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TED Training Data Set
B B I ey R R

Location Di(“;;;‘?;’ n Ach;stieﬁon Satellite (Bml’) Di(gliineslis())n
January 25, 1994 ERS 1
N January 31, 1994 ERS 1 ¥
March 26, 1994 ERS 1
, March 29, 1994 ERS 1 7
W July 13, 1994 ERS 1 ]
w Rome, Italy 836 1245 x 1300
" February 13, 1999 ERS 1
February 14, 1999 ERS 2 2t
March 20, 1999 ERS 1
March 21, 1999 ERS 2 6
July 4, 1999 ERS 2 -

Test.DataSet
[ Sitemformaton [ imageshformation |

Dimensio L .4 . Dimensi
. Acquisition Satellit B ensio
Location n Date | (";’) n
(km?) (pixels)
February 24, 1996 ERS 1
12
February 25, 1996 ERS 2
Rome, Italy 836 March 30, 1996 ERS 1 1245 x 1300
106
March 31, 1996 ERS 2
July 14, 1996 ERS 2 - 3 of 34
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| Tk Input Features
E‘»’f |

. Careful selection and suitable processing are required to

exploit the various pieces of information embedded in the
amplitude, its time-spage behavior and phase of the radar
eturn:

=5

:

ackscatterin mean intensity / intensity st.
thterferometric [ / rly summer
coherence
_ coherence
textural features > Gray-Leveld€o-occurence Matrix

(GLCM) \

Contrast—Energy (literature review)

Window size :@1 1x11 and 15x15
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Input Features

Long-term

1 Mean Int.

Int. St. Dev.
Wint. Coh.
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Contrast

AN | Nn | B |W]N

Energy

|
v

F Simages

Short-term

1 Mean Int.
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- TED Class Definition

N L, These sets of 6 and 4 parameters respectively are exploited

to discriminate among seven urban/sub-urban classes,
i \3

! including water surfaces (WS), vegetatign (VE), forest (FO),

VS
219
1326
. 278
Isolated Buildings (IB 433
ow Densi D) 49 6130
Water (WS) 892 382

[ row | w0 [ e |
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Tk Neural Network Approach

The pieces of infermation extracted from the SAR images
are fused and processed by a supervised Multi-Layer

{ Perceptron (MLP)-neural network which fis known to show a

considerable easge’in using multi-domairgdata sources

We recorded the classification accuracigs yielded by a

 varying number of hiddén neurons, starfing from a small

topology (6-12-12-7) to.end with a large one (6-100-100-7).
The variance of the accur ifferent initializations of
the weights was computed to monitor the stability of the
algorithm

| The Magnitude Based Pruning procedure has then been

applied to thin the net

Eurimage Meeting 2008 7 of 34



TE@ Short-term automatic mode - 4 inputs

Classes

Asphalt (AS)
Forest (FO)

High Density (HD)
Isolated Buildings (IB)

Low Density (LD)

Vegetation (VE)
Water (WS)

AS FO HD IM LD VE WS

46.15 1.65 0.00 0.00 1.10 43.41 7.69

1.90 69.16 0.00 0.00 15.22 | 10.60 3.13

0.00 0.47 26.42 0.00 72.64 0.47 0.00

0.00 0.00 491 78.13 | 13.84 3.13 0.00

1.05 2.79 0.39 0.00 91.34 5.39 0.03
.29 2.55 0.00 0.00 8.08 87.94 0.13

1.22 3.95 0.00 0.00 0.00 3.95 88.15
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Classes

Asphalt (AS)

Forest (FO)

High Density (HD)

Isolated Buildings (IB)

Low Density (LD)

Vegetation (VE)
Water (WS)
AS FO HD M LD VE | WS
47.80 0.55 0.00 0.55 549 | 4286 | 2.75
0.41 71.74 0.00 0.00 1522 | 11.14 1.49
0.00 0.00 43.40 0.00 | 56.13 0.47 0.00
0.00 0.00 16.52 79.46 3.13 0.89 0.00
.02 0.64 5.92 0.67 89.28 3.48 0.00
35 1.44 0.21 0.01 4.71 92.23 0.04
0.91 6.69 0.00 0.00 0.91 2.43 86.32
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|£9 Long-term automatic mode - 6 inEuts
Ii‘#

Classes
The origin of most of the errors relies Asphalt (AS)
k Forest (FO)
in the misclassification of I—ID as LW, High Density (HD)
Isolated Buildings (IB)
which, given the contiguityof the two Low Density (LD)
Vegetation (VE)
classes, can be recognized as a Water (WS)

8!  minor drawback.

