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Abstract— The 2008 Data Fusion Contest that was organized set was distributed to every participant and the task was to
by the IEEE Geoscience and Remote Sensing Data Fusionpptain a classified map as accurate as possible with respect
Technical Committee was dealing with the classification of high to the ground truth data, depicting land cover and land use

resolution hyperspectral data from an urban area. Unlike in | Th d-truth kept t but traininali
previous issues of the contest, the goal was not only to identify ¢'@SS€S. 1he ground-truth was kept secret, but trainingipix

the best algorithm, but also to provide a collaborative effort: the = could be selected by the participants by photointerpetati
decision fusion of the best individual algorithms was aiming at order to apply supervised methods. The data set consisted of
further improving the classification performances and the best an airborne data from the ROSIS-03 (Reflective Optics System
algorithms were ranked according to their relative contribution | ma4ing Spectrometer) optical sensor. The flight over thg ci

to the decision fusion. This paper presents the five awarded h

algorithms and the conclusions of the contest, stressing the of Pavia, Italy, was operated by the Deutschen Zentrum fur
importance of decision fusion, of dimension reduction and of Luft- und Raumfahrt (DLR, the German Aerospace Agency)

supervised classification methods, such as the Neural Networksin the framework of the HySens project, managed and spon-

and the Support Vector Machines. sored by the European Union. According to specifications,
Index Terms— decision fusion, classification, hyperspectral im- the number of bands of the ROSIS-03 sensor is 115 with a
agery spectral coverage ranging from 0.43 to Q.86 13 noisy bands

have been removed. The dimension of the distributed data set
is hence 102. The spatial resolution is 1.3m per pixel. For
the contest, five classes of interest were considered, gamel

The Data Fusion Contest has been organized by the Dhtaldings, roads, shadows, vegetation and water. Everyone
Fusion Technical Committee (DFTC) of the IEEE Geoscien@®uld enter the contest and download the data set. After
and Remote Sensing Society (GRS-S) and has been annudlissification, the participant could upload the resultingp
proposed since 2006. It is a contest open not only to DFTGr an automatic evaluation of the classification perforogsn
members, but to everyone. The aim of the Data Fusigoonfusion matrix and average accuracy). The particigatin
Contest is to evaluate existing methodologies at the relseateams were allowed to upload as many different results as
or operational level to solve remote sensing problems usitigey wished.
data from different sensors. The main aim of this contest is t At any given time, the five best maps were combined using
provide a benchmark to the researchers interested in aafassajority voting and re-ranked according to their respectiv
data fusion problems, starting with a contest and then &llgw contribution to the fused result. The best seven individual
the data and results to be used as reference for the widagorithms were listed in real time on the data fusion cdntes
community, inside and outside the DFTC. The first issue @febsite (http://ticlab.unipv.it/dftc/home.do), togethwith the
the contest was devoted to pansharpening [1]. In 2007, tesult of the fusion. Please note that the website is stilinop
contest was related to urban mapping using radar and optiaat everyone can use it as a benchmark to test any new
data [2]. algorithm.

In 2008, the contest was dedicated to the classification ofThe contest was open for three months. At the end of the
very high resolution hyperspectral data. A hyperspectash d contest, 21 teams had uploaded over 2,100 classificatios!map

I. INTRODUCTION
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A closer look reveals that one single team actually subrhittevith the aim of preserving most of the relevant informatidn o
over 1,200 results (but we should underline that it did nthe original data according to some optimal or sub-optimal
rank in the top five teams), while the other 1,000 entriegiteria, [3][4]. The pre-processing procedure exploitied
are spread over the remaining twenty teams. The five b#sis section divides the hyperspectral signatures intacaljt
individual classification maps have been fused togethee. Ttegions of the spectrum and approximates their values by
final corresponding teams have been awarded with an IEREcewise constant functions. In [5], the authors reduded e
Certificate of Recognition during the Chapters and Technidactively the input space using averages of contiguoustsglec
Committees Dinner at the IEEE International Geoscience abhdnds applying piecewise constant functions instead dfenig
Remote sensing Symposium (IEEE IGARSS’08) in Boston, iorder polynomials. This simple representation has shown to

