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Abstract—This paper reports on an investigation aimed at
evaluating the performance of a neural-network based crop classi-
fication technique, which makes use of backscattering coefficients
measured in different C-band synthetic aperture radar (SAR)
configurations (multipolarization/multitemporal). To this end,
C-band AirSAR and European Remote Sensing Satellite (ERS)
data collected on the Flevoland site, extracted from the European
RAdar-Optical Research Assemblage (ERA-ORA) library, have
been used. The results obtained in classifying seven types of crops
are discussed on the basis of the computed confusion matrices.
The effect of increasing the number of polarizations and/or
measurements dates are discussed and a scheme of interyear
dynamic classification of five crop types is considered.

Index Terms—Crop classification, neural networks, synthetic
aperture radar (SAR).

I. INTRODUCTION

T HE POTENTIAL of synthetic aperture radar (SAR) in dis-
criminating among different agricultural crop species has

been demonstrated in several studies [1]–[3]. The accuracy of
classification depends on the sensitivity of the used backscat-
tering coefficients to the differences of the biomorphological
structures of the plants, hence to the different interaction be-
havior between the electromagnetic wave and the structure of
the canopy [4].

It has been experienced that measurements taken by a SAR
system in a single configuration, that is one image at given fre-
quency, polarization and incidence angle, are often inadequate
to attain the required accuracy of classification. Given the de-
pendence of the scattering mechanisms in vegetation canopies
on frequency, polarization and incidence angle, improvements
are expected by multifrequency and/or multipolarization and/or
multiangle measurements [5]–[8]. Alternatively, multitemporal
single-frequency, single-polarization data collected by repeated
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overpasses can improve the accuracy, since they are affected by
the peculiar variations induced in backscattering by the growth
cycle of a given plant [9]–[11].

To be successful, suitable classification algorithms should be
used, which are capable of exploiting the information embedded
in multipolarization and multitemporal SAR measurements. A
variety of classification schemes have been proposed and used,
some recent examples of which can be found in [12]–[14].

Due to several interesting and peculiar features, neural net-
work algorithms (NNAs) have also been considered for classi-
fication purposes [15]–[17]. With respect to statistical methods,
neural networks use an essentially different approach, so that
they do not rely on probabilistic assumptions neither need par-
ticular requirements about normality in datasets.

This paper reports on an investigation aimed at a systematic
evaluation of the information content, hence of the classifica-
tion potential, of different consistent sets of C-band backscat-
tering coefficients of agricultural fields. Multipolarization data
consist of the set of measurements collected over Flevoland,
The Netherlands, by the National Aeronautics and Space Ad-
ministration Jet Propulsion Laboratory (NASA/JPL) AirSAR
system during the 1991 MAC-Europe campaign, while mul-
titemporal data over the same site were acquired by the Eu-
ropean Remote Sensing Satellite 1 (ERS-1) SAR in the years
1993, 1994, and 1995. The data used in this study have been
extracted from the European Radar-Optical Research Assem-
blage (ERA-ORA) Library, assembled through a concerted ac-
tion funded by the European Commission within the Research
and Technology Development Programme on Environment and
Climate (Fourth Framework Programme) in the field of space
techniques applied to environmental monitoring and research
[18]. The classification algorithm, consisting of a multilayer
neural network with feedforward configuration, has been fed by
sets of data of varying completeness. The corresponding varia-
tion of classification accuracies of selected crop species, as ex-
pressed by the confusion matrices, is discussed and related to the
type of input measurements. The results obtained by the neural
net are compared with those of a maximum likelihood algorithm
[8]. A dynamic classification scheme, aimed at discriminating
the crops during their development phase is also presented and
examined.

Our classification exercise makes use of data taken at high
incidence angles. This choice reduces the possibly detrimental
effects of the underlying soil, but, from a practical point of view,
it would limit to the far range the portion of an airborne SAR
image over which classification is expected to be performed ef-
fectively. Extending the area requires the adoption of suitable
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methods to cope with the dependence of the crop backscat-
tering coefficients on the incidence angle. A viable consistent
approach could be based on a neural net trained with multiangle
measurements. In principle, the learning process and the non-
linear inputs combination taking place in the net is expected to
be equivalent to alternative methods like the application of com-
pensation functions or the use of ratios between backscattering
coefficients.

