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Monitoring Urban Land Cover in Rome, Italy,
and Its Changes by Single-Polarization

Multitemporal SAR Images
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Abstract—This study contributes an assessment of the poten-
tial of single-polarization decametric synthetic aperture radar
(SAR) images in classifying land cover within and around large
urban areas and in monitoring their changes. The decision task
is performed on a pixel basis and is carried out by supervised
neural network algorithms fed by radar image features including
backscattering intensity, coherence and textural parameters. Two
configurations are considered: a short-term classification and
change detection scheme intended for providing information in
near-real time and a long-term scheme aimed at observing the
urban changes at year time scales. We use a pair of interferometric
images for the short-term case, while the long-term exercise uti-
lizes two interferometric pairs and a fifth single acquisition. The
images are acquired by the ERS SAR in late winter, spring and
early summer over 836 square kilometers including Rome, Italy,
and its surroundings. The accuracy of the short-term algorithm
in discriminating seven types of surface is higher than 86%, while
the accuracy of the long-term algorithm is beyond 88%. The
many changes undergone by Rome from 1994 to 1999 have been
identified by the postclassification comparison change detection
procedure. The pixel-by-pixel analysis of the results has been
carried out for a 160 square kilometers test area, obtaining a
correct detection above 82% (less than 18% missed alarms and
0.3% false alarms).

Index Terms—Change detection, coherence, feature contribu-
tion, land-cover classification, neural networks, synthetic aperture
radar, texture, urban development.

I. INTRODUCTION

T HE global view of urban areas makes satellite missions
a valid instrument for updating urban maps and carrying

out the analysis of settlement dynamics. Remote sensing in the
optical band is a well-established tool for producing maps of
urban land use and monitoring changes, but it can suffer from
atmospheric limitations, especially where clouds systematically
occur or when unpredictable abnormally long periods of cloud
cover affect usually clear-sky regions. Hence, when a system-
atic, timely and reliable survey of an urban area is required, the
use of synthetic aperture radar (SAR) imagery [1] might become
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suitable. Moreover, the management of emergencies over large
areas relies on near-real time information, irrespective of the
time of day and of the cloud cover: to this purpose the avail-
ability of SAR acquisitions is essential.

The C-band SAR data provided in the past decade by the
European Space Agency’s European Remote Sensing Satellites
ERS-1 and ERS-2 and currently ENVISAT, are systematically
available at relatively low price. Together with Landsat, they
provide a long-term history of the urban areas; hence, their
value should not be overlooked. In particular, the long ERS
SAR image time series provide a unique systematic means
of periodically tracking, retrieving and understanding the
frequently dramatic changes undergone by the land cover of
large cities in many parts of the world in the past 15 years. The
archived radar images also form a database useful to devise
and test short-term change detection schemes in a variety of
situations. However, the ERS SAR data contain a minimum of
information, being at single polarization. Moreover, because of
the decametric size of the resolution cells at ground, the shapes
of the structures cannot be represented in detail and mixed
pixels are likely to occur, especially in a suburban landscape,
where heterogeneous land covers coexist within short distances.
These limitations bound the potential of data of the ERS type in
fully identifying the spatial features of land cover. However, on
their side, very-high resolution images may prove unhandy in
monitoring very large urban areas, both for the computational
burden and for the unnecessary detail they catch. Indeed, for
a global characterization of the dynamics of large areas over
extended periods of time, images at decametric resolution may
often turn out a serviceable compromise. Analogous consider-
ations hold for the near-real time change detection constraint
cast by the management of emergencies eventually affecting
large cities. In such circumstances, prompt, i.e., irrespective of
cloud cover and of time of day, information on the global land
cover evolution over large (e.g., hundreds of square kilometers)
areas is crucial to the decisional process. The goal of this study
is the identification of a set of features of decametric single-po-
larization SAR images that can be ingested by a readily usable
algorithm to yield the all-weather land cover classification of an
urban and suburban large area. The method strives to enhance
the exploitation of simple SAR systems and reduced data sets
in recording urban development. We suggest that the same
procedure is applicable to monitor the short-term changes in
possible emergencies affecting large towns.

