

Earth Observation Laboratory
PhD Program in GeoInformation
DISP - Tor Vergata University

Velocity vector estimation of moving targets from SAR images

Author:
Andrea Radius
Supervisor:
Prof. Domenico Soliminil

SAR FOR MTI APPLICATIONS

THESIS ORGANIZATION

1) Analysis of SAR theory and effects of the motion in SAR images
2) Analysis of the developed raw data simulator for moving target
3) Velocity estimation-algorithm to derive the motion parameters from two-channel raw dąta
4) Analysis on the possibility to apply the velocity estimation algorithm to single channel SAR-with sub-aperture processing
5) Velocity estimation algorithm from amplitude data

MAIN CONTRIBUTIONS

1) Development of a SAR raw data-simulator for MTI applications
2) Development of a yelocity estimation algorithm which derives the motion parameters from two-chaninel raw dāta withoytlapriori information
3) Theoretical demonstration of the information type which can be obtained from a splitted single aperture
4) Development of a velocity estimation algorithm working on the amplitude images without a priori information

SAR PROCESSING THEORY

The SAR signal is scatteredon the bi-dimensional range-azinuth plane

$\left|t-2 \frac{R(s)}{c}\right| \leq \frac{\tau}{2}$

$$
\left|s-s_{c}\right| \leqslant \frac{S}{2}
$$

SAR processing: compression that focuses the IRF around a point

$$
\zeta\left(R_{0}\right)=\int_{-\infty}^{+\infty} h^{-1}\left(R_{o} \mid R\right) v_{r}(R) d R
$$

We consider an algorithm of the first class that/works in the time domain, the so-called Time Domain Correlation (TDC)

The algorithm is divided into 3 major steps:

1) Range compression;
2) Range migration compensation;

27-05-2008
3)

Azimuth compression for every pixel in the time domain.

SAR PROCESSING THEORY

Transmitted chirp signal

$$
s(t)=\cos \left[2 \pi\left(f_{c} t+K \frac{t^{2}}{2}\right)\right]
$$

Base-band signal of the received data:

$$
\hat{v}_{r}(s, t)=0,5 \exp \left[-j 4 \pi \frac{R(s)}{\lambda}\right] \cdot \exp \left\{j \pi K\left[t-2 \frac{R(s)}{c}\right]^{2}\right\}
$$

Range compression: $g(s, t)=\int_{T}^{t+\frac{1}{2}} \hat{r}_{r}\left(s, t^{\prime} s^{*}\left(t^{\prime}-t\right) d t^{\prime}=B \exp \left(-j 4 \pi \frac{R(s)}{\lambda}\right)\right.$ sinc $\left\{\pi B\left[t-2 \frac{R(s)}{\tau}\right]\right\}$
$s(t)=0.5 \exp \left(j \pi K t^{2}\right)$

Range migration compensation:

$$
\hat{g}\left(s_{k}, R\left(s_{k}\right)\right)=\sum_{i=-a}^{+b} \hat{g}\left(s_{k}, R_{i}\right) \operatorname{sinc}\left[\pi f_{s}\left(\frac{2 \cdot\left(R\left(s_{k}\right)-R_{c}\right)}{c}-\frac{i}{f_{s}}\right)\right]
$$

 (J) TO Notation: OR PR

Doppler Centroid processing: Azimuth time
Zero Doppler processing:
Azimuth time

$$
\eta=s-s_{0}
$$

$$
\eta_{c}=s_{c}-s_{0}=\frac{f_{D c}}{f_{R}}
$$

RAW DATA SIMULATOR

The (IRF) is characterized by the received voltage and the antenna directivity

- Received voltage in baseband
$\hat{v}_{r}\left(\eta, t \mid \eta_{c}, t_{0}\right)=0,5 \exp \left[-j(\Phi(\eta)] \cdot \exp \left\{j \pi K\left[t-2 \frac{R(\eta)}{c}\right]^{2}\right\} \quad\left|t-2 \frac{R(\eta)}{c}\right| \leq \frac{\tau}{2} \quad\left|\eta-\eta_{c}\right| \leq \frac{S}{2}\right.$
$\Phi(\eta)=\frac{4 \pi}{\lambda} R(\eta)$
- Antenna directivity
$D(\theta)=\operatorname{sinc}^{2}\left[\frac{L_{\mathrm{a}}}{\lambda} \cdot \sin \theta\right]$
θ very small
$\longrightarrow \sin \theta$ θ
$\theta=\operatorname{tg}^{-1}\left(\frac{\eta-\eta_{c}}{R_{0}}\right)$

