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Abstract— The 2008 Data Fusion Contest that was organized
by the IEEE Geoscience and Remote Sensing Data Fusion
Technical Committee was dealing with the classification of high
resolution hyperspectral data from an urban area. Unlike in
previous issues of the contest, the goal was not only to identify
the best algorithm, but also to provide a collaborative effort: the
decision fusion of the best individual algorithms was aiming at
further improving the classification performances and the best
algorithms were ranked according to their relative contribution
to the decision fusion. This paper presents the five awarded
algorithms and the conclusions of the contest, stressing the
importance of decision fusion, of dimension reduction and of
supervised classification methods, such as the Neural Networks
and the Support Vector Machines.

Index Terms— decision fusion, classification, hyperspectral im-
agery

I. I NTRODUCTION

The Data Fusion Contest has been organized by the Data
Fusion Technical Committee (DFTC) of the IEEE Geoscience
and Remote Sensing Society (GRS-S) and has been annually
proposed since 2006. It is a contest open not only to DFTC
members, but to everyone. The aim of the Data Fusion
Contest is to evaluate existing methodologies at the research
or operational level to solve remote sensing problems using
data from different sensors. The main aim of this contest is to
provide a benchmark to the researchers interested in a classof
data fusion problems, starting with a contest and then allowing
the data and results to be used as reference for the widest
community, inside and outside the DFTC. The first issue of
the contest was devoted to pansharpening [1]. In 2007, the
contest was related to urban mapping using radar and optical
data [2].

In 2008, the contest was dedicated to the classification of
very high resolution hyperspectral data. A hyperspectral data

set was distributed to every participant and the task was to
obtain a classified map as accurate as possible with respect
to the ground truth data, depicting land cover and land use
classes. The ground-truth was kept secret, but training pixels
could be selected by the participants by photointerpretation in
order to apply supervised methods. The data set consisted of
an airborne data from the ROSIS-03 (Reflective Optics System
Imaging Spectrometer) optical sensor. The flight over the city
of Pavia, Italy, was operated by the Deutschen Zentrum fur
Luft- und Raumfahrt (DLR, the German Aerospace Agency)
in the framework of the HySens project, managed and spon-
sored by the European Union. According to specifications,
the number of bands of the ROSIS-03 sensor is 115 with a
spectral coverage ranging from 0.43 to 0.86µm. 13 noisy bands
have been removed. The dimension of the distributed data set
is hence 102. The spatial resolution is 1.3m per pixel. For
the contest, five classes of interest were considered, namely:
buildings, roads, shadows, vegetation and water. Everyone
could enter the contest and download the data set. After
classification, the participant could upload the resultingmap
for an automatic evaluation of the classification performances
(confusion matrix and average accuracy). The participating
teams were allowed to upload as many different results as
they wished.

At any given time, the five best maps were combined using
majority voting and re-ranked according to their respective
contribution to the fused result. The best seven individual
algorithms were listed in real time on the data fusion contest
website (http://tlclab.unipv.it/dftc/home.do), together with the
result of the fusion. Please note that the website is still open
and everyone can use it as a benchmark to test any new
algorithm.

The contest was open for three months. At the end of the
contest, 21 teams had uploaded over 2,100 classification maps!
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A closer look reveals that one single team actually submitted
over 1,200 results (but we should underline that it did not
rank in the top five teams), while the other 1,000 entries
are spread over the remaining twenty teams. The five best
individual classification maps have been fused together. The
final corresponding teams have been awarded with an IEEE
Certificate of Recognition during the Chapters and Technical
Committees Dinner at the IEEE International Geoscience and
Remote sensing Symposium (IEEE IGARSS’08) in Boston, in
July 2008.

The remainder of the paper is organized as follows. First
the best five algorithms are detailed:

• Section II presents the work by Giorgio Licciardi and
Fabio Pacifici. They use different standard classifiers
(three neural networks and two maximum likelihood
classifiers) and perform a majority voting between the
different outputs.