Attaining the goal poses several problems. One concerns the
selection of a set of radar image features containing sufficient

1939-1404/$25.00 © 2008 IEEE

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on March 16, 2009 at 14:00 from IEEE Xplore.  Restrictions apply. 



88 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 1, NO. 2, JUNE 2008

information on the types of surface to be discriminated. The
second regards the design of a processing algorithm easy to run,
able to handle the needed heterogeneous image features and ca-
pable to yield the required accuracy.

We propose a method which exploits three different partially
independent sources of information carried by a limited set of
SAR acquisitions, as might be required in particular events af-
fecting an urban area or to improve the cost-efficiency of the
data base. We identify the backscattering intensity, its textural
properties, and the interferometric coherence as the set of image
features containing the pieces of information embedded both in
the amplitude and in the phase of the scattered wave. The min-
imum number of SAR acquisitions is two, given the need of
at least an interferometric image. The short-term (days or pos-
sibly less) identification of surface changes utilizes four quan-
tities extracted from the image pair, namely the amplitude of
the backscattering coefficient, two textural parameters and the
degree of coherence. For the long-term, i.e., interannual, mon-
itoring of the urban dynamics we add the information on the
seasonal variations of backscattering and of coherence. A min-
imum set of five late-winter, early-summer SAR scenes turned
out to be suitable for attaining the desired classification accu-
racy. Now six quantities relative to three types of image features
are exploited: the amplitude of the backscattering coefficient av-
eraged over the five images and its standard deviation, the two
degrees of interferometric coherence of two pairs of seasonal
images, and two backscattering textural parameters. The joint
use of these three partially independent SAR image features are
a novelty of this study. We point out that most studies on SAR
land cover classification do not consider more than two types of
image features at the same time [2]–[4].

The decision-making process is performed by a multilayer
perceptron (MLP) neural network (NN) supervised classifier
[5]. This algorithm satisfies the requirements mentioned above,
since, once trained, it runs in real time, has considerable ease
in using multidomain data sources, and is able to yield high ac-
curacy. Indeed, the results of a recent data fusion contest indi-
cated that a neural network approach reached the highest accu-
racy in urban mapping using radar and optical data [6]. Several
studies appeared in literature deal with classification of SAR im-
ages by neural networks. They mainly refer to crops or forest.
In particular, Chen and McNairn [7] reported on rice moni-
toring using RadarSat-1, while Gimeno et al. [8] investigated
on burnt areas in the Mediterranean using ERS-2 SAR time se-
ries. In both cases, the neural algorithm showed an overall clas-
sification accuracy over 90%. The use of SAR data in land-
cover classification of urban areas is relatively limited, given
the peculiar imaging geometry, the complexity of the interac-
tions between urban features and radar waves and the pres-
ence of speckle noise. These effects make generally difficult
attaining high classification accuracies by using single-channel
single-polarization SAR images. To this end, neural network ap-
proaches making use of mean, standard deviation and texture
features of the images [2], multiscale textural parameters [3], or
backscattering temporal variations and long-term coherence [4]
have been worked out.

The paper is organized as follows. The data set is described in
Section II. Section III deals with the classification problem, in-

TABLE I
DATA SET RELATIVE TO YEARS 1994, 1996, AND 1999. � REFERS TO THE

PERPENDICULAR COMPONENT OF THE BASELINE

troducing the features used as input to the NN. The design of the
neural network is discussed in Section IV. Experimental results
of the classification and change detection exercises are reported
and accuracies are analyzed in Section V and Section VI, respec-
tively. Discussion and final conclusions follow in Section VII.

II. DATA SET

The study area includes the city of Rome, Italy, and its out-
skirts for an overall extension of about 836 square kilometers
(992 995 pixels). We used a set of single look complex (SLC)
SAR images acquired in winter, early spring and early summer
by ERS-1 in 1994 and by the ERS-1/2 tandem mission in
1996 and 1999, with five acquisitions each year as reported in
Table I. Since the meteorological and climatic aspects may be
relevant for understanding the involved physical phenomena,
we acquired the precipitation and wind speed data recorded
by Aeronautica Militare Italiana at the Ciampino Airport
(South-East Rome). A light rainy period preceded the first
winter ERS acquisitions in the years 1994, 1996, and 1999,
and the first spring acquisition in 1996, while no precipitation
was recorded immediately before the March acquisitions. The
measured values of backscattering and coherence do not appear
to be affected by the recorded meteorological conditions.