If we merge these two classes, the

Overa” aCCUFacy reaCheS 9150/0( - AS | 47.80 055 : 055 | 549 | 4286 | 2.75

FO 0.41 71. 0.00 1522 | 11.14 | 1.49
HD 0.00 0.00 43.40 0.00 | 56.13 | 047 0.00
M .00 0.00 16.52 79.46 | 3.13 0.89 0.00
LD .02 0.64 5.92 0.67 | 89.28 | 3.48 0.00

1 SatiSfaCtory target for this type of VE | 135 | 144 | o021 | 001 | 471 | 9223 | 0.04

WS 0.91 6.69 0.00 0.00 0.91 243 | 86.32

application.  [owmeen [un | [ecoctriien [osn |

Coeff.=0.860) which can represent a
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Classification detail
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Correct Detection (%)  False Alarms (%) Missed Alarms (%)
82.17 17.83 0.26
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' TEo Pulse-coupled neural network (PCNN)
by

#N The pulse-coupled-neural network (PCNN) is a relatively new

% technique based ©n the implementation of the mechanisms
\ underlying the visual ca@rtex of small mammals.

PCNN is an algorithm that produces a series of binary pulse
Images when stimulated with a gray scale or color input.

It is different fromywhat we gengerally mean with artificial

™ neural networks in the'sense that'it.doesnot need to be
| trained.
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TE@ The Neuron Model g1/22

&w The network consists of multiple nodes coupled together with
" their neighbors within a definite radius, forming a grld

| 4

0 | Y/
Inputs from N
other neurons U _j Output to

y . other neurons
Step Function
g - . t———-
DENDRITIC TREE LINKING PULSE GENERATOR
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| TE@ The Neuron Model 32/22
K

f * % I " ] ] . " .
i7" The internal activity rises until it becomes larger than an

ﬁ‘#‘ active threshold value. Then the neuron fires and the

35
Fy[n]=e* Fy[n-1]+5, +VF§MWYH [n—1] F —L —U —THETA —Y
30
Lg[n]zears"lzlj[n—l]'l'VLZ%HYH[}?—].] . k \ N N N N
Kl ' 2§
Uy [n]=Fy[nl{L + L, [n]} o \ A\

. |

¥, [n] = Lif Uy[n]>0,[n-1] -
0 Otherwise \
s 10
©,[n]=e""0,[n—-1]+Ve¥,[n]
5 -
SORRAD N
ij

1 357911 131517192123252172931333537394143454749
epoch
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T& Change Detection

E’a: The waves generated in a moving window by each iteration
~ of the algorithm create specific signatures of the scene which

% are successively compared for the change detection

We considered very-high resolution imagery. False alarms
due to different geometrical views (misregistration or different
acquisition angle).are typical for this kind of data

| '\
)"

SIGNATURE ANALYSIS» The si associated to the
PCNN is invariant-to changes inrotation, scale, shift, or skew
W of an object within.the scene! These,features make PCNN a
| promising tool for sub-metric change detection applications
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Correlation Analysis

Eurimage Meetin
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TE® Towards Fully Automatic Scheme

Clustering —® Clusters La

?

lling —® Training Pixels

Image
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| TE@ Polarimetric SAR imagerx

" L- band polarimetric NASA-JPL AirSAR - Montespertoli (FI)

Q-’!
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R
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3

i Blu : Urban
Dark green: woodland Overall Accuracy 82%
Green:

Oliveyard,vineyards,colza

Red: siinflowear and ather Eurimage Meeting 2008 21 of 34
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Overall Accuracy =
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- TEo Fire Scars

B oo\ o SENST RS i\
Peloponnese Peninsula, Gree

Landsat
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TED Unsupervised Algorithm

Object layers computed from HH
backscattering intenfity image

v'{‘ 1) Automatic
Segmentation 1

; 2) Shape and Textural Features calculation
and optimization 1

3) SOM Classification

|
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TED TexSOM Scheme

- HH

=—

— Asymmetry

AmMmA4>00DXO>T

Lenght _on_Width

0]
| B
]
-
C Mean
¢
S
Shape index
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15D Classification result

Crops

B urban

- Burned Areas

NO POST-CLASSIFICATION
FILTER!!

Urban areas and streets

are CRITICAL for R

FivAfintiA A~ Eurimage Meeting 2008




[ ', I
|l|..‘ N
| U | T
'vl K

-3

3

: :ﬁ.

v Y
()

AUTOMATIC RETRIEVAL OF
TECTONIC PARAMETERS
WITH NEURAL NETWORKS
AND
SARINTERFER

ETRY
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TED The retrieval scheme

5

¢ . Faultdip
- = ~ . Fault strike
~ Width

- Slipx

e o Sli
/// \, /‘ .
= Slipz
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' TED TRAINING PHASE

; Library of synthetic interferograms

Normal fault Strike slip fault Thrust (reverse) faul

1200 interferograms generated
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- TED The neural architecture

NNZ2a
Parameter
retrieval class 1

NN1 NN2b

S ee Parameter

Classificatio _
element retrieval class 2

NN2c
Parameter
retrieval class 3
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Our automatic results

)

£
Ny

-

aN

-l

Pl

A

X
N

@

-

7/
A

£7

-,

7

7

&
7L 2

7/

G
=

r

Z.

=L

33 of 34

Eurimage Meeting 2008



IIlIIIIIIIIIIIIIIIlIIIIlII

200 300 400 500 600 700 100 200 300 400 500 600

100 200 300 400

The analysis of surface deformation patterns could be
extended to the interseismic displacements by using INSAR
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