• Section III presents the work by Devis Tuia and Frederic
Ratle. They use both spectral and spatial features. The
spectral features are a 6-PCA extraction of the initial
pixel’s vector value. The spatial information is extracted
using morphological operators. These features are clas-
sified by combining several Support Vector Machines
(SVM) using majority voting.

• Section IV presents the work by Saurabh Prasad and
Terrance West1. They use a wavelet based preprocessing
of the initial spectra followed by a Linear Discriminant
Analysis and a Maximum Likelihood classifier.

• Section V presents the work by Ferdinando Giacco
and Christian Thiel. They use a Principal Component
Analysis (PCA) to reduce the dimension of the data.
Spatial information is taken into account with some tex-
tural features. The classification is achieved using SVM
one versus one classifiers and a spatial regularization is
performed on the classification map to eliminate isolated
pixels.

• Section VI presents the work by Jordi Inglada and
Emmanuel Christophe. They perform a Bayesian fusion
of different classifiers (such as SVM classifiers). The
weight assigned to each classifier is determined by the
quantitative results it obtained. All these algorithms are
available with the ORFEO Toolbox, an open source
library of image processing algorithms for remote sensing
applications ( http://otb.cnes.fr/).

Finally, the decision fusion is considered in Section VII, and
the conclusions and perspectives drawn by this contest are
presented and discussed in Section VIII.

II. M AJORITY VOTING BETWEENNEURAL NETWORK AND

MAXIMUM L IKELIHOOD CLASSIFIERS

A. Reduction of the data dimensionality

The analysis of hyperspectral imagery usually implicates the
reduction of the data set dimensionality to decrease the com-
plexity of the classifier and the computational time required

1The authors would like to acknowledge the active participation of Jeff
Brantley, Jacob Bowen and Matthew Lee to this work. They are all with the
Mississippi State University.

with the aim of preserving most of the relevant information of
the original data according to some optimal or sub-optimal
criteria, [3][4]. The pre-processing procedure exploitedin
this section divides the hyperspectral signatures into adjacent
regions of the spectrum and approximates their values by
piecewise constant functions. In [5], the authors reduced ef-
fectively the input space using averages of contiguous spectral
bands applying piecewise constant functions instead of higher
order polynomials. This simple representation has shown to
outperform most of the feature reduction methods proposed
in the literature, such as principal components transform,
sequential forward selection or decision boundary feature
extraction [6].

AssumeSij to be the value of theith pixel in thejth band,
with a total ofN pixels. The spectral signatures of each class
extracted from ground truth pixels have been partitioned into a
fixed number of contiguous intervals with constant intensities
minimizing the mean square error:

H =

K∑

k=1

N∑

i=1

∑

j∈Ik

(Sij − µik)2 (1)

where a set ofK breakpoints defines continuous intervals
Ik, while µik represents the mean value of each pixels interval
between breakpoints. A number ofK = 7 breakpoints was
found to be a reasonable compromise between model com-
plexity and computational time and the resulting partitions are
reported in Tab. I.

B. Classification Phase

In the literature, neural networks (NNs) and support vector
machines have been widely used since they do not require
any specific probabilistic assumptions of the class distribution,
in opposition to parametric classifiers, such as Maximum
Likelihood (ML). The classifier scheme exploited here is a
combination of single decision maps. In [7], it has been
demonstrated that combining the decisions of independent
classifiers can lead to better classification accuracies. The
combination can be implemented using a variety of strategies,
among which majority voting (MV) is the simplest, and it has
been found to be as effective as more complicated schemes
[8] [9].

Majority voting was used here on five independent maps
resulting from two different methods, i.e. three neural net-
works and two ML classifiers. For each method, the input
space was composed by the seven features obtained reducing
the sensor bands, while the outputs were the five classes of
interest. For training the supervised classifiers, we have defined
three different training sets varying the number of samples,
as reported in Tab. II. In the following, we briefly recall the
classification methods and the setting used.

