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Chapter 1

Introduction

In 2007, the Data Fusion Contest [1] was related to urban mapping using radar and

optical data. A set of satellite radar and optical images (ERS amplitude and Landsat

multi-spectral data) was available with the task of obtaining a classified map as accurate

as possible with respect to ground truth data, depicting land cover and land use classes for

the urban area under test.

The data set contains different SAR amplitude images, referring to the urban test area

of Pavia, Northern Italy (45.11N, 9.09E) acquired by sensor ERS 1 and ERS 2 during the

period between 1992 and 1995 and two Landsat images, one acquired on 1994 and the other

on 2000 as reported in Table 1.1.

Sensor Acquisition date Image ID

ERS August 13, 1992 SAR Date 1
ERS October 22, 1992 SAR Date 2
ERS June 24, 1993 SAR Date 3
ERS November 11, 1993 SAR Date 4
ERS October 3, 1994 SAR Date 5
ERS November 9, 1994 SAR Date 6
ERS July 22, 1995 SAR Date 7
ERS July 23, 1995 SAR Date 8
ERS August 27, 1995 SAR Date 9

Landsat April 7, 1994 Landsat Date 1
Landsat October 8, 2000 Landsat Date 2

Table 1.1: Data Fusion Contest data set.

The site has been chosen because it well represents the diversity of urban land covers,
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uses, and features. Pavia is a small town with a very densely built center, some residential

areas, industrial suburbs, and the Ticino River runs across it [2].

The classification processing is summarized by the following three steps:

1. Preprocessing : Principal Component Analysis (PCA) of SAR imagery concatenated

with the remaining Optical data

2. Neural Network design:

• Multilayer Perceptron (MLP)

• error minimization by Scaled Conjugate Gradient(SCG)

• pruning by Magnitude Based algorithm

3. Post-processing : minimum mapping unit (sieve and clump)



Chapter 2

Preprocessing

Different classification schemes could be developed in order to achieve (when possible)

the desired classification accuracy. The first step to be considered regards the choice of

the inputs which will successively feed the Neural Network. The simplest scheme, shown

in Figure 2.1(a), feeds the Neural Network with 21 inputs (9 SAR and 6+6 Optical) which

generally requires a long training time. Therefore, the reduction of the input dimensionality

is generally desirable: Principal Component Analysis (PCA) was applied to decrease the

number of inputs used to train the NN.

PCA maps image data into a new, uncorrelated coordinated system in which the data

have greatest variance along its first axis, the next largest variance along a second mutually

orthogonal axis, and so on. The later principal components would be expected, in general,

to show little variance [3]. In Figure 2.2 are shown the PCA Eigenvalues for the cases

relative to dates 1:6 and 7:9 of the SAR imagery. As expected, only the first principal

component shows a large variance. Therefore, the remaining components do not contribute

to separability and could be ignored, reducing the dimensionality of the classification space.

The input space reduction can applied to both SAR and Optical imagery. Considering

the different characteristics of the data, PCA should be applied to similar features, resulting

in 8 inputs: 2 from SAR data (using the first component of dates 1:6 and 7:9) and 6 from

3
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Figure 2.1: Classification schemes: (a) all 21 inputs feed the neural network. The features
reduction is obtained by applying (b) PCA only to SAR imagery and considering the first
component of dates 1:6 and 7:9.

Optical (using, for each couple of bands, only the first PCA component).

These 8 inputs did not appear to contain enough information, since a poor classification

accuracy resulted. Therefore, the PCA method was applied only to SAR imagery, resulting

in 14 inputs: 2 from SAR data (again, considering the first component of dates 1:6 and 7:9)

and 6+6 Optical, as shown in Figure 2.1(b).

(a) (b)

Figure 2.2: PCA Eigenvalues for dates: (a) 1:6 and (b) 7:9 of the SAR imagery.



Chapter 3

Neural Network Classification

An artificial Neural Network may be viewed as a mathematical model composed of non-

linear computational elements, named neurons, operating in parallel and connected by links

characterized by different weights.

3.1 Neuron Structure

The basic building block of a NN is the neuron. As described by many models over the

years [4]-[9], a single neuron is an information processing unit generally characterized by

several inputs and one output. As shown in Figure 3.1, each neuron consists of three main

parts:

• the weight vector

• the net function

• the activation function

The net function used is a weighted linear combination of inputs such as:

o =
N∑

i=1

xiwi + θ (3.1.1)

5
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Figure 3.1: Neuron model: the input vector is combined with the weight vector through the
net function. Then, the activation function is applied, producing the neuron output.

where o denotes the net function output, x1, x2, ..., xN and w1, w2, ..., wN are the com-

ponents of the neuron input and synaptic weight vectors, respectively, while θ is called the

bias or threshold.