July 2008. outperform most of the feature reduction methods proposed
The remainder of the paper is organized as follows. First the literature, such as principal components transform,
the best five algorithms are detailed: sequential forward selection or decision boundary feature

« Section Il presents the work by Giorgio Licciardi ancextraction [6].
Fabio Pacifici. They use different standard classifiers Assumes;; to be the value of théth pixel in thejth band,
(three neural networks and two maximum likelihoodvith a total of N' pixels. The spectral signatures of each class
classifiers) and perform a majority voting between thextracted from ground truth pixels have been partitionéal &
different outputs. fixed number of contiguous intervals with constant inteesit

« Section Ill presents the work by Devis Tuia and Frederi@inimizing the mean square error:
Ratle. They use both spectral and spatial features. The K N
spectral features are a 6-PCA extraction of the initial 9
pixel’s vector value. The spatial information is extracted H = Z Z Z (Sij = pin) (1)
using morphological operators. These features are clas-
sified by combining several Support Vector Machines where a set o breakpoints defines continuous intervals
(SVM) using majority voting. Iy, while u;;, represents the mean value of each pixels interval

« Section IV presents the work by Saurabh Prasad ahdtween breakpoints. A number & = 7 breakpoints was
Terrance West They use a wavelet based preprocessirigund to be a reasonable compromise between model com-
of the initial spectra followed by a Linear Discriminantplexity and computational time and the resulting partisi@me
Analysis and a Maximum Likelihood classifier. reported in Tab. I.

o Section V presents the work by Ferdinando Giacco
and Christian Thiel. They use a Principal Compone s
Analysis (PCA) to reduce the dimension of the dat;g PL§ication Phase
Spatial information is taken into account with some tex- In the literature, neural networks (NNs) and support vector
tural features. The classification is achieved using SvRtachines have been widely used since they do not require
one versus one classifiers and a spatial regularizationady specific probabilistic assumptions of the class distiam,
performed on the classification map to eliminate isolatdl Opposition to parametric classifiers, such as Maximum
pixels. Likelihood (ML). The classifier scheme exploited here is a

« Section VI presents the work by Jordi Inglada an@ombination of single decision maps. In [7], it has been
Emmanuel Christophe. They perform a Bayesian fusiglemonstrated that combining the decisions of independent
of different classifiers (such as SVM classifiers). Thelassifiers can lead to better classification accuracie® Th
weight assigned to each classifier is determined by tembination can be implemented using a variety of strasegie
quantitative results it obtained. All these algorithms ar@mong which majority voting (MV) is the simplest, and it has
available with the ORFEO Toolbox, an open sourcéeen found to be as effective as more complicated schemes

library of image processing algorithms for remote sensir{é] [9].
applications ( http://otb.cnes.fr/). Majority voting was used here on five independent maps

Finally, the decision fusion is considered in Section Viida resulting from two different methods, i.e. three neural-net

the conclusions and perspectives drawn by this contest ¥f@rks and two ML classifiers. For each method, the input
presented and discussed in Section VIII. space was composed by the seven features obtained reducing

the sensor bands, while the outputs were the five classes of
interest. For training the supervised classifiers, we haldiaed
MAXIMUM LIKELIHOOD CLASSIFIERS three dn‘ferent training sets varying the numper of samples

duct f the data di ionali as reported in Tab. Il. In the following, we briefly recall the
A. Re uct|on.o the data 'mensiona ity o classification methods and the setting used.