1) Neural Networks:the topology of a multilayer percep-
tron network [10] has been determined through an optimiza-
tion of the number of hidden layers and units, based on the
results reported in the literature, on previous experiences and
on a specific numerical analysis [11]. Two hidden layers has
been found to be a suitable choice, while the number of
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TABLE I

RESULTING SUB-BANDS

Sensor bands Wavelength (µm)
from to from to

B1 1 15 430 486
B2 16 35 490 566
B3 36 65 570 686
B4 66 75 690 726
B5 78 82 730 766
B6 86 90 770 786
B7 91 95 790 834

TABLE II

TRAINING SAMPLES USED FOR THESUPERVISEDCLASSIFIERS

Buildings Roads Shadows Vegetation Water
Set 1 132,369 18,914 20,356 53,065 43,104
Set 2 33,168 6,525 3,260 14,323 26,816
Set 3 45,268 5,210 1,524 17,485 20,367

TABLE III

TRAINING SET CLASSIFICATION ACCURACIES FORNN, ML AND MV

NN 1 NN 2 NN 3 ML 1 ML 2 MV
(set 1) (set 2) (set 3) (set 1) (set 2)

Acc. (%) 95.6 95.4 95.1 95.0 94.9 96.3
K-coef. 0.936 0.932 0.929 0.927 0.925 0.946

hidden neurons was found using a growing method, progres-
sively increasing the number of elements. The variance of
the classification accuracy for different initializationsof the
weights was computed to monitor the stability of the topology.
The configuration 7-25-25-5 maximized the accuracy and
minimized the instability of the results. Successively, three
independent NNs were trained with sets 1, 2 and 3 (see Tab.
II), providing three different maps.

2) Maximum Likelihood:ML is a well known parametric
classifier, which relies on the second-order statistics of a
Gaussian probability density function for the distribution of the
feature vector of each class. ML is often used as a reference
for classifier comparisons because it represents an optimal
classifier in the case of normally distributed class probability
density functions [12]. ML classification was performed using
sets 1 and 2 (see Tab. II), providing two different maps.

The results from the five classification maps were combined
using majority voting to obtain the final map. The algorithm of
majority voting was implemented following two simple rules:

• a class is the winner if it is recognized by the majority
of the classifiers

• in case of a balance voting, the winner class is the one
with the highest Kappa (K) coefficient

The improvement derived from majority voting is reported
in Tab. III where the K-coefficients (based on training sets)
obtained from five classifications are compared with the one
of the final result.

Table IV presents the corresponding final confusion matrix.
The score is 0.9884.

III. M ORPHOLOGICAL FEATURES ANDSVM CLASSIFIER

The proposed method uses both spectral and spatial infor-
mation to train a SVM classifier. A brief description of the

Class 1 2 3 4 5
99.65% 213359 391 155 203 0
97.05% 246 10430 0 71 0
98.95% 143 27 16245 2 0
99.97% 2 5 1 24480 0
100.00% 0 0 0 0 10961

99.82% 96.10% 99.05% 98.89% 100%

TABLE IV

CONFUSION MATRIX, TRUE CLASSES GIVEN BY ROWS.

input features and of the classifier exploited are discussedin
this paragraph.

A. Spectral and spatial features

The Principal Component Analysis was used to extract spec-
tral information from the original image. Specifically, thesix
first principal components have been retained for the analysis,
as shown from the components composition in Fig. 1b. These
features count for99.9% of the variance contained in the
original hyperspectral bands.

(a) a (b) b

Fig. 1. (a) The first principal component. (b)The six principal components
retained.

Morphological operators ([13], [14]) have been added to
include information about spatial neighborhood of the pixels.
Mathematical morphology is a collection of filters called
operators based on set theory. Morphological operators have
been used in remote sensing to extract information about shape
and structure of the objects in both optical [15], [16] and, more
recently, hyperspectral imagery [17], [18], [19].