The classification is carried out on aper-field basis, rather
than at the pixel level. Although the method we describe can be
also used on pixels and segments, both the variability of the scat-
tering patterns associated with a given type of vegetation or with
local soil conditions and the influence of the speckle, which de-
pends on the number of independent looks and is very small for
entire fields, possibly limits the generality of the results. How-
ever, some major civilian applications of remote sensing in sev-
eral European Countries, can count on thea priori knowledge
of the position and delineation of cultivated parcels to be classi-
fied. This is the case, for instance, for the control of area-based
agricultural subsidies, for which the field boundaries are pro-
vided by the farmers [19].

II. DATASETS

The data collected by the AirSAR are at three frequencies, P-
(0.45 GHz), L- (1.3 GHz), and C- (5.3 GHz) band and fully po-
larimetric. They are also partially multitemporal, since in 1991
the Flevoland site was overflown four times in summer time,
i.e., on June 15 and on July 3, 12, and 28. In the following, only
C-band measurements are considered, in view of a more direct
comparison with the multitemporal ERS data. The C-band in-
tensity measurements, extracted from the ERA-ORA ensemble
of data, have been rearranged in subsets of varying complexity,
starting from the single configuration system, i.e., vv polariza-
tion one date, and subsequently adding further polarizations and
number of overpasses, up to the complex which includes co-
(hh, vv) and cross-hv polarizations for all four overpasses.
The subsets of data containing both vv and hh polarizations
have been subsequently augmented by the inclusion of the cor-
responding relative phase to appreciate the contribution of this
kind of information to the classification.

ERS data are single frequency and single polarization, but
they cover the whole year with the 35-day repeat cycle of the
satellite, hence including the observation of both the early
stage and the senescence of the various crops. The ERA-ORA
database makes available three years of measurements (1993 to
1995) for both ascending and descending orbits.

Numerous crops were present on the Flevoland site in the
mentioned years, including maize, sugarbeet, potato, oil-seed
rape, barley, wheat, lucerne, onions, peas, flax, beans, carrots,
grass, and bush. Out of them, we generally selected the crops
with the higher number of fields to increase the statistical sig-
nificance of the results. The number of fields for each crop and
set of radar data are detailed in Table I.

The state of the soils was generally moist during the first 3
weeks and dry in the second three weeks. On its turn, the state of
representative crops from mid-June to July evolved as follows:

TABLE I
DATASET CHARACTERISTICS

Fig. 1. Neural network feedforward topology.

• maize:crop cover develops from 5% to 90%, height from
10–160 cm;

• potato: crop cover develops from 50% to 90%, height
from 30–55 cm;

• sugar beet:crop cover develops from 20% to 90%, height
from 15–45 cm;

• wheat: crop cover was stable at 90%, height from
80–95 cm.

III. N EURAL NETWORK CLASSIFICATION ALGORITHM

The classification algorithm makes use of an artificial neural
network [20] with feedforward configuration. The neural
network simulator (SNNS) developed at the University of
Stuttgart, Germany [21], has provided the basic software for
implementing the algorithm. The net consists of a multilayer
perceptron with two hidden layers, as shown in Fig. 1.

A possible network overdimensioning and consequent loss
of generalization properties can be curbed by the pruning pro-
cedure. Our classification exercise has first been carried out
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Fig. 2. Scatter plots� versus� of seven crop types on the Flevoland MAC-Europe test site; measurements refer to incidence angles45 � � � 62 ;
acquisition dates are June 15, 1991 (left) and July 12, 1991 (right).

through the network in its full configuration, subsequently by
using a pruned topology.