The analysis of hyperspectral imagery usually implicates t 1) Neural Networks:the topology of a multilayer percep-
reduction of the data set dimensionality to decrease the cofibn network [10] has been determined through an optimiza-
plexity of the classifier and the computational time redquiiretion of the number of hidden layers and units, based on the

1The authors would like to acknowledge the active partigipabf Jeff results reported in the literature, on previous experigrzoel

Brantley, Jacob Bowen and Matthew Lee to this work. They #raith the 0N @ specific numerical "f‘nalySiS [1_1]' TWO_ hidden layers has
Mississippi State University. been found to be a suitable choice, while the number of

Il. MAJORITY VOTING BETWEENNEURAL NETWORK AND
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TABLE | Class 1 2 3 4 5
RESULTING SUB-BANDS 99.65% | 213359 391 155 203 0
97.05% 246 10430 0 71 0
Sensor bands Wavelength ({m) 98.95% 143 27 16245 2 0
from to from to 99.97% 2 5 1 24480 0
Bl 1 15 230 7186 100.00% 0 0 0 0 10961
B2 16 35 490 566 99.82% | 96.10% | 99.05% | 98.89% | 100%
B3 36 65 570 686
B4 66 75 690 726 TABLE IV
B5 78 82 730 766 CONFUSION MATRIX, TRUE CLASSES GIVEN BY ROWS
B6 86 90 770 786
B7 91 95 790 834
TABLE Il
TRAINING SAMPLES USED FOR THESUPERVISEDCLASSIFIERS input features and of the classifier exploited are discugsed

this paragraph.

Buildings Roads Shadows Vegetation Water

Set1 132,369 18,914 20,356 53,065 43,104 )
Set2 33,168 6,525 3,260 14,323 26,816 A. Spectral and spatial features
Set3 45,268 5,210 1,524 17,485 20,367

The Principal Component Analysis was used to extract spec-
TABLE Il tral information from the original image. Specifically, tbix
TRAINING SET CLASSIFICATION ACCURACIES FORNN, ML AND MV first principal components have been retained for the aisalys
as shown from the components composition in Fig. 1b. These
NN1  NN2 NN3 ML1 ML2 | MV features count f0199.9% of the variance contained in the

(setl) (set2) (set3) (setl) (set?) original hyperspectral bands.
Acc. (%) 956 954 951 950 949 963

K-coef. 0.936 0.932 0.929 0.927 0.925 0.946

hidden neurons was found using a growing method, progres-
sively increasing the number of elements. The variance of
the classification accuracy for different initialization$ the
weights was computed to monitor the stability of the topglog
The configuration 7-25-25-5 maximized the accuracy and
minimized the instability of the results. Successivelyeth
independent NNs were trained with sets 1, 2 and 3 (see Tab.
I), providing three different maps.

2) Maximum Likelihood:ML is a well known parametric
classifier, which relies on the second-order statistics of a
Gaussian probability density function for the distributiaf the
feature vector of each class. ML is often used as a reference
for classifier comparisons because it represents an optimal
classifier in the case of normally distributed class prolitgbi
density functions [12]. ML classification was performednggi
sets 1 and 2 (see Tab. Il), providing two different maps.

The results from the five classification maps were combined
using majority voting to obtain the final map. The algorithfn o
majority voting was implemented following two simple rules

« a class is the winner if it is recognized by the majorityig. 1. (a) The first principal component. (b)The six prin¢ipamponents
of the classifiers retained.

- in case of'a balance voting, the.vx./lnner class is the oneMorphoIogicaI operators ([13], [14]) have been added to
W't.h the highest Kappa (K) coeﬁ!mgnt o include information about spatial neighborhood of the [sixe
~ The improvement derived from majority voting is reporteqjathematical morphology is a collection of filters called
in Tab. Il where the K-coefficients (based on training setgjerators based on set theory. Morphological operators hav
obtained from five classifications are compared with the oRgen used in remote sensing to extract information abopesha

@ a (b) b

of the final result. o . and structure of the objects in both optical [15], [16] andyen
Table IV presents the corresponding final confusion mat”?‘ecently, hyperspectral imagery [17], [18], [19].
The score is 0.9884. An operator is applied using two ensembles: the first is the

image to filterg, and the second is a set of known size and
I1l. M ORPHOLOGICAL FEATURES ANDSVM CLASSIFIER  ghape called the structuring elemét In our setting, and as
The proposed method uses both spectral and spatial infsuggested in [17], [18], the first principal component (shamv
mation to train a SVM classifier. A brief description of theFig. 1a) has been used for the extraction of the morpholbgica
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TABLE V

features. Specifically, top hat features have been corsider
LABELED PIXELS FOR THEPAVIA IMAGE

These features are constructed using the three-stagemdlite

described below: Class Labeled pixels  Training  Validation  Test
1) erosion and dilationfor a given pixel on the input image Buildings 84305 13000 12484 58821

; : s o Roads 17495 7000 1840 8655

g, the erosioneg(g) is the pointwise minimumA between Shadow 11375 7000 758 3617
all the values ofy defined byB when centered on the pixel Vegetation 49730 5000 7770 36960
considered. On the contrary, dilatiéig(g) is the pointwise Water 43104 2000 7148 33956
Total 206009 34000 30000 142009

maximumyV between these same values.