An operator is applied using two ensembles: the first is the
image to filterg, and the second is a set of known size and
shape called the structuring elementB. In our setting, and as
suggested in [17], [18], the first principal component (shown in
Fig. 1a) has been used for the extraction of the morphological
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features. Specifically, top hat features have been considered.
These features are constructed using the three-stages filtering
described below:

1) erosion and dilation:for a given pixel on the input image
g, the erosionǫB(g) is the pointwise minimum∧ between
all the values ofg defined byB when centered on the pixel
considered. On the contrary, dilationδB(g) is the pointwise
maximum∨ between these same values.

2) opening and closing:openingγB(g) is the dilation of an
eroded image and is widely used to isolate brighter (compared
to surrounding features) structures in gray-scale images.On
the contrary, closingφB(g) is the erosion of a dilated image
and allows to isolate darker structures [20]. The formulation
of opening and closing operators is given by:

γB(g) = δB [ǫB(g)] φB(g) = ǫB [δB(g)] (2)

3) top hat: top-hat operators are the residuals of an opening
(or a closing) image, when compared to the original image,
as:

TH = g − I(g) (3)

If I = γB(g), the operator is an opening top-hat and
highlights bright peaks of the image. On the contrary, if
I = φB(g) the operator is closing top-hat and emphasizes
dark peaks of the image, as shown in Fig. 2.

(a) a (b) b

Fig. 2. Opening (a) and closing (b) top hat features extracted for the Pavia
image. The size of the structuring element is increased from top (3 pixels) to
the bottom (29 pixels) of the images.

B. Experimental setup

A total of 206,009 labeled pixels has been identified by
careful visual inspection of the hyperspectral image. These
samples have been divided into a training set of about 34,000
pixels, a validation set for model selection (about 30,000

TABLE V

LABELED PIXELS FOR THEPAVIA IMAGE

Class Labeled pixels Training Validation Test
Buildings 84305 13000 12484 58821

Roads 17495 7000 1840 8655
Shadow 11375 7000 758 3617

Vegetation 49730 5000 7770 36960
Water 43104 2000 7148 33956
Total 206009 34000 30000 142009

pixels), and a test containing the remaining 142,009 pixels,
as shown in Tab. V.

As discussed previously, the input space takes into account
both spectral and spatial features. The six first Principal
Components have been used as spectral information, while 28
spatial features have been extracted by applying opening and
closing top-hat operators to the first PC using diamond shaped
structuring element with increasing diameter size (from 3 to
29 pixels).

Each feature has been converted to standard scores and
stacked in a single 34-dimensional input vector. The classifier
is a one-against-all SVM implemented using the Torch 3
library [21]. A RBF kernel has been used. Model selection
has been performed by grid search to find the optimal kernel
parametersσ and C.

C. Majority voting of the best classification maps

During the contest, several maps have been uploaded,
accounting for different training sets and optimal kernel pa-
rameters. Eventually, each classification map improving the
previous solution has been combined using majority voting:
a pixel received the label of the class assigned by most of
the models. In the case where no class prevailed, the pixels
receives the label of the map showing the highest Kappa
coefficient.

Table VI presents the corresponding final confusion matrix.
The score is 0.9858.

Class 1 2 3 4 5
99.65% 213351 385 260 107 5
95.80% 414 10296 12 25 0
98.42% 223 35 16158 1 0
99.76% 52 5 1 24430 0
100.00% 0 0 0 0 10961

99.68% 96.04% 98.34% 99.46% 99.95%

TABLE VI

CONFUSION MATRIX, TRUE CLASSES GIVEN BY ROWS.