The neuron output is achieved using the activation function related to the net function

output through a linear or non-linear transformation. The following Sigmoid activation

function was used:

y(o) =
1

1 + e−o
(3.1.2)

In general, the activation functions are characterized by saturation at a minimum and a

maximum value: this is also the case of the Sigmoid. Therefore, to avoid saturation within

the network, it has been necessary to scale all the values of the input vector in the range

[−1;+1]. At the same time, the component of the output vector corresponding to the true

class has been set to 1 while the others are set to 0.

3.2 Multilayer Perceptron

Although a single neuron can resolve simple information processing functions, the advan-

tage of the neural computation approach comes from connecting neurons in networks, where

several units are interconnected to form a distributed architecture. Due to its high general-

ization ability, the Multilayer Perceptron (MLP) is the most widely used neural network for
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solving decision-making problems for many different applications [10] [11]. It approximates

an unknown input-output relationship providing a nonlinear mapping between its inputs

and outputs.

The architecture consists of different layers of neurons, while the interconnections are

provided only between neurons of successive layers of the network. The first layer merely

distributes the inputs to the internal stages of the network: there is no processing at this

level. The last layer is the output which provides the data processed. The layers between

the input and the output are called hidden layers. The number of neurons which compose

the input and output layers are directly related to the dimension of the input space and to

the dimension of desired output space, respectively. The five classes of interest considered

for the contest are City Center, Residential Areas, Sparse Buildings, Water, Vegetation.

The number of training and validation samples are reported in Table 3.1. The training

pixels used were part of the larger set provided, while the validation samples were selected

by careful visual inspection of the scene.

Class Color Tr. Set Val. Set

City Center Yellow 3783 4000
Residential Areas Red 7572 8000
Sparse Buildings Blue 5994 8000

Water Cyan 893 1000
Vegetation Green 591 10000

Table 3.1: Classes of interest with relative color map, number of training and validation
samples.

Once the input and the output of the network are established, the critical step is to find

the optimal number of units to be considered in the hidden layers. In fact, if the number of

these neurons is too small, the input-output associative capabilities of the network are too

weak. At the same time, this number should not be too large, otherwise these capabilities

might show a lack of generality being too narrowly tailored to the training set, and the

computational complexity of the algorithm would be increased in vain [12]. Therefore, a

compromise has to be found to select the most suitable number of hidden neurons for the
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optimal neural network topology.

Two different approaches can be used to find the best architecture:

• the growing method in which the starting network is small and the neurons are sub-

sequently added until the optimization criteria is reached;

• the pruning method in which the starting network is relatively large and the neurons

are subsequently removed until the optimization criteria is satisfied.

The approach used here is the latter. Therefore, after a reasonable evaluation in term

of classification accuracy, the chosen topology was 14-200-200-5. This estimation involved

the analysis of the output variance of different topologies characterized by an increasing

number of hidden neurons [13].

3.3 Learning Algorithm

During the training phase, the network learns how to approximate an unknown input-

output relation by adjusting the weight connections. This is done by receiving both the

raw data as inputs and the target as outputs which are used to minimize an error function.

There are several learning algorithms designed to minimize this error function related to

the differences between the inputs x1, ..., xN and the target outputs t1, ..., tN . The learn-

ing algorithm used here is the Scaling Conjugate Gradient method (SCG) [14] which is a

supervised learning algorithm for feedforward neural networks.

The Conjugate Gradient Methods (CGM) belong to the second order techniques that

minimize the error function. Second order means that these methods make use of the

second derivatives of the goal function, while first-order techniques, like standard backprop-

agation, only use the first derivatives. A second order technique generally finds a better

way to a (local) minimum than a first order technique, but at a higher computational cost.

Backpropagation always proceeds down the gradient of the error function, while Conjugate
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Gradient methods proceed in a direction which is conjugate to the directions of the previous

steps. This approximation gives more complete information about the search direction and

step size [15].

Basically in most applications problems, the error function decreases monotonically

towards zero for a increasing number of learning iterations. Scaling Conjugate Gradient

adds to the Conjugate Gradient methods a scaling approach to the step size in order to

speed up the algorithm. The number of epochs is not relevant when comparing SCG to

other algorithms like standard backpropagation. Indeed one iteration in SCG needs the

computation of two gradients, and one call to the error function, while one iteration in

standard backpropagation needs the computation of one gradient and one call to the error

function. Möller [14] defines a complexity unit (cu) to be equivalent to the complexity of

one forward passing of all patterns in the training set. Then computing the error costs 1 cu

while computing the gradient can be estimated to cost 3 cu. According to Möller’s metric,

one iteration of SCG is as complex as around 7/4 iterations of standard backpropagation.

The parameters that specify the SCG algorithm are four:

1. σ: it should satisfy 0 < σ < 10−4. Empirically, Møller [14] has shown that bigger

values of σ can lead to a slower convergence.

2. λ: it should satisfy 0 < σ < 10−6. The values of λ directly scale the step size in the

way, that the bigger λ, the smaller the step size.

3. dmax: it is the maximum difference di = ti − yi between a target value tj and an

output yj of an unit which is tolerated. Typical values of dmax are 0.0, 0.1 or 0.2.