For the long-term classification, each set of five images indi-
cated in Table I yielded the classified map for the corresponding
year, while only the two images acquired in March of each year
were used in the near-real time classification exercise.

III. CLASSIFICATION PROBLEM

A systematic subdivision of land cover types has been pro-
posed in the CORINE project of the European Environment
Agency [9]. The basic land covers (Level 1) include four classes
(artificial surfaces, agricultural areas, forests and wetlands),
while Level 2 refers to 13 cover types, including also mine and
dump sites, pasture areas and costal wetland. Given the pecu-
liarities of the Rome urban area, the purpose of our study, and
the use of images at decametric resolution, we chose seven land
cover classes, consisting of water surfaces (WS), vegetation
(VE), arboreous (FO), asphalt/concrete (AS), industrial/com-
mercial buildings (IB), and high/low density continuous urban
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Fig. 1. Landsat false colors composition (Bands 431) of (a) high density contin-
uous urban fabric, (b) low density continuous urban fabric, (c) asphalt/concrete
surfaces, and (d) industrial/commercial buildings.

fabric (HD/LD) more suitable to urban analysis. Examples of
some of these classes imaged in false colors composition of
Landsat bands (RGB 431) are shown in Fig. 1. The high density
urban fabric is mainly found in the oldest (middle age to 18th
century) sections of the city, while the low density urban fabric
is typical of mixed areas with small buildings, gardens and
narrow streets with trees, mainly developed in the first half of
the 20th century. Asphalted (and concrete) surfaces correspond
to large roads, parking lots and airport runways. More recent
isolated large residential, commercial, or industrial buildings
are found on the borders of the town.

Classification of urban areas by SAR data appeared in litera-
ture refers to four [4], five [3], and ten [2] classes. The intent of
this paper is to discriminate among the above seven land cover
classes utilizing the information stored in the SAR acquisitions;
hence, those image features carrying effective information must
be identified. The rationale for the choice of the features is dis-
cussed in the following.

Urban backscattering typically reaches high values when
resulting from single, double-bounce and trihedral reflections
from relatively large man-made plane surfaces [2]–[4]. How-
ever, the imaging geometry and the structure of the built area,
involving the observation azimuth angle and the orientation
of buildings, can produce different backscattering values [10].
On the other hand, the backscattering from the man-made
structures is only partially sensitive to the different seasons
of the year. In contrast, the backscattering intensity of natural
(parks) and agricultural areas, which include bare soil and
surfaces with trees and low vegetation, may vary significantly
with the season, according to the changing geometric (growth,
blooming stage and farming activities) and dielectric (moisture)
conditions. Hence, when the near-real time response is not

required, the seasonal behavior of the backscattering intensity
can be also exploited. The first two inputs to the long-term
classification algorithm are thus the mean and the standard
deviation of the backscattering coefficient computed for
each pixel over the multitemporal (winter, spring, and summer)
data set, while the single-date (spring) intensity only enters the
short-term classification algorithm.

The degree of interferometric coherence [11] is an indi-
cator of both the temporal and the spatial phase stability of a
target according to its geometrical and dielectric proprieties.
Coherence has indeed proven useful in land cover discrimi-
nation, as reported by several authors [12]–[17]. In particular,
Bruzzone et al. [4] found that the coherence features proved
to increase the classification accuracy by more than 16% when
added to a multitemporal data set. They pointed out the effec-
tiveness of coherence to significantly reduce the confusion be-
tween both forest and urban areas and fields and urban areas. In
fact, in a high-density urban environment, given the stability of
man-made structures, coherence is generally high, while low-
density residential areas, where gardens and small parks can
cover a considerable portion of the surface, exhibit lower co-
herence.