2) opening and closingopeningyz(g) is the dilation of an
eroded image and is widely used to isolate brighter (contpare, - - .
to surrounding features) structures in gray-scale imag@es. pixels), and a test containing the remaining 142,009 pixels

the contrary, closing s (g) is the erosion of a dilated imagealS shoyvn in Tab. V. ) ) )
and allows to isolate darker structures [20]. The formatati As discussed previously, the input space takes into account
of opening and closing operators is given by: both spectral and spatial features. The six first Principal

Components have been used as spectral information, while 28
_ _ spatial features have been extracted by applying openidg an
78(9) = 98len(9)] ¢8(9) = ezln(9)] @ closing top-hat operators to the first PC using diamond ghape
3) top hat: top-hat operators are the residuals of an openiggructuring element with increasing diameter size (frono3 t
(or a closing) image, when compared to the original image9 pixels).
as: Each feature has been converted to standard scores and
stacked in a single 34-dimensional input vector. The diassi
TH =g —1I(g) (3) is a one-against-all SVM implemented using the Torch 3
brary [21]. A RBF kernel has been used. Model selection
as been performed by grid search to find the optimal kernel

If T = ~g(g), the operator is an opening top-hat anﬁ
é@rametersr and C.

highlights bright peaks of the image. On the contrary,
I = ¢g(g) the operator is closing top-hat and emphasiz
dark peaks of the image, as shown in Fig. 2.

C. Majority voting of the best classification maps

During the contest, several maps have been uploaded,
accounting for different training sets and optimal kernat p
rameters. Eventually, each classification map improvirg th
previous solution has been combined using majority voting:
a pixel received the label of the class assigned by most of
the models. In the case where no class prevailed, the pixels
receives the label of the map showing the highest Kappa
coefficient.

Table VI presents the corresponding final confusion matrix.
The score is 0.9858.

Class 1 2 3 4 5
99.65% | 213351 385 260 107 5
95.80% 414 10296 12 25 0
98.42% 223 35 16158 1 0
99.76% 52 5 1 24430 0
100.00% 0 0 0 0 10961
99.68% | 96.04% | 98.34% | 99.46% | 99.95%
TABLE VI

CONFUSION MATRIX, TRUE CLASSES GIVEN BY ROWS

(@ a (b) b

Fig. 2. Opening (a) and closing (b) top hat features extdhfie the Pavia
image. The size of the structuring element is increased frgn{3ixels) to
the bottom (29 pixels) of the images. IV. GROUND-COVER MAPPING USING SUPERVISED

CLASSIFICATION AND MORPHOLOGICAL PROCESSING

) In this approach, we employ a Discrete Wavelet Trans-

B. Experimental setup form (DWT) based processing of the hyperspectral signatures
A total of 206,009 labeled pixels has been identified bipllowed by a Linear Discriminant Analysis (LDA) transfor-
careful visual inspection of the hyperspectral image. €hemation and pixel-wise maximum-likelihood classificatiaor f

samples have been divided into a training set of about 34,06@ating a ground-cover map of the satellite imagery. The

pixels, a validation set for model selection (about 30,00DA transformation and maximum-likelihood classifiers are
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trained using the training data extracted from the regionserrected. It is worth mentioning that although we have per-
of-interest provided to all contest participants. The h&sy formed the per-pixel classification in the wavelet domaie, w
ground-cover map is then post-processed by an apprombtained very similar recognition performance (measurgd b
ate morphological operation to minimize the salt-and-geppthe accuracy) when we performed the classification in the raw
classification noise introduced because of the use of pixetflectance domain. The improvement in overall classificati
wise (per-pixel) classification. The DWT based pre-procggsiby introducing a wavelets based processing was marginal.