IV. GROUND-COVER MAPPING USING SUPERVISED

CLASSIFICATION AND MORPHOLOGICAL PROCESSING

In this approach, we employ a Discrete Wavelet Trans-
form (DWT) based processing of the hyperspectral signatures,
followed by a Linear Discriminant Analysis (LDA) transfor-
mation and pixel-wise maximum-likelihood classification for
creating a ground-cover map of the satellite imagery. The
LDA transformation and maximum-likelihood classifiers are
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trained using the training data extracted from the regions-
of-interest provided to all contest participants. The resulting
ground-cover map is then post-processed by an appropri-
ate morphological operation to minimize the salt-and-pepper
classification noise introduced because of the use of pixel-
wise (per-pixel) classification. The DWT based pre-processing
of the hyperspectral signatures provides a multi-resolution
information representation. The mother wavelet employed in
this approach is the Daubechies wavelet (implemented using
the Daubechies 9/7 filter bank), which resulted in a feature
vector comprising of DWT coefficients per pixel. Data from
this high dimensional space was projected onto a reduced-
dimensional space by employing the LDA algorithm. LDA
seeks to find a linear transformation, such that the within-
class scatter is minimized and the between-class scatter is
maximized. The transformation is determined by maximizing
Fisher’s ratio which can be solved as a generalized eigenvalue
problem.

The between class scatter matrix and the within class scatter
matrix are learned from the training data. Since it is designed
to maximize class separation in the projected space, LDA is
an appropriate dimensionality reduction approach for the land-
cover classification task at hand.

After performing an LDA transformation on the training
and test data, a maximum-likelihood classifier is employed
for classifying pixels in the image, that assumes Gaussian
class distributions for each class. We assuming equal priors for
each class. The class membership function for such a classifier
is given in [22]. A conventional single-classifier system was
sufficient for the given task because the amount of available
ground-truth was sufficient relative to the feature space di-
mensionality. Had we had an insufficiently small ground-truth
dataset for the classification task, the recently developedmulti-
classifier and decision fusion framework could have been em-
ployed for this task [23]. The feature extraction, optimization
and classification approach outlined above helps in generating
an initial ground-cover map. In order to remove salt-and-
pepper classification noise from this map, morphological post-
processing is performed over it. For each class i, a binary map
is created with class i having the label 1 and all other classes
having the label 0. A 1-pixel dilation is then applied to each
set of clustered pixels in the binary map. This dilated mask
is then subtracted from the clustered pixels in the binary map
which produces a cluster ring. For a cluster smaller than a pre-
determined class cluster threshold, the cluster ring is placed in
the original image and the class with the largest sum of label
pixels in the ring defines the label of the cluster. This is done
for all classes. This operation ensures that stray mislabeling
of classes (e.g., a building pixel in the middle of a river body)
is corrected.

Normalized Difference Vegetation Index (NDVI) is a very
good indicator of vegetation in remote sensing applications. As
a final post-processing, we estimated the NDVI value for each
pixel in the image. This NDVI map is used to replace the
class-labels of all non-vegetation pixels in the classification
map with vegetation pixels if the corresponding NDVI was
high. This ensures that any missed pixels of vegetation pixels
using the standard classification approach are identified and

corrected. It is worth mentioning that although we have per-
formed the per-pixel classification in the wavelet domain, we
obtained very similar recognition performance (measured by
the accuracy) when we performed the classification in the raw
reflectance domain. The improvement in overall classification
by introducing a wavelets based processing was marginal.

Table VII presents the corresponding final confusion matrix.
The score is 0.9753.

Class 1 2 3 4 5
99.42% 212873 237 937 61 0
94.06% 374 10109 13 251 0
96.78% 252 160 15889 78 38
98.98% 108 92 49 24238 1
100.00% 0 0 0 0 10961

99.66% 95.39% 94.08% 98.42% 99.65%

TABLE VII

CONFUSION MATRIX, TRUE CLASSES GIVEN BY ROWS.

V. THREE-STAGE CLASSIFICATION BASED ONONE VS

ONE SUPPORTVECTORMACHINES

The proposed method is made up of three classification
stages with special attention to preprocessing and spatial
feature extraction.