Training has been pursued by a scaled conjugate gradient
(SCG) algorithm. This is a member of the class of conjugate
gradient methods, general-purpose second-order techniques
that help minimizing goal functions of several variables.
Second order indicates that such methods use the second
derivatives of the error function, while a first-order technique,
like standard backpropagation, only uses the first derivatives.
By using the SCG method, the nets have generally been trained
after a few hundreds of epochs, i.e., the training phase was very
short-time consuming. Here, for the purpose of classification,
in the training phase the component of the output vector
corresponding to the true class has been set to one while the
others to zero. In the test phase, a winner-and-take approach
has been considered.

A direct comparison against the results yielded by a different
classification technique using some of the 1991 Flevoland
AirSAR dataset has been carried out. This technique follows
a maximum likelihood (ML) approach using a joint Gaussian
distribution (on the decibel values) [8]. Indeed, by application
of the K-S test, a Gaussian distribution for intensity values ex-
pressed in decibels has been found to be appropriate. Details on
the method, as well as on the distributions of phase difference
and coherence magnitude and on the influence of the speckle
on the distributions, are reported in the cited paper. Note that
the extension to multitemporal data is straightforward.

IV. I MPACT OF DATA FEATURES ONCLASSIFICATION

A main purpose of this investigation is assessing the benefit
that a per-field neural-network classification algorithm derives
from the availability of SAR measurements at more than one po-
larization, with and without phase information, and/or at more
than one date. For a consistent analysis of the results, all mea-
surements are at C band, taken by the AirSAR in the multipolar-
ization and limited multitemporality case, and by the ERS SAR

in the full multitemporal exercise and the dynamic classification
scheme.

A. Multipolarization in Classification

Discriminating among crops requires a suitable sensitivity of
the radar to the biophysical peculiarities of the plant types. A
comprehensive survey of the radar response of several common
crops is given by Ferrazzoli [4]. His review also contains con-
siderations and suggestions on the choice of SAR parameters
for effective monitoring of cultivated surfaces and, in partic-
ular, stresses the importance of cross-polarization. Fig. 2 reports
two examples of scatter plots versus relative to the first
(June 15) and third (July 12) 1991 AirSAR data acquisition over
Flevoland. The diagrams show that the signatures of the crops
are only partially separable at a relatively early stage, whereas,
in this plane, discrimination becomes generally apparent as the
plants grow up. Clustering of rape plants, sugar beet, and wheat
is particularly manifest. Given these features, the ENVISAT Ad-
vanced SAR (ASAR), which has cross-polarization capability,
is expected to yield some significant progress in crop moni-
toring: in particular, the combined use of the partial polarimetric
modes in the frame of a multitemporal approach is expected to
improve the amount of information.

For our analysis on the effect of multipolarization, we se-
lected the measurements collected on the third date, when the
signatures of the well developed plants appear to be well sepa-
rated (Fig. 2). The data refer to the higher angles of incidence,
i.e., from about 45 to 62 , since the number of fields imaged
in this range was relatively large. We add that the intensity of
backscattering at high incidence angles is essentially sensitive
to the vegetation canopy, given the low contribution from the un-
derlying soil, whose state is less influential. The data were sub-
divided into independent training and test sets for the number of
fields detailed in columns 2 and 3 of Table I, respectively. For
a given date of overflight, the number of linear polarizations in
both sets was increased from the single vv to three, vv, hh, and
hv. The neural network algorithm was trained by each training
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TABLE II
CONFUSIONMATRIX DESCRIBINGNNA CROPCLASSIFICATION PERFORMANCE.
ALGORITHM INPUT: ONE POLARIZATION (� ), ONE DATE (JULY 12, 1991),

AIRSAR, FLEVOLAND. TOTAL NUMBER OF SAMPLES: 79. CORRECTLY

CLASSIFIED: 44. OVERALL ACCURACY: 55.7%

TABLE III
CONFUSIONMATRIX DESCRIBINGNNA CROPCLASSIFICATION PERFORMANCE.
ALGORITHM INPUT: THREEPOLARIZATIONS (� , � , � ), ONE DATE (JULY

12, 1991), AIRSAR, FLEVOLAND. TOTAL NUMBER OF SAMPLES: 79.
CORRECTLY CLASSIFIED: 72. OVERALL ACCURACY: 91.1%

subset and used to classify the test fields by each subset of test
data relative to the same number of polarizations. This proce-
dure was carried out both for a single overpass and using the
ensemble of data collected by all four overpasses.