We assumed the winter and late spring/summer interfero-
metric short-term (one day repeat-pass in 1996 and 1999 or three
days in 1994) coherence as the third and the fourth input of our
long-term classification scheme, while only the spring value was
used for the short-term classification. We point out that several
authors highlighted the importance of the long-term coherence,
showing the higher accuracy with respect to the short-term co-
herence in classifying urban land-cover. In fact, for long acqui-
sition time intervals, stable permanent scatterers show high co-
herence values: in temperate regions, almost exclusively build-
ings and man-made structures are such stable targets, as reported
in [17]. However, the use of long-term coherence is not appro-
priate for early (near-real time, ideally) operations. In the fol-
lowing, we focus onto the analysis of the accuracy attainable by
including only one or two short-term coherence images into the
classification algorithm, also in view of possible immediate ac-
tions for disaster management. In this case, only single-pass or
short-term measurements, as the one reported in [18] or those
foreseen by the new-generation satellite constellations, are us-
able.

The last two inputs to the algorithm have been computed from
textural features of the intensity image [19]. Many texture fea-
tures exist, as attested by the numerous papers appeared in litera-
ture; hence, reporting some details on the rationale of the choice
can be appropriate. Tuceryan and Jain [20] identify four major
categories for texture features: statistical (such as those based on
the computation of the gray-level co-occurence matrix, GLCM),
geometrical, model-based (Markov random fields, MRFs), and
signal processing. It was pointed out by Shanmugan et al. [21]
that textural features derived from GLCM are the most useful
for analyzing the contents of a variety of imagery in remote
sensing, while, according to Treitz et al. [22], statistical tex-
ture measures are more appropriate than the geometrical ones
in land cover classification. Clausi et al. [23] demonstrate that
the GLCM method has an improved discrimination ability rel-
ative to MRFs with decreasing window size. Indeed, GLCM is

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on March 16, 2009 at 14:00 from IEEE Xplore.  Restrictions apply. 



90 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 1, NO. 2, JUNE 2008

TABLE II
NUMBER OF SELECTED SAR IMAGES, INPUTS AND PARAMETERS

USED FOR THE LONG- AND SHORT-TERM SCHEME

widely accepted and several studies have used it for land cover
classification with SAR data [24]–[26]. We use GLCM to char-
acterize the stochastic properties of the spatial distribution of
grey levels in the intensity images. Six GLCM parameters are
considered to be the most relevant [27] among the 14 ones that
can be computed, some of which are strongly correlated with
each other. In their investigation, Baraldi and Parmiggiani [28]
concluded that energy and contrast are the most significant pa-
rameters to discriminate between different textural patterns.

To further investigate on textural features, we considered two
additional textural parameters, the Large Number Emphasis and
the Second Moment suggested by [29]. These two latter features,
energy and contrast have been computed from our backscat-
tering images. In particular, two different methods (reported in
[19] and [30]) were used to generate the energy and contrast
features. The computations have been performed with varying
window size (7 7, 11 11, and 15 15 pixels) and for dif-
ferent gray levels (16, 32, 64), thus generating a total of 54 tex-
ture images. The class separability has been subsequently com-
puted for the textural images based on the Wilk’s lambda as re-
ported in [31]. The two parameters which yielded the maximum
value are energy and contrast (consistently with [19]), with a
window size of 7 7 pixels and 16 gray levels as inputs to the
classification algorithm. We observe that the texture energy is
especially valuable in separating high-density from low-density
residential areas and asphalt from water, while the texture con-
trast contributes to solving the ambiguity between low vegeta-
tion and low-density residential.

To summarize, the classification scheme exploits average and
standard deviations of backscattering intensity, coherence and
average textural parameters computed by formulas known in
literature, e.g., [4] and [19]. To further increase the clarity of the
input features, reported in Table II is the number of SAR images
and the parameters used for the short-term and the long-term
classification schemes, while an example of data input relatively
to 1994 is illustrated in Fig. 2.