of the hyperspectral signatures provides a multi-resmuti  Table VII presents the corresponding final confusion matrix
information representation. The mother wavelet employed The score is 0.9753.

this approach is the Daubechies wavelet (implemented using

the Daubechies 9/7 filter bank), which resulted in a feature ggj;% 2121873 227 937 g‘l g
vector comprising of DWT coefficients per pixel. Data from gz 069 372 10109 13 251 0
this high dimensional space was projected onto a reduced-| 96.78% 252 160 15889 78 38
dimensional space by employing the LDA algorithm. LDA | 98.98% 108 92 49 24238 1
seeks to find a linear transformation, such that the within- |--20-00% 99%6% 95%9% 94%8% 9832% 91902201/0
class scatter is minimized and the between-class scatter is : 'TABLE V”' : :

maximized. The transformation is determined by maximizing
Fisher’s ratio which can be solved as a generalized eigeaval
problem.

The between class scatter matrix and the within class scatte
matrix are learned from the training data. Since it is design
to maximize class separation in the projected space, LDA is
an appropriate dimensionality reduction approach for dmel
cover classification task at hand.

After performing an LDA transformation on the training The proposed method is made up of three classification
and test data, a maximum-likelihood classifier is employesfages with special attention to preprocessing and spatial
for classifying pixels in the image, that assumes Gaussitgature extraction.
class distributions for each class. We assuming equalsgpftor ~ Preprocessing and features extractigh Principal Compo-
each class. The class membership function for such a ctassifients Analysis of the 102 Rosis spectral bands is computed.
is given in [22]. A conventional single-classifier systemswalhe 26 bands with the most significant principal components
sufficient for the given task because the amount of availal@ee used as spectral input features for the classifier. litiead
ground-truth was sufficient relative to the feature space dire introduced some spatial information extracted from the
mensionality. Had we had an insufficiently small groundktru Rosis data set: standard deviation calculated on the first
dataset for the classification task, the recently developaiti- principal component and on the ratio Near-Infrared/Reddsa
classifier and decision fusion framework could have been edf2/66), known in remote sensing literature as a way to
ployed for this task [23]. The feature extraction, optimiga emphasize the vegetation. We also computed the so-called
and classification approach outlined above helps in gengratEnergy measure, extracted from the well known Grey-Level
an initial ground-cover map. In order to remove salt-ands0-occurrence Matrix (GLCM), widely used in land-cover
pepper classification noise from this map, morphologicatypo mapping [24]. Starting from a pixel in a given position, the
processing is performed over it. For each class i, a binagy m&LCM provides a measure of the probability of occurrence
is created with class i having the label 1 and all other ckassef two grey levels separated by a given distance in a given
having the label 0. A 1-pixel dilation is then applied to eacHirection (among the horizontal, vertical, left diagonalda
set of clustered pixels in the binary map. This dilated maslght diagonal). The Energy measure is computed, that is the
is then subtracted from the clustered pixels in the binarp maummation of squared elements in the GLCM, and the four
which produces a cluster ring. For a cluster smaller tharea pdirections are averaged to remove directional effects; ltst
determined class cluster threshold, the cluster ring isgelan choice is due to the absence of a preferred direction in the
the original image and the class with the largest sum of labggometry of the investigated land-cover classes.
pixels in the ring defines the label of the cluster. This iselon Each textural measure is computed on a moving window of
for all classes. This operation ensures that stray mistadpel 3 x 3 pixels. The total number of features for the first stage is
of classes (e.g., a building pixel in the middle of a river ypod 29. We worked on a total number of 2,133 labelled samples to
is corrected. train the SVMs, which were split into two subsets for tramin