As expected, the classification performance improves with
adding more polarizations. In case measurements are relative
to a single date, the overall accuracy increases from

when only polarization is used (Table II),
to when exploiting , , and data
(Table III). The results in Table II suggest that the single vv
polarization is moderately able to discriminate among classes
of canopies with essentially dissimilar geometries, as the
ramified potato, the wide-leaf sugar beet, the small-stem rape
seed plants [3]. Barley and wheat, characterized by a similar
vertical cylindrical structure, tend to be confused. Analogous
results are obtained by the ML-based method. The accuracy of
this latter, for single polarization and 88.6% for
three polarizations, is moderately lower than that of the neural
net.

At present, no satellite provides measurements at three po-
larizations; hence, it can be interesting to consider the classifi-
cation capability of an algorithm using ’s at two pairs of po-
larizations, as ENVISAT is making available. The performance
of the two-pol algorithm can be appreciated from the confusion
matrix in Table IV. A comparison of Table IV with Tables II
and III points out the high discriminating potential of cross-po-
larization, particularly sensitive to the random orientation of
the canopy scattering elements, and the moderate improvement
brought into by the addition of . Again, the accuracy of the
ML technique is lower ( against 86.1%).

TABLE IV
CONFUSIONMATRIX DESCRIBINGNNA CROPCLASSIFICATION PERFORMANCE.

ALGORITHM INPUT: TWO POLARIZATIONS (� , � ), ONE DATE (JULY 12,
1991), AIRSAR, FLEVOLAND. TOTAL NUMBER OF SAMPLES: 79. CORRECTLY

CLASSIFIED: 68. OVERALL ACCURACY: 86.1%

TABLE V
CONFUSIONMATRIX DESCRIBINGNNA CROPCLASSIFICATION PERFORMANCE.

ALGORITHM INPUT: TWO POLARIZATIONS (� , � ) PLUS hh� vv
PHASE DIFFERENCE, ONE DATE (JULY 12, 1991), AIRSAR, FLEVOLAND.

TOTAL NUMBER OF SAMPLES: 79. CORRECTLY CLASSIFIED: 67.
OVERALL ACCURACY: 84.8%

A C-band polarimetric spaceborne system is expected to op-
erate in the near future, hence it is also interesting to analyze
the performance of the classification algorithm exploiting the
hh vv relative phase. By comparing the confusion matrices
of Tables V and III, we notice a moderate decrease of accuracy
when using the phase information in place of the cross-polar
backscattering. Indeed, this latter is mainly affected by the ori-
entation and by the spatial distribution of the elements in the
plant canopy, whereas the relative phase depends in a com-
pounded and possibly elusive fashion on a number of crop fea-
tures and on the soil reflection.

B. Multitemporality in Classification

1) Multipolarization AirSAR Data:Like using multiple po-
larizations, a corresponding increase of accuracy is expected
when the input to the classification algorithm consists of mea-
surements taken on more than one date, sinceis affected by
the variation of scattering induced by the temporal evolution of
both canopy structure and water content. Since in the course
of the 1991 MAC-Europe experiment the AirSAR overflew the
Flevoland site on four different days, in principle the data are
multitemporal. However, the duration of the campaign, limited
to one and a half month in the summer, was too short to pro-
duce a really multitemporal dataset. A favorable circumstance
was that the dates of the overflights fell within the period of
full development of the crops, so that, in spite of the short time
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TABLE VI
CONFUSIONMATRIX DESCRIBINGNNA CROPCLASSIFICATION PERFORMANCE.
ALGORITHM INPUT: ONE POLARIZATION (� ), FOUR DATES (JUNE 15, JULY

3, 12, 28, 1991), AIRSAR, FLEVOLAND. TOTAL NUMBER OF SAMPLES: 79.
CORRECTLY CLASSIFIED: 67. OVERALL ACCURACY: 84.8%

TABLE VII
CONFUSIONMATRIX DESCRIBINGNNA CROPCLASSIFICATION PERFORMANCE.