Impulse function in each pixel

$$
h_{S A R}\left(\eta, t \mid \eta_{c}, t_{0}\right)=D\left(\eta \mid \eta_{c}\right) \cdot \hat{v}_{r}\left(\eta, t \mid \eta_{c}, t_{0}\right)^{A}
$$

Sum of all the voltage contributions coming from the pixel provides raw data

$$
V=\sum_{\eta_{c}} \sum_{t_{0}} h_{S A R}\left(\eta, t \mid \eta_{c}, t_{0}\right)
$$

1. The algorithm retrieves the two velocity components of moving targets from two-channel raw data;
2. The coupling of range and azimuth velocity is taken in account $R_{m o v}(\eta) \approx a+b\left(v_{r g}\right) \eta+c\left(v_{d q}\right) \eta^{2} \quad$ Classical mode: both components are decoupled $R_{m o v}(\eta) \approx a+b\left(v_{r g}\right) \eta+c\left(v_{r g}, v_{a z z}\right) \eta^{2} \quad$ Algorithm: considers the coupling in the "c" term

The estimation of the lineâr term a is not possible if the quadratic term is not compensated.
But the estimation of the quadratic term needs the compensation of the linear term!

USED VEEOCITY ESTIMATION TECHNIQUES

To derive the full velocity yector is necessary to use amplitude and phase information
 (amplitude information)
2. Range velocity: use of the Along Track Interferometry (ATI) with two channels (phase information)

AZIMUTH VELOCITY FILTER BANK

The raw data are focused using a bank of azimuth filters; the analysis of the IRF allows to estimate the azimuth velocity, matching the right filter

Maximization of the mainlobe amplitude

Maximization of the azimuth resolution-amplitude ratio-

Azimuth velocity ${ }^{6}(\mathrm{~m} / \mathrm{s}$)

Maximization of the azimuth resolution

Maximization of the correlation coefficient between moving target IRF and reference stationary IRF

To recontruct the IRF in strong noise, the profile is approximated to the Gaussian function that is better correlated with the reference signal reconstruction

ALONG TRACK INTERFEROMETRY

In two-channel SAR system the antennas along the flight-line are separated by a spatial baseline
 around the broadside time, by non-symmetries caused by the RCS variation during the integration time (i.e.: for the changing of aspect angle) and by a not compensation of the azimuth velocity

METHODOLOGY

10 STEP

The right velocity is selected from the filter that maximizes the ratio between azimuth resolution and mainlobe amplitude of the IRF

$$
\Delta v_{a z} \in\left[-v_{a z}^{\max },+v_{a z}^{\max }\right] \quad \text { Filter separation: }\|\|\|\|
$$

2° STEP

$\left.h_{a z}^{-1}\left(\eta, v_{r g}, v_{a z}\right)=\exp \left\{j \frac{4 \pi}{\lambda}\left[\frac{y_{0} v_{r g}}{R_{0}} \eta+\frac{1}{2 R_{0}}\left(\left(\Delta v_{a z}+v_{a z}^{\prime}-V_{s a t}\right)^{2}+v_{r g}^{2}\left(1-\frac{y_{0}^{2}}{R_{0}^{2}}\right)\right) \eta^{2}\right]\right\}\right]$

Selection criterion more sensitive to little velocity variation

Filter separation:

SIMULATION: BACKGROUNG GENERATION

SEA BACKGROUND FOR SHIP MONITORING

Gamma distribution

SHRUBS BACKGROUND FOR CAR TRAFFIC MONITORING
Rayleigh distribution
$f(x \mid \sigma)=\frac{\mathrm{x}}{\sigma^{2}} \cdot \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right)$

SIMULATION: RESULTS

To obtain the statistical parameters of the estimations:

1. We choose a velocity vector
2. We varied the range velocity within a little interval
3. We varied the azimuth velocity within a little interval