Preprocessing and features extraction. A Principal Compo-
nents Analysis of the 102 Rosis spectral bands is computed.
The 26 bands with the most significant principal components
are used as spectral input features for the classifier. In addition,
we introduced some spatial information extracted from the
Rosis data set: standard deviation calculated on the first
principal component and on the ratio Near-Infrared/Red (bands
102/66), known in remote sensing literature as a way to
emphasize the vegetation. We also computed the so-called
Energy measure, extracted from the well known Grey-Level
Co-occurrence Matrix (GLCM), widely used in land-cover
mapping [24]. Starting from a pixel in a given position, the
GLCM provides a measure of the probability of occurrence
of two grey levels separated by a given distance in a given
direction (among the horizontal, vertical, left diagonal and
right diagonal). The Energy measure is computed, that is the
summation of squared elements in the GLCM, and the four
directions are averaged to remove directional effects; this last
choice is due to the absence of a preferred direction in the
geometry of the investigated land-cover classes.

Each textural measure is computed on a moving window of
3× 3 pixels. The total number of features for the first stage is
29. We worked on a total number of 2,133 labelled samples to
train the SVMs, which were split into two subsets for training
(882) and test (1,241) during the parameter optimization phase.

In our second classification stage, in order to improve the
discrimination between buildings and streets, we added four
new features obtained from the HYPERUSP algorithm. This
procedure (implemented in the GIS Software IDRISI, Andes
edition) first makes use of an unsupervised stage in which a
prearranged number of hyperspectral signatures is identified
looking at the whole Rosis spectral data set. Then, every
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pixel of the image is considered as a combination of all the
components represented in the signatures computed in the
first stage. The coefficients of the four most representative
components of the hyperspectral decomposition were selected,
adding up to a total number of 33 features for the second
classification stage. Additionally, the new class “grey building”
was introduced, summing up to 1,614 labelled pixels for this
stage.

Classification.

• First stage: a Support Vector Machine was used as
multiclass classifier, in a One Vs One architecture with
linear kernel (C = 1, RBF or polynomial ones performed
not as good), where aSV Mi is built for each possible
pair of classes. Presented with a new sample x, each
SV Mi answers with the distancedi(x) that this sample
has to its hyperplane. These distances will be converted
to probabilities using a sigmoid function [25] with fixed
parameters. To incorporate information about class-pair
dependencies, we proposed [26] to not simply sum up
the values per class, but use an algorithm based on the
statistical Bradley-Terry model. After an iterative process,
it produces probabilities that are very plausible given all
pairs of classwise comparisons.

• Second stage: we only looked at those samples that were
classified as buildings or streets (class 1 or 2), according
to the answers of the previous stage. A One Vs One SVM
with a linear kernel (as described above) was used. This
second step increases the overall accuracy from96.05 to
96.41 percent.

• Third stage: a simple filter was used to avoid lonely pixels
which are classified differently from their neighbors.
Considering a window of3 × 3 surrounding a selected
pixel, if the majority of the pixels belong to the same
class, the central pixel is assigned to it.

Looking at the confusion matrix (see TAB VIII, the score is
0.9641) and also the final map, one can observe that there are
very few errors, except for the classes 1 and 2 (buildings and
streets). By visual inspection of a natural color composition
of Rosis bands, we found that our classification procedure had
still some difficulties in telling grey roofs from streets. Red
roofs were classified correctly.

The rather powerful Support Vector Machine with Bradley-
Terry coupled output outperformed some other classifiers
tested, and the second stage we implemented proved to al-
leviate the street/building problem. For even better results, we
think that more structural features would be needed.

Class 1 2 3 4 5
98.92% 211804 1906 262 136 0
86.79% 1403 9327 6 11 0
99.32% 29 57 16306 1 24
99.87% 31 0 1 24456 0
100.00% 0 0 0 0 10961

99.31% 82.61% 98.38% 99.40% 99.78%

TABLE VIII

CONFUSION MATRIX, TRUE CLASSES GIVEN BY ROWS.

VI. BAYESIAN FUSION

Given the fact that different classifiers have different per-
formances for different kinds of classes, it was interesting to
perform some classifier fusion. Several classification strate-
gies with different refinements were defined to improve the
shortcoming we notice during the first tentatives. The idea
is to define several methods each with their own strengths
and weaknesses and to combine the results. We implemented
several SVM classifiers using different input features and
training sets and applied Bayesian fusion with two approaches.