ALGORITHM INPUT: THREE POLARIZATIONS (� , � , � ), FOUR DATES

(JUNE 15, JULY 3, 12, 28, 1991), AIRSAR, FLEVOLAND. TOTAL NUMBER OF

SAMPLES: 79. CORRECTLY CLASSIFIED: 76. OVERALL ACCURACY: 96.2%

interval, the information content of the data is considerable. In-
deed, when using measured on all four overflight dates, we
obtain an overall classification accuracy (81%
with ML), with the confusion matrix shown in Table VI. This
result suggests that the imprinting by the 43-day evolution of
the plants on the single vv polarization is sufficient to raise the
discrimination capability up to values close to that of joined co-
and cross-polarizations.

As expected, the use of all polarizations further increases the
accuracy (Table VII) up to the quite high value
(91.1% for the ML algorithm). It is worth pointing out that such
a high accuracy is achieved by using only C-band and linear po-
larization data. Adding the hh vv phase information produces
a slight improvement, bringing the accuracy to approach 97.5%.
However, if is replaced by the the hh vv phase, the accu-
racy slightly decreases (Table VIII).

Again, it is interesting to limit the multidate algorithm inputs
to pairs of and , like the data from ENVISAT. In this
case, the accuracy increases from about 86% for one date to
about 91% for two dates, up to 94% when the measurements
acquired on the four dates are used.

The above classification results have been obtained by using
the neural network in its full configuration (Fig. 1), i.e., with a
number of connections comparable to the number of data. Given
the independency of the training and test sets, the classification
performance is not expected to be biased by an overfitting ef-
fect, but the topology of the net may not be optimal. Hence we
carried out a pruning procedure by cutting off the connection
with the minimum weight (in magnitude) and retraining the new

TABLE VIII
CONFUSIONMATRIX DESCRIBINGNNA CROPCLASSIFICATION PERFORMANCE.

ALGORITHM INPUT: TWO POLARIZATIONS (� , � ) PLUS hh� vv
PHASE DIFFERENCE, FOUR DATES (JUNE 15, JULY 3, 12, 28, 1991),

AIRSAR, FLEVOLAND. TOTAL NUMBER OF SAMPLES: 79. CORRECTLY

CLASSIFIED: 75. OVERALL ACCURACY: 94.9%

TABLE IX
SUMMARY OF PERFORMANCE OF THENNA CROPCLASSIFICATION ALGORITHM

USING VARIOUS POLARIZATIONS AND DATES, JUNE AND JULY 1991,
AIRSAR, FLEVOLAND; � DENOTEShh� vv RELATIVE PHASE;

% CONNECTIONSIS THE PERCENTAGE OF THEINITIAL NUMBER

OF CONNECTIONSLEFT AFTER PRUNING

network for as many epochs as required by the early stopping
procedure [20]. The same procedure has then been applied to the
new configuration, repeating the sequential pruning and training
for several cycles, until further removal of connections resulted
in an increase of the classification error with respect to that of
the full net. The outcome of pruning has been a considerable re-
duction (by at least 60%) of the number of connections, hence
of the computational effort, for a given accuracy.

Table IX provides a synthetic overview of the performance of
the NNA when several combinations of multipolarization and
multidate measurements are employed in the classification ex-
ercise. The single-date measurements are those of July 12, when
the crop separability appears the highest, at least in the
plane.

The two dates are June 15 and July 28, i.e., with the largest
time span available, while the measurements taken on July 3 are
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Fig. 3. Trend of� measured by ERS SAR for three kinds of crop in the
Flevoland site in the years 1993 to 1996.

skipped in the three-date case. Both the substantial improvement
of accuracy brought in by the addition of the cross-polarization
data in the single-date case and its further improvement when
more than one date is considered, are apparent.