Difficulty to estimate the low azimuth velocity

The ATI can fail for low SCR (<15 dB)

R	Range error mean	Azimuth error mean	Range standard deviation	Azimuth standard deviation
	$6,5 \%$	$7,5 \%$	$0,1 \mathrm{~m} / \mathrm{s}$	$2,2 \mathrm{~m} / \mathrm{s}$
	$21,9 \%$	12.3%	$0,3 \mathrm{~m} / \mathrm{s}$	$3,3 \mathrm{~m} / \mathrm{s}$
35%	25%	$3 \mathrm{~m} / \mathrm{s}$	$7,1 \mathrm{~m} / \mathrm{s}$	

For high range velocity the signal energy of the moving targe

CONSIDERATIONS

1. MTI applications need high resolution and high SCR AU
2. We simulated the parameters characteristics of ERS with the intent to apply the algorithm on single channel SAR \rightarrow starting disadvantageous situation
3. We work without a priori information
4. The ATI suffers low SCR

For TerraSAR-X, with SCR=5dB the standard deviation of the derived range velocity is $30 \mathrm{~km} / \mathrm{h}$

ADAPTATION FOR SINGLE CHANNEL SAR

Aim: simulate a two channel SAR by generating two sub-apertures of single channel

SUB-APERTURE PROCESSING

PRE - FILTERING

SUB-APERTURE AZIMUTH COMPRESSION

NOTE: the maximum non-ambiguous velocity depends on the global aperture fractional $\eta_{a p}$ defines the baseline between the two antennas in ATI configuration

TWO CHANNEL

The antennas acquire two sets of data each with a different time centers $R_{c i}$. If the target moves in the range direction, the temporal difference corresponds to a shift of the slant range centers $s_{c i}$

Splitting the antenna in two sub-apertures means to use each look to focus the pixel with coordinates $\left(s_{c}, R_{c}\right)$ This means to have a tempor"al baseline. Note: for each sub-aperture the Doppler history does not change

There is not a spatial diversity!

MATHEMATICAL ANALYSIS

SAR PROCESSING BASIC THEORY

The target moves with radial velocity $\quad v_{s r}=v_{r g} \cdot \operatorname{sen}(\vartheta)$

$\widetilde{\sigma}$ Tor Vergata
Compressed signal amplitude:

Compressed signal phase:

27-05-2008
17 of 25
\square

The phase is independent on therange

$$
\text { elocity, only the amplitude peak shifts to the position } s_{c}{ }^{\prime}=s_{c i}-\frac{v_{s r}}{f_{R}}
$$

The ATI is not applicable on
ate the radial velocity!

We simulated the parameters characteristics of ERS

1. Generate an azimuth chirp of a mo
ng point-like target
2. Compensate the range migration for a stationary target
3. The range compressed data is filtered and compressed to obtain two symmetrical sub-apertures
4. The range velocity and the baseline are varied, to demonstrate that the phase and the amplitude level are independent of the velocity

Percentage differential amplitude between the sub-apertures
Differential phase between the sub-apertures

Amplitude	Aperture look (\%)	60	70	80	90
Velocity (m/s)					
0		0	0	0	0
5		1,3	0,36	0,03	0
10		2,6	0,69	0	0
15		3,8	0,86	0,03	0
20		5,1	0,79	0	0

Phase	Aperture look (\%)	60	70	80	90
Velocity (m/s)					
0		0	0	0	0
5		$\pi / 113$	$<\pi / 1000$	$<\pi / 1000$	$<\pi / 1000$
10		$\pi / 58$	$<\pi / 1000$	$<\pi / 1000$	$<\pi / 1000$
15		$\pi / 39$	$<\pi / 1000$	$<\pi / 1000$	$<\pi / 1000$
20		$\pi / 30$	$<\pi / 1000$	$<\pi / 1000$	$<\pi / 1000$

The amplitude and the phase differential between the two channels shows a negligible increase with the velocity

Note: errors for numerical approximations and for the use of a finite-length FIR filter

We propose an algorithm which estimates the full velocity vector of the ships from amplitude images, more easily available, without a priori information, using the Radon Transform (RT). It is very light from the computational point of view

RADON TRANSFORM

Given an image g in the coordinate system (x, y), the Radon transform is defined as

$$
g(\rho, \theta)=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x, y) \delta(\rho-x \cos \theta-y \sin \theta) d x d y \quad\left\{\begin{array}{l}
0 \leq \theta<\pi \\
-\rho_{\max } \leq \rho<\rho_{\max }
\end{array}\right.
$$

The RT computes the projection of an image along the direction given by (ρ, θ), calculating the line integrals of the image along this direction.