The first point that we noticed was that SVM classifiers were
found to be very sensitive to the training sets. As no training
set was provided for the challenge, several training sets were
created with different characteristics: including borderpixels
or not, exhaustive classification of small areas, etc. Another
question was raised concerning the definition of classes: inner
courtyard are considered as road or building? Several training
sets were created with these different strategies in mind.
Finally, four training sets were used.

The second point concerned the input data: data provided
to the SVM is particularly critical. The first possibility is
to use the original image. However, using many bands does
not allow to efficiently differentiate classes thus the learning
stage is usually very costly as the SVM has to find out the
significant information. For hyperspectral data, several pre-
processing steps are widely used to reduce data dimensionality.
Principal Component Analysis was used to concentrate the
information on the first few spectral bands and the eight bands
with most energy were kept for the SVM. Similar processing
was done for the Maximum Noise Fraction (MNF) keeping
the first eight bands. As the SVM is able to classify data
even when some features of the feature vector are irrelevant
or redundant, both PCA and MNF were also combined.

One shortcoming of the SVM classification is that it is based
only on one pixel at a time. Pixels on the edge of classes are
usually composed of several classes, it is particularly difficult
to classify these pixels without looking at their environment,
most classification errors come from these pixels. The simplest
way to introduce a relationship between these pixels was to use
a Markov Random Field to regularize the final classification.
A simple Potts model was introduced to reduce the noise on
these edge pixels. Such regularization usually increases the
final score by2% in average.

An alternative to this regularization was to apply a blur
(mean filter) to the input data. Such blur usually reduces
the differences between pixels within one class, thus greatly
speeding the learning step, without a significant impact on
false classification.

All these data sets, training sets and classification options
led to different classification results. Given the fact thatthe
confusion matrix was computed on about one quarter of the
pixels, the idea was then to improve the overall results using
performances on this pixel subset. This really correspondsto
a real case where a ground truth is available for a portion of
the image and the automatic classification is used to speed
up the process without any more human intervention. Several
approaches were designed to combine these results.
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The first approach consisted in performing Maximum Like-
lihood Fusion (MLF) of the differentM classifiers using the
confusion matrix obtained for each of them. So for a given
pixel xi and for each classCk = 1, · · · , N we compute
likelihood:

L(xi, Ck) =

M∑

j=1

Uk
j · Ajk; (4)

whereUk
j is a binary valued function which is equal to 1

if classifier j gives classk and 0 otherwise andAjk is the
diagonal term of the confusion matrix of classifierj for class
k.

The MLF consists in taking the classk which maximizes
the likelihood for each pixel.

The second approach consisted in performing Maximum A
Posteriori Fusion (MAPF), which is actually like MLF, but
using the prior probabilities of the different classes,P (k):

L(xi, Ck) =

M∑

j=1

Uk
j · Ajk · P (k). (5)

P (k) can easily be obtained from the output of each
classifier, since these are good enough to assume that the
proportions of the classes are correct. One can also obtain
these proportions by computing a weighted average of the
proportions of each classifier. The weights can proportional
to the kappa coefficient of each classifier.

Combining several classifications leads to improved results:
1% over the best classification. This result is also more robust
as it does not need any fine tuning of the SVM parameters:
the worst results will be discarded during the fusion process.

Table IX presents the corresponding final confusion matrix.
The score is 0.9612.

Class 1 2 3 4 5
98.45% 210786 1426 1881 13 2
97.06% 135 10431 181 0 0
97.27% 88 178 15968 0 183
99.38% 11 139 3 24335 0
100.00% 0 0 0 0 10961

99.89% 85.68% 85.55% 99.95% 98.34%

TABLE IX

CONFUSION MATRIX, TRUE CLASSES GIVEN BY ROWS.