4. ε: it is the value of the termination criterion used to avoid floating point exceptions.

Table 3.2 shows the values of the SCG parameters used to train the Neural Network.
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Parameter Value

σ 10−4

λ 10−6

dmax 0
ε 10−8

Table 3.2: Values of the SCG parameters used to train the Neural Network.

3.4 Pruning

A central problem in pattern recognition consists of minimizing the system complexity.

In Neural Networks this issue often consists of minimizing the number of connection weights

[16]. Pruning algorithms try to make neural networks smaller by pruning unnecessary links

or units. The advantages are:

• the cost of a NN can be reduced (runtime, memory and cost for hardware implemen-

tation)

• the generalization of the NN can be improved

• unnecessary input units can be pruned in order to give evidence of the relevance of

input values

To decide which links or units are less important and thus susceptible to removal, it

is necessary to assess the relative importance of weight: this process is called saliency.

The most common pruning algorithms perform training and pruning of a NN alternately,

according to the following algorithm:

1. choose a reasonable NN architecture

2. train the NN with any learning function into a minimum of the error

3. compute the saliency (relevance for the performance of the network) of each element

(link or unit respectively)

4. prune the element with the smallest saliency
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5. retrain the NN into a (new) minimum

6. if the net error does not exceed a definite value, repeat the procedure from step (3)

There are different approaches to determine the saliency of an element. The Magnitude

Based Pruning (MBP) is the simplest weight pruning algorithm [17] which is based on

deleting links with small saliency (since this deletion will have the least effect on the training

error). After a reasonable initial training, the link having the smallest magnitude value is

removed (thus the saliency of a link is just the absolute size of its weight). The network

is then retrained and the process is iteratively repeated until the training error reaches a

specified limit. Although this method is very simple, it rarely yields worse results than

the more sophisticated algorithms such as Optimal Brain Damage (OBD), Optimal Brain

Surgeon (OBS) or Skeletonization [15][18].

Based on the validation set, the pruning processing removed neurons following two

distinct goals:

• to reach the minimum of the classification error;

• to reach the minimum number of connections taking into account a maximum decrease

of the classification accuracy of about 10% with respect of the full connected network.

Note this task is only academic and it does not regard the contest.

The functions and the parameters used to prune the full connected neural network are

listed in Table 3.3.

Pruning Function Magnitude Based
Maximum error increase in % 0.0

Accepted Error 0.0
Learning Function Scaling Conjugate Gradient

Learning cycles for first training 10
Learning cycles for re-training 10

Minimum Error to stop 1

Table 3.3: Parameters used to prune the Neural Network with the goal of reaching the mini-
mum of the classification error.
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Concerning the first task, the full connected neural network, consisting in 43800 connec-

tions (Overall Accuracy 86.4%), has been pruned reaching the minimum of the classification

error with 43657 connections (Overall Accuracy 89.7%) as shown in Figure 3.2. Therefore,

less than 0.5% of the initial connections were removed for an improvement in terms of

classification accuracy of 3.3%.
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Figure 3.2: Accuracies of the different topologies obtained after the pruning process. The
minimum of the classification error was reached by removing less than 0.5% of the initial
number of connections, resulting in 43657 links.

Successively, the pruning continued to further reduce the number of connections expect-

ing a decrease of the classification accuracy. As shown in Table 3.4, which lists the accuracy

details of the different network topologies, 57 connections were sufficient to decrease the

classification accuracy from 89.7% to 84.3%. The decrease of the classification accuracy of

about 10% with respect of the full connected network was reached with 42470 connections

(3.0% of the initial connections).

Net ID Number of Connections Overall Accuracy (%) k-coeff

Full Connected 43800 86.4 0.816
net1 43684 86.9 0.824
net2 43657 89.7 0.861
net3 43600 84.3 0.787
net4 42470 75.4 0.667

Table 3.4: Accuracy details of the of the different topologies.
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These accuracies were based on the validation set obtained by visual inspection of the

scene and were only used to have a rough information on the selection of the most suitable

network topology.



Chapter 4

Postprocessing

Classified images often suffer from a lack of spatial coherency which results in speckle

or holes in homogeneous areas. Therefore, this noise phenomenon appears as many iso-

lated pixels or small groups of pixels whose classifications are different from those of their

neighbors [19].

Post-classification processing techniques can be applied to further increase the classifi-

cation accuracy. This is often achieved by analyzing the neighborhood for each pixel and

removing the isolated pixels (sieve process), and then merging the small groups of pixels

together to make more continuous and coherent units (clump process) [20].

Post-classification data processing procedures, such as sieve and clump, were used here

to reduce the effect of isolated pixels in land cover maps. As a result, the minimum mapping

unit was selected removing all regions smaller than the designated size which was 142 pixels.

Therefore, even though the smaller clusters may have been correctly classified, they were

considered not reliable.

14
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