

DoY 215 (11 measurements), then starts decreasing with g8 ned, the results point out that joining cross-polar backscat-

senescence or the harvest of the crops, which makes furtl’%f'ng measurements to the single copolar set raises the classi-

. 0 0 o
classification meaningless. The variation with time of the':catlon accuracy from about 55% to above 85%. Joining the

fraction of fields of individual crops successfully classifiecf e
. . e classification results, but to a lesser extent.
appears to depend on the type of vegetation. Wheat fields, wit

the relatively early development of their canopy, are alread he sensitivity of multitemporal data to the development
y Y P PY, c\ﬁcle peculiar to each type of vegetation, results in enhancing

discriminated with an accuracy of 9.0% on DO.Y 94 _(fou{he accuracy of classification using measurements at a single
measurements), followed py potato fields, classified with polarization. Accuracy approaches 85% when only a portion
accuracy above 80% starting from DoY 129. More than 80% e gevelopment cycle is observed, but reaches 98% when all
of barley fields are detected from DoY 164, while accuracy )o4; is covered (at the 35-day repeat cycle of ERS). A similar
discriminating sugarbeet remains below 60% up to DoY 21 ccuracy is attained by the ML approach.
Spontaneous grass parcels exhibits a peculiar behavior, Smc?inally, the performance of an interyear dynamic classifica-
more than 70% of fields are detected in the first two imagegyn scheme has been assessed, by training the algorithm with
Indeed, the spontaneuos vegetation present on uncultivaggincreasing sequence of measurements taken in the two pre-
fields yields values ot consistently lower than those of theceding years and testing it on a correspondingly increasing se-
other types of rough surfaces, which initially are mainly bargyence of measurements in the subsequent year. The results in-
and moist. In the subsequent measurements, the backscattefjBte that, at least for Flevoland and for the considered years
from grass merges into that of the other sprouting cropg,993-1995), wheat fields are successfully classified first, fol-
and only after DoY 199 the uncultivated parcels are agajwed by potato and barley. This exercise simulates a procedure
discriminated with high accuracy (80% to 100%). intended for near real-time classification of developing crops
The analysis of the time series indicates that both the averdgsem satellite radar data.
and the standard deviation of change from 1993 to 1995.
However, the observed dispersion is not wide enough to con-
found the patterns bearing the imprint of the growth cycle of
each type of crop. This observation is supported by an analysisStimulating comments by P. Ferrazzoli are gratefully
based on the interclass separability [11] (results not reportacknowledged.

% successful classification
N
o

n
o
T

hase information to the copolar measurements also improves
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