Normalized Difference Vegetation Index (NDVI) is a very(882) and test (1,241) during the parameter optimizaticasph
good indicator of vegetation in remote sensing applicatiés In our second classification stage, in order to improve the
a final post-processing, we estimated the NDVI value for eadiscrimination between buildings and streets, we added fou
pixel in the image. This NDVI map is used to replace theew features obtained from the HYPERUSP algorithm. This
class-labels of all non-vegetation pixels in the clasdifice procedure (implemented in the GIS Software IDRISI, Andes
map with vegetation pixels if the corresponding NDVI wagdition) first makes use of an unsupervised stage in which a
high. This ensures that any missed pixels of vegetationipix@rearranged number of hyperspectral signatures is ideuhtifi
using the standard classification approach are identified donoking at the whole Rosis spectral data set. Then, every

CONFUSION MATRIX, TRUE CLASSES GIVEN BY ROWS

V. THREE-STAGE CLASSIFICATION BASED ONONE V'S
ONE SUPPORTVECTORMACHINES
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pixel of the image is considered as a combination of all the V1. BAYESIAN FUSION

components represented in the signatures computed in the i . )

first stage. The coefficients of the four most representatiyeGVen the fact that different classifiers have different-per
components of the hyperspectral decomposition were selecformances for different kinds of classes, it was intergstm
adding up to a total number of 33 features for the secorﬁ’&rform some classm_er fusion. Several _classﬁlc_anontestra
classification stage. Additionally, the new class “greyiding” 9'€S with different refinements were defined to improve the

was introduced, summing up to 1,614 labelled pixels for thihortcoming we notice during the first tentatives. The idea
stage. is to define several methods each with their own strengths

Classification and weaknesses and to combine the results. We implemented
_ ) several SVM classifiers using different input features and

- First stage: a Support Vector Machine was used @Sining sets and applied Bayesian fusion with two appresach
multiclass classifier, in a One Vs One architecture With g (it hoint that we noticed was that SVM classifiers were
linear kernel (C =1, RBF or p°|yn_°m'al ones perfqrmegound to be very sensitive to the training sets. As no trgnin
no.t as good), where &V M; 5 built for each possible set was provided for the challenge, several training sete we
pair of classes. F_>resentet_:i Qitf\a new Samp'e X, ea{“?éated with different characteristics: including borgerels
SVM; answers with the d|stanqe(x) that .th's sample or not, exhaustive classification of small areas, etc. Aeoth
has to |ts_hyperplgne. These _dlstancgs wil be_con_vertagestion was raised concerning the definition of classe®rin
to probabilities using a sigmoid function [25] with f'xedc,ourtyard are considered as road or building? Severalitighin

parameters.. To incorporate information ab_out Class'p@éts were created with these different strategies in mind.
dependencies, we proposed [26] to not simply sum Lﬁ?na“y' four training sets were used.

tTet.V?IU?SBpeJI cla_?s, but u;el ?ﬁalgorl_tthm tl_)asedssn theI'he second point concerned the input data: data provided
statistical bradiey- 1erry model. Afler an lerative prese the SVM is particularly critical. The first possibility is
it produces probabilities that are very plausible given g use the original image. However, using many bands does

gae'ézr?g gltzssev.v:f’z g?][n?g;'sggzt those samples that Wnot allow to efficiently differentiate classes thus the ihag
° ge. y b lEgge is usually very costly as the SVM has to find out the

classified as buildings or streets (class 1 or 2), accordmg nificant information. For hyperspectral data, severak- p

:[/(\;i :r??a?irrzsev;?rlfe(:;g:eéapsredvézgfil;stta?jg:t.)?v(e))n\?v:ss SSZZ STI‘E; ocessing steps are widely used to reduce data dimenisonal
X ' ?incipal Component Analysis was used to concentrate the
second step increases the overall accuracy 6105 to

96.41 percent. information on the first few spectral bands and the eight band

Third stage: a simole filt dt id lonelv oi IWith most energy were kept for the SVM. Similar processing
* 'rd stage. a simple fiter was Used 1o avold lonely piXelg, o 4one for the Maximum Noise Fraction (MNF) keeping
which are classified differently from their neighbors