Table IX also reports the final number of connections of the
neural net, in percentage of the initial one, still yielding the
same classification accuracy. The reduction in the network com-
plexity, hence in the computation time, is considerable in all
cases.

2) Single-Polarization ERS Data:The polarimetric data
collected by the AirSAR cover only a limited period of sum-
mertime, hence are expected to introduce a bias into the above
classification results. On their side, the single-polarization
measurements by ERS, acquired at 23incidence angle,
extend over the whole year, so that the classification process
can benefit from the full temporal evolution of , which
follows sprouting, growth and possible decay or harvest of the
vegetation canopy, as sketched in Fig. 3 for three kinds of crops.

Inspection of the backscattering data suggests that, when
at the beginning of the year the agricultural crops are absent,
surface scattering dominates and the observed variations of

are mainly related to soil conditions (moisture effects,
essentially). As a consequence, small and irregular differences
are observed among samples belonging to the same site and
year, while site-to-site or year-to-year variations may be larger,
given the possible climatic differences. Once the vegetation
develops on cultivated fields, typically after Day of Year

, undergoes large and consistent changes, which
generally depend on the type of crop, as displayed in Fig. 3.
After harvest, say after , surface scattering again
prevails and resumes its random fluctuations. As already
observed for the AirSAR partially multitemporal case, time
series of backscattering data including the vegetation cycle
contains the imprinting of the kind of crop being observed and
is suitable for classification.

To gain quantitative information on the potential of single-po-
larization radar measurements covering the whole lifetime of the
vegetation in discriminating crops, a classification exercise has
been performed, using the ERS data collected in 1995 over the

TABLE X
CONFUSION MATRIX DESCRIBING THENEURAL ALGORITHM CROP

CLASSIFICATION PERFORMANCE. ALGORITHM INPUT CHARACTERISTICS: ONE

POLARIZATION (vv), 27 DATES, ERS MEASUREMENTS, FLEVOLAND,
1995. TOTAL NUMBER OF SAMPLES: 55. CORRECTLY CLASSIFIED: 54.

OVERALL ACCURACY: 98.2%

Flevoland test site. The available data include acquisitions on
27 dates from DoY 10 to DoY 355. A training set of backscat-
tering coefficients has been generated, with data relative to a
number of fields including the same crops considered in Sec-
tion IV-B.1. Then, the trained neural network has been used to
classify the remaining fields, which formed the independent test
set, as indicated in columns 4 and 5 of Table I, respectively. The
resulting confusion matrix is reported in Table X, which shows
a good classification performance, with only one field misclas-
sified . Note that if the availablea priori infor-
mation, such as the sowing and harvesting dates in a given year,
hints that on the earlier and later dates the crops are possibly
absent, the corresponding measurements can be skipped.

The ML approach yields similar results, the percentage of
success being about 95% (four fields misclassified).

C. Interyear Dynamic Classification

The above exercise refers to ana posterioriclassification pro-
cedure. For other purposes, a real-time classification could be
desirable to provide an inventory of the crop fields as soon as
discrimination becomes feasible. This is the case, for instance,
of the operational control of subsidized agricultural surfaces, for
which the time constraint is severe, since the results of the clas-
sification based on remote sensing data should possibly trigger
timely in situ inspections of the fields [19].

We adopted the following scheme of interyear dynamic
classification. The neural network algorithm has been ini-
tially trained by the first measurement taken by ERS
on Flevoland in 1993 and applied to classify the surface by
using the first measurement acquired in 1995. The number of
training measurements has been progressively increased by
adding the subsequent 1993 measurements and augmented
by including the 1994 data at the closest available dates. The
algorithm, trained by the augmenting set of data, has been used
to classify the 1995 fields from the 1995 measurements at the
corresponding dates. This procedure simulates a continuous
update of classification following the availability of each new
satellite measurement. The number of fields of each crop used
for training (with 1993 and 1994 data) and for testing the
algorithm (with 1995 data) are reported in columns 6 and 7
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Fig. 4. Percentage of successfully classified fields versus measurement
number.

of Table I, respectively. In this exercise, we did not consider
maize and rape fields, since their number was not sufficient to
be statistically significant.