VII. D ECISION FUSION

The decision fusion of the five best individual results
(described in the previous sections) was achieved using a
simple majority vote. Table X presents the corresponding final
confusion matrix. The score is 0.9921. Even though the final
score is less than 1% higher than the best algorithm, it remains
the best. As a conclusion, one can clearly states that decision
fusion is indeed a promising way in order to actually solve
the problem of classification in hyperspectral imagery. One
can think of the result of this contest as the “meta-classifier”
everyone has been dreaming of, but no one ever did implement
such a classifier.

As a matter of fact, it requires the perfect mastering,
implementation and tuning of very different up-to-date tech-
niques, from dimension reduction, to feature extraction and
classification. Only the joint effort by different teams, each
one specialized in its own technique, could actually make it.
In that sense, the contest was a success.

This classifier, which provides the best results ever obtained
on this data set, can be considered in itself as a technical
contribution of the contest.

Class 1 2 3 4 5
99.76% 213600 229 248 31 0
98.06% 199 10539 2 7 0
99.29% 71 43 16301 1 1
99.93% 8 9 1 24470 0
100.00% 0 0 0 0 10961

99.87% 97.40% 98.48% 99.84% 99.99%

TABLE X

CONFUSION MATRIX, TRUE CLASSES GIVEN BY ROWS.

VIII. C ONCLUSIONS AND PERSPECTIVES

The contest provided some interesting conclusions and
perspectives. They are summarized in the following items:

• supervised versus unsupervised methods: it was very
intersting to see that the first uploaded results had been
obtained with unsupervised methods. The results were
fairly good (around 75%), but were outperformed by the
supervised methods when they appeared a few weeks
later. However, seeing these methods providing very fast
and fairly good results was quite interesting.

• dimension reduction: most of the proposed methods
used a dimension reduction as a pre-processing. Most of
them used the Principal Component Analysis, retaining
various numbers of components. However, this step, with
PCA or other methods, seems to be a must-do.

• spatial and spectral features: several algorithms used
both kind of features. While the spectral information
is easily extracted from the original spectra (directly
or after some sort of dimension reduction), the spatial
information remains a more tricky issue. Texture analysis,
mathematical morphology provides some answers. Other
ways to extract such a meaningful information are cur-
rently investigated. Similarly, mixing the spectral and the
spatial information in the best possible way is also a clear
direction for future researches.

• Support Vector Machines: almost all the best methods
used some Support Vector Machines based classifiers.
SVM really appeared as extremely suited for hyperspec-
tral data, thus confirming the results presented in the
recent abundant literature.

• Neural Networks: we must conclude by emphasizing
that, similarly to the 2007 contest, Neural Networks
provided the best individual performances.

The final comment is ondecision fusion. It was a great
surprise and a very intersting point when we noticed that many
submitted results had been obtained using different algorithms.
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Meaning: the participants already performed a decision fusion
before uploading their classification maps. This fusion “tothe
power of two” was also a clear sign that decision fusion is
indeed a way to go for future research.

Of course a crucial issue is the algorithm used for the
fusion. The simplest solution consists in performing a majority
vote. Some participants used it, it was also used for the
final result of the contest. But this is clearly sub-optimal.
More advanced strategies require the definition of a reliability
criterion [27][28]. The solution used by Jordi Inglada and
Emmanuel Christophe in the frame of the contest is both
very smart and very inspiring: using the confusion matri-
ces automatically provided by the system may sound like
a diversion of the contest. But it is as a matter of fact
absolutely reasonable for operational applications. Combining
several classification results based on their performanceson
small areas where a ground truth is available corresponds to
real application situations. In crisis situation, classification is
usually performed by hand. Using such a system enables to
limit the human intervention only to a small portion of the
image while keeping similar performances.

As a conclusion, the actual classification performances
obtained at the end of the contest should not be considered
as absolute values. The results were obtained after a few
months of intense activity by all the participants, and were
obtained with one single data set. The accurate and reliable
classification of hyperspectral images still needs some method-
ological developments. But the conclusions, as discussed in
this session, clearly point some ways for future research.
Among them, decision fusion has doubtlessly demonstrated
its outstanding ability.
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