Considering a window of x 3 surrounding a selectedthe first eight bands. As the SVM is able to classi_fy data
. . o . even when some features of the feature vector are irrelevant
pixel, if the majority Of. the p|xels belpng to the Sameyy redundant, both PCA and MNF were also combined.
class, the central pixel is assigned to it One shortcoming of the SVM classification is that it is based
Looking at the confusion matrix (see TAB VIII, the score ignly on one pixel at a time. Pixels on the edge of classes are
0.9641) and also the final map, one can observe that there @Bally composed of several classes, it is particularlcdit
very few errors, except for the classes 1 and 2 (buildings afflclassify these pixels without looking at their environme
streets). By visual inspection of a natural color compositi most classification errors come from these pixels. The gstpl
of Rosis bands, we found that our classification procedute hgay to introduce a relationship between these pixels waséo u
still some difficulties in telling grey roofs from streetse® 5 Markov Random Field to regularize the final classification.
roofs were classified correctly. A simple Potts model was introduced to reduce the noise on
The rather powerful Support Vector Machine with Bradleythese edge pixels. Such regularization usually incredses t
Terry coupled output outperformed some other classifiefifal score by2% in average.
tested, and the second stage we implemented proved to alan ajternative to this regularization was to apply a blur
leviate the street/building problem. For even better teswe (mean filter) to the input data. Such blur usually reduces
think that more structural features would be needed. the differences between pixels within one class, thus lyreat

speeding the learning step, without a significant impact on

Class 1 2 3 4 5 fal | if .

98.92% | 211804 | 1906 262 136 0 alse classitication. o - _

86.79% 1403 9327 6 11 0 All these data sets, training sets and classification option

99.32% | 29 57 | 16306 | 1 24 led to different classification results. Given the fact thas

99.87% 31 0 1 24456 0 ; :

100.00% 0 o 5 o 10961 confusion matrix was computed on about one quarter of the
99.31% | 82.61% | 98.38% | 99.40% | 99.78% pixels, the idea was then to improve the overall resultsgisin

TABLE VIII performances on this pixel subset. This really correspaads

a real case where a ground truth is available for a portion of
the image and the automatic classification is used to speed
up the process without any more human intervention. Several
approaches were designed to combine these results.

CONFUSION MATRIX, TRUE CLASSES GIVEN BY ROWS
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The first approach consisted in performing Maximum Like- As a matter of fact, it requires the perfect mastering,
lihood Fusion (MLF) of the differenf\/ classifiers using the implementation and tuning of very different up-to-datehtec
confusion matrix obtained for each of them. So for a givemiques, from dimension reduction, to feature extractiod an
pixel x; and for each clas€’;, = 1,---,N we compute classification. Only the joint effort by different teams,cha
likelihood: one specialized in its own technique, could actually make it
In that sense, the contest was a success.

This classifier, which provides the best results ever obthin
on this data set, can be considered in itself as a technical
contribution of the contest.
where U]’? is a binary valued function which is equal to 1

M
L(xi, Cy) = Y UF - Ajy; 4
j=1

; i - ; i Class 1 2 3 4 5

g_classufller] glvfesh classlfc a_nd 0 othen/¥|sle ar?gljfk |s|the S B ATy (N =15 37 5
iagonal term of the confusion matrix of classifiefor class 98.06% 199 10539 5 = 5

k. 99.29% 71 43 16301 1 1
The MLF consists in taking the clagswhich maximizes 99-93‘%; 8 9 1 24470 0

the likelihood for each pixel. - _ _ , S 99.%7% 97.3,0% 98.(4)18% 99.?34% 9199323/0
The second approach consisted in performing Maximum A TABLE X

Posteriori Fusion (MAPF), which is actually like MLF, but

using the prior probabilities of the different classéXk): CONFUSION MATRIX, TRUE CLASSES GIVEN BY ROWS