The obtained results, altogether shown in Fig. 4, are summa-
rized as follows. The overall accuracy in classifying all fields
being imaged in 1995 remains below 50% up to DoY 110.
Starting from the 57% of global accuracy attained on DoY 129
(six measurements), the fraction of correctly classified fields
rises steadily to the maximum value reached on
DoY 215 (11 measurements), then starts decreasing with the
senescence or the harvest of the crops, which makes further
classification meaningless. The variation with time of the
fraction of fields of individual crops successfully classified
appears to depend on the type of vegetation. Wheat fields, with
the relatively early development of their canopy, are already
discriminated with an accuracy of 90% on DoY 94 (four
measurements), followed by potato fields, classified with an
accuracy above 80% starting from DoY 129. More than 80%
of barley fields are detected from DoY 164, while accuracy in
discriminating sugarbeet remains below 60% up to DoY 215.
Spontaneous grass parcels exhibits a peculiar behavior, since
more than 70% of fields are detected in the first two images.
Indeed, the spontaneuos vegetation present on uncultivated
fields yields values of consistently lower than those of the
other types of rough surfaces, which initially are mainly bare
and moist. In the subsequent measurements, the backscattering
from grass merges into that of the other sprouting crops,
and only after DoY 199 the uncultivated parcels are again
discriminated with high accuracy (80% to 100%).

The analysis of the time series indicates that both the average
and the standard deviation of change from 1993 to 1995.
However, the observed dispersion is not wide enough to con-
found the patterns bearing the imprint of the growth cycle of
each type of crop. This observation is supported by an analysis
based on the interclass separability [11] (results not reported

here). Although the generally well established cultivation prac-
tices are expected to produce relatively stable results, the partic-
ular climatic conditions of a year, if considerably different from
the usual, can delay the fields identification.

V. CONCLUSION

The results reported in this paper allow some insight into the
crop classification potential of multitemporal and multipolar-
ization radar measurements at C band. Our analysis has been
carried out both by using only intensity measurements, i.e.,
without phase information, consistently with the specifications
of present satellite instruments, and by including the hhvv
relative phase. Two sets of data taken over agricultural parcels
of Flevoland have been considered: a multipolarization set,
acquired by the AirSAR and a multitemporal one, obtained
from ERS. The AirSAR data refer to high angles of incidence,
at which backscattering is contributed essentially by vegetation,
while the ERS SAR measurements are at about 23, hence
are affected by the underlying soil too. The classification was
based on a neural network algorithm, trained by subsets of data
and tested on the remaining ones. Suitable comparison with a
technique based on the maximum likelihood approach has also
been conducted. The neural networks have been systematically
pruned to control the memorization effect. The outcome of
pruning has been a general considerable reduction, by at least
60%, of the number of connections, hence of the computational
effort, albeit attaing the same accuracy. For the same inputs,
the maximum-likelihood approach yields a lower classification
accuracy.

As far as the benefits offered by multipolarization are con-
cerned, the results point out that joining cross-polar backscat-
tering measurements to the single copolar set raises the classi-
fication accuracy from about 55% to above 85%. Joining the
phase information to the copolar measurements also improves
the classification results, but to a lesser extent.

The sensitivity of multitemporal data to the development
cycle peculiar to each type of vegetation, results in enhancing
the accuracy of classification using measurements at a single
copolarization. Accuracy approaches 85% when only a portion
of the development cycle is observed, but reaches 98% when all
year is covered (at the 35-day repeat cycle of ERS). A similar
accuracy is attained by the ML approach.

Finally, the performance of an interyear dynamic classifica-
tion scheme has been assessed, by training the algorithm with
an increasing sequence of measurements taken in the two pre-
ceding years and testing it on a correspondingly increasing se-
quence of measurements in the subsequent year. The results in-
dicate that, at least for Flevoland and for the considered years
(1993–1995), wheat fields are successfully classified first, fol-
lowed by potato and barley. This exercise simulates a procedure
intended for near real-time classification of developing crops
from satellite radar data.
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