Remote sensing in the optical domain

Riccardo Duca
What is exactly the remote sensing? (I)

The experts say…

“Remote sensing is the science (and to some extent, art) of acquiring information about the Earth's surface without actually being in contact with it. This is done by sensing and recording reflected or emitted energy and processing, analyzing, and applying that information.”

http://ccrs.nrcan.gc.ca

“All the techniques used to detect and study the properties of objects, both man-made and natural, starting from their physical properties of emitting and reflecting energy.

CNES optical course “Télédétection et Traitement des images”
What is exactly the remote sensing? (II)

The not experts say “Remote Sensing is…”

• Advanced colouring-in.
• Seeing what can't be seen, then convincing someone that you're right.
• Being as far away from your object of study as possible and getting the computer to handle the numbers.
• Legitimized voyeurism
What is exactly the remote sensing? (III)

The Remote Sensing is very close to us…

Of our five senses (sight, hearing, taste, smell, touch), **three** may be considered forms of "remote sensing", where the source of information is at some distance.

The remote sensing is typically associated to the electromagnetic radiation, but it does not preclude the use of others form of energy. The sound could be the first alternative.

Ours telephone conversation could be considered a form of remote sensing
Why optical?

The RS is classified into three types with respect to wavelength region:

- Ultraviolet and Visible RS (atmosphere)
- Visible and Reflective Infrared RS (lands and sea)
- Thermal Infrared RS
- Microwave RS

The optical sensors capture the radiances coming from the system Earth-Atmosphere illuminated by the sun, on the spectral regions of Visible, Infrared and Thermal Infrared (emission)

- Generally passive
- Some example of active sensors: LIDAR
- Spacecraft and airborne
- Measures of reflecteted and emitted energy
First examples (I)

First aerial photo credited to Frenchman Felix Tournachon in Bievre Valley, 1858.

Boston from balloon (oldest preserved aerial photo), 1860, by James Wallace Black.

Extracted from M.Disney, UCL, http://www.geog.ucl.ac.uk/about-the-department/people/academics/mat-disney/
First examples (II)

Panorama of San Francisco 1906
9 large kites have been used to carry the camera

Extracted from M.Disney, UCL, http://www.geog.ucl.ac.uk/about-the-department/people/academics/mat-disney/
The incredible development

2006 ALOS AVNIR-2 (4 spectra bands, spatial resolution of 10m)

2003 MERIS (15 spectral bands, spatial resolution of 150m)

2001 CHRIS Proba (62 spectral bands, spatial resolution of 30 m)
 (18 spectral bands, spatial resolution of 18 m)
 (multi-angle capabilities)

2000 Hyperion (220 spectral bands, spatial resolution of 30 m)

1999 ASTER (14 spectral bands, spatial resolution of 15, 30 and 90m)
 MISR (4 spectral bands, multi-angle capabilities)
 Landsat 7 (7 spectral bands+pan, spatial resolution of 30m)

... SENTINEL 2, Venus (superspectral)

1972 Landsat 1 (5 spectral bands, spatial resolution of 80m)
Applications of optical remote sensing

Meteorology

Oceanography

http://oceancolor.gsfc.nasa.gov/
http://www.meteosatonline.it
www.ilmeteo.it
Applications of optical remote sensing

Atmospheric composition

Global vegetation monitoring

High resolution land cover and land changes maps

http://modis.gsfc.nasa.gov/
http://lcluc.umd.edu
Applications of optical remote sensing

Cartography and Hydrology

Disaster monitoring, Hazard mitigation

Very high resolution mapping, infrastructures and urban monitoring
Strategic planning

AND…
…«Con GoogleEarth c’è la possibilità di avere anche un database storico delle fotografie satellitare – spiegano all'agenzia delle entrate pisana – e dunque è stato possibile mettere a confronto il numero di imbarcazioni presenti nei rimessaggi in date diverse. Poi, sono stati fatti accertamenti sul numero di fatture emerse» …

…non solo alle imbarcazioni, ma agli stabilimenti balneari della costa per controllare, per esempio, quanti sono gli ombrelloni utilizzati in estate e da qui cercare di capire il reale giro di affari del gestore a volte, dicono i maligni, un po’ apatico con il fisco…

M.Gasperetti Corriere.it
The target illumination: solar irradiance

1. External illumination
2. The observer illuminates the target
3. No illumination, the target emits energy
The electromagnetic spectrum
The electromagnetic spectrum
The system Earth-Atmosphere

The irradiance reaches the targets…

Hydrosphere
Atmosphere
Cryosphere
Geosphere
Biosphere

Artificial structures and Man interactions

Image Copyright M. Disney, UCL, http://www.geog.ucl.ac.uk/about-the-department/people/academics/mat-disney/
The signal measured by the sensor (i)

The optical sensors capture the radiance reflected or emitted, along the observation direction:

1. Radiance from the target(s)
2. Radiance from adjacent targets or areas
3. Radiance scattered by the atmosphere toward the sensor

The atmosphere attenuates the signal which is captured by the instrument

Image Copyright M. Disney, UCL, http://www.geog.ucl.ac.uk/about-the-department/people/academics/mat-disney/
The signal measured by the sensor (ii)

Condition of illumination
- Sun condition (season, day, year, …)
- Latitude and longitude of the target

Atmospheric properties
- Aerosols scattering and absorption
- Gases concentration, temperature, pressure
- Water content

Target properties
- Physical properties (for reflection and emission), material composition
- Shape, structure, geometry
- Temporal changes

Sensor, spacecraft and processing
- **Spatial resolution, spectral resolution, radiometric resolution**
- Electro-Optical properties (transducers, telescope)
- Altitude, geometry of observation
- Processing, compression, filtering, deconvolution, sampling
The detail discernible in an image is dependent on the **spatial resolution** of the sensor and it refers to the size of the smallest possible feature that can be detected.