IV. NEURAL NETWORK DESIGN

As discussed in the previous section, we use three different
sources of information, contributing heterogeneous inputs to the
classification algorithm. Since these inputs are obtained by ap-
plying nonlinear operators to the images, they possess a compli-
cated joint probability distribution; hence, parametric classifiers
(such as maximum likelihood) become hard to handle, given the

difficulty in reasonable assumptions on the features statistics.
Neural networks, which do not require any specific probabilistic
assumptions for the class distribution can turn out serviceable.
We designed a classification algorithm based on a multilayer
perceptron (MLP), a net widely used in solving decision-making
problems for a variety of remote sensing applications [32]. The
MLP maps the input vector containing the features described
in the preceding section onto the output vector containing the
land cover classes. The MLP topology has been determined
through an optimization of the number of hidden layers and
units, based on results appeared in literature, on previous expe-
rience and on a specific numerical analysis. Two hidden layers
has been found an optimal choice for several land cover appli-
cations [33]. We recorded the classification accuracies yielded
by a varying number of hidden neurons, starting from a small
topology (6-12-12-7) to end with a large one (6-100-100-7).
The variance of the accuracy for different initializations of the
weights was also computed to monitor the stability of the algo-
rithm. The configuration that maximized the accuracy without
indication of instability was retained.

A pruning procedure has then been applied to thin the net.
Pruning has several advantages, including reduction of runtime
and memory, improvement of the generalization capability
and selection of inputs [34]. The fully connected NN has been
pruned by the magnitude based pruning (MBP) [35] through
an automatic procedure. Although this method is very simple,
it rarely yields worse results than algorithms such as optimal
brain damage (OBD), optimal brain surgeon (OBS) or skele-
tonization [36]–[38]. Training of the algorithm was carried out
by the scaled conjugate gradient method [39].

The selection of pixels both for the training and testing phases
is particularly critical: on one side, the training process impacts
on the performance of the algorithm and, on the other, a bi-
ased test set can lead to fallacious evaluation of the results. The
training samples have been mainly selected by visual inspec-
tion of co-registered optical imagery taken by the Landsat 5/7
satellites in 1991 and in 2001, a time range which encompasses
the dates of the radar images. Periodically updated ground truth
records and cadastral maps have added the information for a rea-
sonably accurate identification of the land cover changes pos-
sibly occurred at the times of the SAR acquisitions. Moreover,
we used subsequent very-high resolution (QuickBird) multi-
spectral imagery and in situ inspections to identify or validate
ambiguous ground truth. Since the overall areas of the different
surface types differed considerably (e.g., water is much less
abundant than urban fabric), care was exerted in including a bal-
anced number of pixels belonging to the each class. To ensure
a balanced representation of all classes, we adopted a stratified
random sampling (SRS) [40], a widely used strategy which al-
lows the inclusion of samples also of the less likely classes.
Therefore, we first selected polygons of the Landsat images
such that all surface types were represented, then we randomly
picked up individual pixels within each polygon, avoiding cor-
related neighbouring pixels and preserving the statistical signif-
icance of each class. The selection of the independent test set
was carried out in an analogous way, including also whole poly-
gons. Table III reports the number of pixels of each class that
were selected for the training and validation sets (respectively
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Fig. 2. Six features used as input of the long-term classification algorithm: (a) mean intensity, (b) intensity standard deviation, (c) winter coherence, (d) spring
coherence, (e) contrast, and (f) energy for year 1994.

TABLE III
NUMBER OF SELECTED TRAINING (TR) AND VALIDATION (VS)

SAMPLES PER CLASS

illustrated in Fig. 3). The neural nets were trained by 13200
total samples and the classification accuracy evaluated on 14776
samples selected independently from the training ones.

To further investigate on the influence of the number of both
training and test pixels on the results, sets of different size were
considered. In addition, the sets were exchanged, in order to use
the validation set as training and vice versa. These results are
reported in the next section. Here, we highlight that both short-
term and long-term classifications have been carried out with

algorithms trained and tested by the largest sets, while the effect
of the training and test sizes has been studied for the long-term
case.

V. CLASSIFICATION RESULTS

We processed the SAR images acquired in 1994, 1996, and
1999 by the algorithm detailed in the preceding section to obtain
the classification of the Rome land cover.