M
L(x;,Cy) = Y UF- Ajy, - P(k). (5)
j=1
P(k) can easily be obtained from the output of each VIII. CONCLUSIONS AND PERSPECTIVES
classifier, since these are good enough to assume that th&he contest provided some interesting conclusions and
proportions of the classes are correct. One can also obtAgispectives. They are summarized in the following items:
these proportions by computing a weighted average of the. supervised versus unsupervised methoddt was very
proportions of each classifier. The weights can proportiona intersting to see that the first uploaded results had been
to the kappa coefficient of each classifier. obtained with unsupervised methods. The results were
Combining several classifications leads to improved result  fairly good (around 75%), but were outperformed by the
1% over the best classification. This result is also more robust supervised methods when they appeared a few weeks
as it does not need any fine tuning of the SVM parameters: |ater. However, seeing these methods providing very fast
the worst results will be discarded during the fusion preces and fairly good results was quite interesting.
Table IX presents the corresponding final confusion matrix. « dimension reduction most of the proposed methods
The score is 0.9612. used a dimension reduction as a pre-processing. Most of
them used the Principal Component Analysis, retaining

Class 1 2 3 4 5 . . .
98.45% | 210786 | 1426 1881 13 > various numbers of components. However, this step, with
97.06% 135 10431 181 0 0 PCA or other methods, seems to be a must-do.
g;-gng) ?i gg 153?68 24%3 1§3 « spatial and spectral features several algorithms used
106.00?)/0 o 5 o 5 5 0061 both kind of features. While the spectral information
99.89% | 85.68% | 85.55% | 99.95% | 98.34% is easily extracted from the original spectra (directly
TABLE IX or after some sort of dimension reduction), the spatial

information remains a more tricky issue. Texture analysis,

mathematical morphology provides some answers. Other

ways to extract such a meaningful information are cur-

rently investigated. Similarly, mixing the spectral ané th

spatial information in the best possible way is also a clear
VII. DECISION FUSION direction for future researches.

The decision fusion of the five best individual results » Support Vector Machines almost all the best methods
(described in the previous sections) was achieved using a used some Support Vector Machines based classifiers.
simple majority vote. Table X presents the correspondingl fin ~ SVM really appeared as extremely suited for hyperspec-
confusion matrix. The score is 0.9921. Even though the final tral data, thus confirming the results presented in the
score is less than 1% higher than the best algorithm, it resnai  recent abundant literature.
the best. As a conclusion, one can clearly states that decisi * Neural Networks: we must conclude by emphasizing
fusion is indeed a promising way in order to actually solve that, similarly to the 2007 contest, Neural Networks
the problem of classification in hyperspectral imagery. One Provided the best individual performances.
can think of the result of this contest as the “meta-clagsifie The final comment is ordecision fusion It was a great
everyone has been dreaming of, but no one ever did implemsuatprise and a very intersting point when we noticed thatyman
such a classifier. submitted results had been obtained using different dlguos.

CONFUSION MATRIX, TRUE CLASSES GIVEN BY ROWS
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Meaning: the participants already performed a decisioiofus [9]
before uploading their classification maps. This fusionttie
power of two” was also a clear sign that decision fusion is
indeed a way to go for future research. [10]

Of course a crucial issue is the algorithm used for tl};ﬁ]
fusion. The simplest solution consists in performing a migjo
vote. Some participants used it, it was also used for the
final result of the contest. But this is clearly sub-optimahz]
More advanced strategies require the definition of a rdiigbi
criterion [27][28]. The solution used by Jordi Inglada and
Emmanuel Christophe in the frame of the contest is both
very smart and very inspiring: using the confusion matrji3)
ces automatically provided by the system may sound lik&4]
a diversion of the contest. But it is as a matter of fadtdl
absolutely reasonable for operational applications. Goimd
several classification results based on their performanoes|[16]
small areas where a ground truth is available corresponds to
real application situations. In crisis situation, classifion is
usually performed by hand. Using such a system enables[{d
limit the human intervention only to a small portion of the
image while keeping similar performances.

As a conclusion, the actual classification performancé&s!
obtained at the end of the contest should not be considered
as absolute values. The results were obtained after a few
months of intense activity by all the participants, and wer&9]
obtained with one single data set. The accurate and reliable
classification of hyperspectral images still needs soméaoaet
ological developments. But the conclusions, as discussed[40]
this session, clearly point some ways for future researcigl
Among them, decision fusion has doubtlessly demonstrate
its outstanding ability. [22]

(23]
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