As a satellite revolves around the Earth, the sensor "sees" a certain portion of the Earth's surface. The area imaged on the surface, is referred to as the **swath**.
Rendering of spatial details (ii)

Poor rendering

Good rendering

CNES optical course “Télédétection et Traitement des images”
Rendering of spatial details (iii)

Several parameters impact the spatial rendering

Good **MTF** (Modulation Transfer Function)

3 components: telescope, detectors and rows

Signal Sampling
And reconstruction

Compression + Decompression

Deconvolution + Denoising

CNES optical course “Télédétection et Traitement des images”
Radiometric Resolution

The **radiometric resolution** of an imaging system describes its ability to discriminate very slight differences in energy.

- **8 bit**: From 0 to 255 values of radiances
- **2 bit**: From 0 to 3 values of radiances
Spectral Resolution (i)

Spectral resolution describes the ability of a sensor to define fine wavelength intervals. The finer the spectral resolution, the narrower the wavelength range for a particular channel or band.

Panchromatic Image: single wide band, very high resolution for details rendering
Multi-Spectral Image: several bands, lower resolution, reflective properties at different λ
Spectral Resolution (ii)

The spectral bands can be composed in RGB products in order to visualize particular spectral properties.
Pan Vs Multi

Spot 5 over Tor Vergata

Pan Image

Multi-S Image

Copyright SPOTImage
The evolution of optical sensors

- Very high resolution
 - PAN and Multi

- High/Medium resolution
 - multi-spectral

- Low resolution
 - multi-spectral
 - wide swath

- Optical Cameras
 - High/Medium resolution
 - Hyper-spectral
Very high resolution sensors

- Very high resolution (around 1 m Pan and 4 m Multi)
- Excellent discrimination of details and spatial features
- Very high resolution multi-spectral bands to produce basic RGB composition
- High accuracy for the geo-location
- Satellite and aerial

Disadvantages
- Very expensive, mainly for commercial and military use
- Limited spectral analysis
- Limited acquisition swath, not global coverage
- Huge amount of data

Applications
- Cartography at very high resolution
- Localization
- Land cover and land changes
Very high resolution sensors examples

SPOT5 10m

Alicante, Spain

Very high resolution sensors examples

SPOT5
5m

Lubiana, Slovenie

Very high resolution sensors examples

SPOT5
2,5m

Very high resolution sensors examples

Ikonos
1m

Paris, France

Very high resolution sensors examples

1m Quickbird
... but we can have more

Around 50 cm

Rome

Padova
High and medium resolution multi-spectral

- Around 10 – 30 meters of spatial resolution
- Several spectral bands located in the Visible and Infrared range
- Possibility to combine spectral bands to highlight particular features
- Bands located in the thermal infrared with a reduced resolution
- Swath wide enough to cover large areas (180 km for Landsat)
- Increase in temporal resolution

Disadvantages
- Limited spatial analysis
- More processing are required (atmospheric correction, de-noising)

Applications
- Land Cover and Land changes at high resolution
- Vegetation index
- Monitoring of crops, forests, natural areas and coastal areas
- Monitoring of disaster effects (burned areas, deforestation,...)
High and medium resolution multispectral

Landsat
28.5 m
Aster, 15, 30 and 90 meters

High and medium resolution multispectral

Aster
Visible and
Infrared
composition

Istambul

Hyper-spectral sensors

• Many contiguous and narrow spectral bands (more than 200 in some cases)
• 20-30 meters of resolution for satellite
• 1-2 meters for airborne

Disadvantages
• Very expensive, especially for satellite
• The SNR could be not good in some cases
• Noise in some bands (around 400 nm)
• Difficulties in image processing and elaboration

Applications
• Land Cover and Land changes at high spatial and spectral resolution
• Materials discrimination (urban and natural)
• Vegetation monitoring and differentiation
Hyper-spectral Vs Multi-spectral

![Graphs showing spectral reflectance comparison between Hyper-spectral and Multi-spectral data for different water vapor (cm) levels. The graphs illustrate the spectral response of Landsat and CHRIS sensors across various wavelengths.]
Hyper-spectral Vs Multi-spectral

Multi-spectral

Hyper-spectral
Low resolution multi-spectral

- Spatial resolution more than 100 meters
- Several bands (Visible, Infrared and Thermal)
- Very wide swath
- High temporal resolution, global coverage in few weeks

Disadvantages
- Limited spatial analysis
- Huge amount of data, difficulties for processing and managing
- Many corrections are required

Applications
- Land Cover and Land changes at global scale
- Vegetation index at global scale
- Monitoring of phenomena at global scale (desertification, huge deforestation)
- Ocean applications (ocean color, algae bloom, river sediments,…)
Low resolution multi-spectral examples

Meris
300m

California fires

Copyright ESA 2007, from http://www.esa.int/esaEO/SEM8U23Z28F_index_0.html
Low resolution multi-spectral examples

Modis
250 m
500 m
1 km

Copyright NASA, from http://modis-land.gsfc.nasa.gov/
Next time

Basic processing
• Filtering, de-noising, de-striping
• Atmospheric correction
• Geometric correction and geo-rectification

Spectral properties
• Reflectance of surfaces
• Angular reflectance
• Temporal changes

Applications