The accuracy of the short-term classification, utilizing only
the two March images, ranges from 92.0%
for 1994 to 86.5% for 1996 to 89.3%

for 1999. The addition of the seasonal infor-
mation by a second interferometric pair and a fifth single image
increases the respective accuracies of the (long-term) classifica-
tions to 96.0 for 1994, 88.0%

for 1996, and 94.0% for 1999.
The figures slightly vary when reducing the number of pixels

in the training and test sets. The 1994 long-term classification
reaches an accuracy of 95.7% when trained
on 3507 and tested on 5733 samples; exchanging the sets yields
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Fig. 3. (a) Training and (b) validation sets superimposed to the mean intensity image of 1999.

93.2% . Analogously, training on 8182 and
testing on 13376 samples lowers the 1999 long-term classifica-
tion accuracy to 93.5% ; exchanging the
sets yields 92.2% . Taken into account the
variability of the surface from year to year, which ensues from
the single seasonal evolution and from the meteorological con-
ditions in the days preceding the SAR acquisitions or during
them, the above figures seems to confirm the essentially consis-
tent performance of the algorithm, within its expected numerical
fluctuations.

The 1994 and 1999 land-cover maps of the Rome area classi-
fied by the long-term algorithm are shown in Fig. 4(a) and (b),
respectively. In both cases, the main large built area has been
identified, as well as some specific structures, such as the com-
pact old part of the city, observable in red in the central part of
the images, the Tiber river, the Ciampino airport (in black near
the bottom-right corner) and the parks inside the city. The de-
tailed performance of the algorithm in discriminating the con-
sidered types of land cover can be appreciated by the confusion
matrix shown first for the 1994 short-term case in Table IV.
Each row of the matrix refers to a class and shows the proba-
bility (in percent) that the corresponding type of surface is at-
tributed to the class shown in the column header. As expected
from physical considerations, the classification errors mainly
consist in misclassification between high- and low-density con-
tinuous urban fabric, between asphalt/concrete and low vegeta-
tion, and between parks and low-density residential areas or low
vegetation. It can be noted from the confusion matrix in Table V
(relative to the 1994 long-term case) that the accuracy improves
when using six rather than four parameters, i.e., when including

winter coherence and standard deviation of the backscattering
coefficient in the classification. This could be expected, since
the long-term classification algorithm utilizes a richer input data
set. Moreover, the amplitude and texture parameters are now av-
eraged over five images rather than over just two, which results
in a more stable estimation of their mean values. Hence, the in-
crease of accuracy is a consequence of the combined effect of
adding another coherence image, another amplitude image and
of the averaging. As before, misclassification mainly occurs be-
tween high-density and low-density urban fabrics, but misclas-
sification between parks and low-density residential areas, as
well as between asphalt/concrete and low vegetation, appears
mitigated.

An interesting point is the assessment of the relevance of the
six partially independent channels in the classification scheme.
Several approaches to the quantitative evaluation of the relative
information content of an input have appeared in literature, e.g.,
[41]–[44]. We base the analysis on the concept that input units
whose weighted connections have the larger absolute value
are the most important, according to [45]. In the case of two
hidden layers, the contribution of an input feature with respect
to a single class , , is given by

(1)

where and denote the first and the second hidden layer,
respectively. The contribution of an input feature with respect
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Fig. 4. Long-term classification map for year (a) 1994 and (b) 1999: the main large built area has been identified with good accuracy, as well as some specific
structures, such as the compact old part of the city, observable in red in the central part of the image, the Tiber river, the Ciampino airport (near the bottom-right
corner), and the parks inside the city.

TABLE IV
SHORT-TERM CLASSIFICATION: CONFUSION MATRIX FOR YEAR 1994

TABLE V
LONG-TERM CLASSIFICATION: CONFUSION MATRIX FOR YEAR 1994

to the all output classes, , is defined as the sum of the
values over all classes

(2)

TABLE VI
RELEVANCE OF THE SIX CHANNELS PER SINGLE CLASS

The feature contribution per single class is reported in
Table VI. Globally, the backscattering intensity carries the max-
imum information, followed by energy, contrast and the two
short-term coherence features, while the standard deviation of
intensity contributes the least as shown in Fig. 5. This result
seems to confirm previous results on urban classification from
multitemporal SAR data [4]. The authors reported a classifi-
cation accuracy of 65% using only temporally filtered images
rising to about 81% when the long-term coherence was added
(in the present study we exploit short-term coherence). Hence,
the contribution of coherence is important, since it increases the
overall classification accuracy, but the other features are also
quite effective. We point out that our result has been obtained for
the particular urban scenario, land cover classes, and SAR ac-
quisitions we consider. However, it suggests that backscattering
amplitude and texture might contribute considerable informa-
tion when classifying areas with abundant urban fabric.