SHIP DETECTION

Every ship is focused at the center of a sub-image

VELOCITY ESTIMATION

WOVE algorithm (from Wake Orientation to Velocity Estimation)

Pre-processing:

Because the ship is on the center, RT estimates at the same time the angle of the wake orientation and the azimuth shift between ship and wake RT determines the couple (ρ, θ) related

$$
\rho=\delta \sin \theta \Rightarrow \delta=\frac{\rho}{\sin \theta}
$$

Temporal shift

$$
v_{g_{r}}=\frac{\lambda f_{R} \delta}{2 v_{B}} \cdot \frac{1}{\sin \phi}
$$

SOVE algorithm (from Ship Orientation to Velocity Estimation)

Because the ship has an extended form, it can be considered like a line

1. The ship is focused at a known azimuth distande from the center.
2. With RT we estimate the orientation θ, taking the maximum of the image in the Radon domain
3. Finally the ship is focused at the center of the scene and the RT is applied to the image for the angle θ, to scan the space in the right direction
4. The velocity components are derived as in the WOVE algorithm

SIMULATION RESULTS

A sea scene is simulated using the gamma distribution
-To consider the speckle effect, we vary the variance of the gamma function
-To analyze the sensitivity to the wake visibility we vary the ratio between background mean level and the wake level (Vake-Sea Ratio, WSR).

RESULTS

REAL DATA RESULTS

PRI ERS-2 frame 16466, orbit 2763

SOVE

Ship number	Lenght (m)	Real range velocity $(\mathrm{m} / \mathrm{s})$	Real azimuth velocity $(\mathrm{m} / \mathrm{s})$	Estimated range velocity $(\mathbf{m} / \mathrm{s})$	Estimated azimuth velocity $(\mathrm{m} / \mathrm{s})$	Range velocity error (\%)	Azimuth velocity error $(\%)$
1	163	6,7	$-3,8$	9,9	$-3,4$	$-10,8$	
2	188	4,1	$-2,7$	3,8	$-2,2$	$-19,8$	$-7,1$

Note that the WSR is very low, the ships have a complex form and the velocity is small; therefore the velocity estimation results difficult for the algorithms, because the Radon transform can't identify well the wake as linear structure.
27-05-2008

CONCLUSIONS

1) We presented two methodologies to estimate the velocity vector from raw data and amplitude data
2) The first algorithm was validated with simulated data: the analysis demonstrated that is not applicable to single channel. The algorithm presents a very strong motivation: the coupling between range and azimuth velocity must be considered
3) The second algorithm was validated with simulated and real data, producing very promising results
4) Future developments:
1° algorithm: improve the selection criterion for the choice of the right filter, using also the phase information; develop an algorithm to retrieve the range velocity from the peak position in sub-aperture images.
$\underline{\mathbf{2}^{\circ}}$ algorithm: improve the pre-processing, using, dedicated filters and wavelet transforms to reduce the noise
[1] A. Radius, D. Solimini, "A velocity vector estimation algorithm tested on simulated SAR raw data", Proceedings of the IEEE Int. Geoscience Remote Sensing Symposium, IGARSS, 23-27 July 2007.
[2] A.Radius, ". Dolimini, P.A.C.Marques, "Radial Velocity Estimation Limitations from SAR sübaperture", IEEE Aerospace and Electronic Systems Transaction (submitted), 2008
[3] A.Radius, R.A.C.Marques, "A Novel Methodology for Full Velocity Vector Estimation of Ships Using SAR Data", Proceedings of the 7th European Conference on Synthetic Aperture Radar, EUSAR'04 (accepted), 2-5 June 2008.
A.Radius, "P.A.C.Marques, "The SOVE algorithm for Full Velocity Vector Estimation of Ships Using Amplitude SAR Data", Quartas Jornadas de Engenharia de Electrónica e Telecomunicações e de Computadores, JETC '08 (submitted), 20-21 November 2008