Finally, it is interesting to note that the short-term classifica-
tion scheme exploits just the four quantities contributing more

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI ROMA. Downloaded on March 16, 2009 at 14:00 from IEEE Xplore.  Restrictions apply. 



94 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 1, NO. 2, JUNE 2008

Fig. 5. Normalized feature contribution of the six channels. The backscattering intensity carries the maximum information, followed by the textural energy and
contrast, and by the coherence features. The standard deviation of intensity contributes the least.

Fig. 6. Change map of the Rome test site produced by post classification com-
parison of the 1994 and 1999 land cover maps obtained by the long-term al-
gorithm (see Fig. 4). The considered changes (shown in red) are surfaces that
transitioned from natural areas to built units. The large-scale changes occurred
in the five year time interval show a fast developing urbanization in the eastern
side of Rome with the construction of several industrial and residential build-
ings.

information, although the contribution of the winter coherence
is quite close to that of the spring one.

VI. CHANGE DETECTION

Several results have appeared in literature regarding urban
classification by multitemporal SAR data at decametric res-
olution (nonexhaustive examples are [3], [4], [10], [16],
[46]); however, only a few deal with urban change detection.
Grey et al. [10] exploited a multitemporal sequence of ERS
interferometric coherence data for mapping urban changes in

Fig. 7. (a) Detail of Fig. 6 (the changes found with the long-term algorithm are
in red), including the South-East side of Rome which underwent considerable
land surface changes before the Jubilee in 2000; (b) relative ground truth record
(shown in green). The correct detection of the long-term algorithm is slightly
above 82%, about 18% missed alarms and 0.3% false alarms.

Cardiff (U.K.), reaching approximately 50% of accuracy in
detecting the building developments occurred within their test
site. The authors report that, while the large developments can
be accurately identified, many of the smaller developments are
not detected in the binary change map.

As discussed previously, the intent of this paper is the mon-
itoring of changes within and around large urban areas. To this
end, the classification results detailed in the previous section are
now utilized for an extended-area postclassification comparison
change detection. The changes underwent by the Rome area are
the ones typical of a developing urbanization, i.e., from natural
surface to industrial, commercial and residential buildings. For
this reason, we only investigate on surfaces that transitioned to
built units as in [10]. We consider the classified images of 1994
and 1999 in order to have a significant number of changes avail-
able for the analysis.

The pixel-by-pixel comparison of the two yearly land cover
maps obtained by the long-term algorithm yields the large-scale
changes occurred in the five year time interval. Fig. 6 shows
the detected several hundreds of occurrences scattered over the
836 km Rome’s urban and suburban area superimposed on the
1994 Mean Intensity background without changes. The higher
density of changes appears on the eastern side of the area. A de-
tailed analysis of the changes detected in the North East corner,
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TABLE VII
LONG-TERM CHANGE DETECTION ACCURACY

where topography is apparent, revealed that most of them are
real modifications associated with major public works, house-
building and lanscaping. They include the construction of a high
speed railroad, a technology park, the new general market, res-
idential sites, and a golf course. The maximum height in this
area is about 100 m above sea level. Rather, the higher slopes
are located on the western side of the central urbanized area,
where the top of the city, Monte Mario, attains 139 m. This
high-slope area, on the west side of the river, does not show
changes. An even higher density of changes appears in the SE
corner. Here the territory gently rises towards the Colli Albani
mountains with moderate slopes and some fairly flat areas, like
the quite visible Ciampino airport. For a quantitative analysis
of the results, we refer to this area [shown in Fig. 7(a)] having
an extension of about 160 km (423 465 pixels), which un-
derwent considerable land surface changes and for which we
have a particularly detailed independent ground survey [shown
in Fig. 7(b)].

The correct detection is slightly above 82%, with about 18%
missed alarms and 0.3% false alarms, as reported in Table VII.

The short-term change detection is suitable for mapping the
surface modifications caused by particular natural events like
flooding or earthquake. In these occurrences the typical changes
are from solid surface to water or from buildings to a mixture of
man-made and rough surfaces. Although some example can be
found in particular locations [40], such changes are extremely
uncommon in the normal evolution of a city like Rome. Hence,
the results of the change detection based on the short-term clas-
sifications should not be regarded as representative of the per-
formance of the technique in such possible natural events, rather
only indicative of its potential. The pixel-by-pixel comparison
of the 1994 and 1999 land cover maps produced by the short-
term (4 inputs) data set of the test area yields a correct detection
slightly above 62%, with about 38% missed alarms and 0.2%
false alarms. These results show an improvement with respect to
the urban change detection accuracy reported in literature ([10]).

VII. SUMMARY AND CONCLUSION

The global dynamics of large urban areas is hard to monitor
by images at metric spatial resolution. Moreover, the short reac-
tion time allowed by emergencies makes radar acquisitions an
essential element of the decision-making process. The archived
ERS SAR images, on one side provide a valuable source of in-
formation on the evolution of human settlements and urban land
use, and, on the other, are a tool for preparing and testing readily
employable change detection techniques. We explored the po-
tential of single-polarization decametric SAR data in both ap-
plications by discussing the extraction of suitable features and
by using them in producing land cover maps through a neural
network algorithm to arrive at a postclassification change de-
tection. The study refers to a wide area of more than 800 km ,
including the city of Rome, Italy, which was imaged in three
different years between 1994 and 1999.

A novelty of this study is the joint use of intensity, coherence
and texture of SAR images, which were exploited separately in
previous studies. The NN algorithm behaves quite satisfacto-
rily in handling such an heterogeneous data set and in yielding
reasonable results. However, the algorithm requires care in de-
signing its topology (number of hidden layers and units), in
scaling input and output quantities, and in training and pruning
procedures. Once optimized and trained, the Neural Net can
classify large amounts of data in quite short times. Moreover,
it can provide indication on the information that each image
feature carries on the considered land cover classes. Backscat-
tering intensity, GLCM energy and contrast, and spring coher-
ence turned out to be the most effective parameters in classifying
the particular landscape at hand.

The accuracy in discriminating the considered seven types of
surface from a single interferometric acquisition exceeded 86%,
with a -Coeff. larger than 0.78. Including different seasons by
acquiring a second interferometric image pair and by adding a
fifth image, rose the accuracy to beyond 88% ( -Coeff. above
0.80). The influence of the number of both training and vali-
dation samples on the classification accuracy was investigated.
The results confirm the essentially consistent performance of the
algorithm, within its expected numerical fluctuations.

The postclassification change detection pointed out the mul-
titude of changes from natural surfaces to buildings that Rome
experienced in the five considered years. Several changed
sub-areas were analyzed in detail also by very-high resolution
(QuickBird) multispectral images and, by in situ inspections
when needed. The quantitative assessment carried out on the
test area, which is a considerable fraction of the whole image,
yields a minimum correct detection above 82% (less than 18%
missed alarms and 0.3% false alarms). The case of short-term
change detection has also been considered, by utilizing a single
interferometric image pair. The reduction of the input features
lowers the postclassification change detection accuracy over
the test area to 62% (38% missed, 0.2% false alarms), but the
accuracy is still higher than the ones previously reported. These
figures may not be significant for a natural disaster occurrence,
when short-term changes are mainly expected to be solid land to
water or building to rough surfaces. In this case a considerably
higher accuracy can be expected, given the good performance
of the short-term algorithm in discriminating water and build-
ings from land surfaces. It should be pointed out that short-term
monitoring needs images as they become available, without any
preliminary screening. This implies the use of backscattering
and coherence values measured in possible windy, wet or even
rainy conditions. A measurement set also including adverse
meteorological situations, as in this study, would be suitable to
train the algorithms to use in this eventuality.

This study, carried out for the city of Rome, Italy, is expected
to be indicative of the results obtainable for urban areas having
similar structure and types of surface, as, at least, may be the
case of other European cities.
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