MATHEMATICAL ANALYSIS

SAR PROCESSING BASIC THEORY

The target moves with radial velocity $\nu_{s r}=v_{r g} \cdot \operatorname{sen}(\vartheta)$
Range migration: $\quad R_{m o v}(s)=R_{c}-\lambda \frac{\left(f_{D c}-v_{s r}\right)}{2}\left(s-s_{c}\right)-\lambda \frac{f_{R}}{2} \frac{\left(s-s_{c}\right)^{2}}{2}$
Range compressed data: $\hat{g}(s, t)=B \exp \left(-j 4 \pi \frac{R_{\text {mov }}(s)}{\lambda}\right) \cdot \operatorname{sinc}\left\{\pi B\left[t-2 \frac{R_{\text {mov }}(s)}{c}\right]\right\}$
Range migration compensation: selection of range time t to compensate the phase modulation induced from slant range time dependence
$t\left(s, R_{c}^{\prime}\right)=\frac{2 R(s)}{c}=\frac{2}{c}\left(R_{c}^{\prime}-\lambda \frac{f_{D c}}{2}\left(s-s_{c}\right)-\lambda \frac{f_{R}\left(s-s_{c}\right)^{2}}{2} \frac{2}{2}\right)$
For $t=t\left(s, R_{c}^{\prime}=R_{c}\right)$
the dependence on the range variable is removed
$\longrightarrow \hat{g}(s)=B \exp \left(-j \frac{4 \pi R_{c}}{\lambda}\right) \exp \left\{j 2 \pi\left[\left(f_{D c}-v_{s r}\right)\left(s-s_{c}\right)+f_{R} \frac{\left(s-s_{c}\right)^{2}}{2}\right]\right\} \operatorname{sinc}\left\{\frac{2 \pi B}{c}\left[-\frac{\lambda v_{s r}}{2}\left(s-s_{c}\right)\right]\right\}$
Look filtering:

$\hat{g}_{\text {fllter }}(s, t)=q \exp \left(-j \frac{4 \pi R_{c}}{\lambda}\right) \exp \left\{j 2 \pi\left[\left(f_{\underline{D c}-} v_{s r}\right)\left(s-s_{c i}\right)+f_{R} \frac{\left(s-s_{c i}\right)^{2}}{2}\right]\right\} \operatorname{sinc}\left\{\pi B\left[t-\frac{2}{c}\left(R_{c}-\lambda \frac{\left(f_{D c}-v_{s r}\right)}{2}\left(s-s_{c i}\right)-\lambda \frac{f_{R}}{2} \frac{\left(s-s_{c i}\right)^{2}}{2}\right)\right]\right\}$
After the range migration compensation we operate azimuth compression:

$$
h_{a z}^{-1}\left(s-s_{c}^{\prime} \mid s_{c}, R_{c}\right)=\exp \left\{-j 2 \pi\left[f_{D c}\left(s-s_{c}^{\prime}\right)+f_{R} \frac{\left(s-s_{c}^{\prime}\right)^{2}}{2}\right]\right\}
$$

Two errors are made, choosing a stationary matched filter and compensating the range migration as for stationary target
$\zeta\left(s_{c}{ }^{\prime} \mid s_{c i}, R_{c}\right)=q \exp \left(-j \frac{4 \pi R_{c}}{\lambda}\right)_{s_{d} s_{i} / 2}^{s_{d}+S_{/} / 2} \exp \left\{j 2 \pi\left[\left(f_{D c}-v_{s r}\right)\left(s-s_{c i}\right)+f_{R} \frac{\left(s-s_{c i}\right)^{2}}{2}\right]\right] \operatorname{sinc}\left\{\frac{2 \pi B}{c}\left[-\frac{\lambda v_{s p}}{2}\left(s-s_{c i}\right)\right]\right\} \exp \left\{-j 2 \pi\left[f_{D c}\left(s-s_{c}{ }^{\prime}\right)+f_{R} \frac{\left(s-s_{c}\right)^{2}}{2}\right]\right\} d s$
Compressed signal amplitude:

Compressed signal phase:
27-05-2008

