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Nonlinear Principal Component Analysis for
the Radiometric Inversion of Atmospheric

Profiles by Using Neural Networks
Fabio Del Frate and Giovanni Schiavon

Abstract—A new neural network algorithm for the inversion of
radiometric data to retrieve atmospheric profiles of temperature
and vapor has been developed. The potentiality of the neural
networks has been exploited not only for inversion purposes but
also for data feature extraction and dimensionality reduction.
In its complete form, the algorithm uses a neural network
architecture consisting of three stages: 1) the input stage reduces
the dimension of the input vector; 2) the middle stage performs
the mapping from the reduced input vector to the reduced output
vector; 3) the third stage brings the output of the middle stage to
the desired actual dimension. The effectiveness of the algorithm
has been evaluated comparing its performance to that obtainable
with more traditional linear techniques.

Index Terms—Atmospheric profiling, macrowave radiometry,
neural networks.

I. INTRODUCTION

T HE RATIONALE for a reduction of dimensionality in
remote sensing inversion problems mainly lies on the fact

that, in many cases, reducing the number of input and output
variables can lead to improved performances for a given data
set. The mapping fixed by the data may be better specified in
a lower-dimensional space, and this compensates for the loss
of information [1]. For these reasons inversion algorithms for
the retrieval of atmospheric profiles based on the expansion
of the unknown quantities in terms of a base of principal
components [2] or natural orthogonal functions (NOF) [3]
have been proposed [4], [5]. A few functions describe each
profile with a satisfactory level of accuracy, and therefore the
retrieval process reduces to the estimation of the coefficients
of the expansion.

Artificial neural networks (NN) have been recognized as
being a powerful tool for remote sensing of atmosphere as well
[6]. Their use in statistical estimation is often effective because
they can simultaneously address nonlinear dependencies and
complex statistical behavior.

A first attempt to combine the properties of both NN and
NOF is reported in [7]. Atmospheric profiles were expanded
on a base of natural orthogonal functions, and the coefficients
of the expansion were estimated with a neural network from
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the brightness temperatures measured by a seven-channel
microwave radiometer. The results show that the combined
algorithm, if compared with a linear regression technique, can
yield a more accurate retrieval and is more flexible and robust.

In this paper, a nonlinear principal component analysis
based on NN replaces the NOF algorithm. This analysis can
be applied to either the input or the output vector, so that,
in the inversion phase, the nonlinear principal components of
the atmospheric profiles can be derived from the nonlinear
principal components of the radiometric measurements. This
inversion is again performed by a neural network.

II. NONLINEAR PRINCIPAL COMPONENT ANALYSIS

Principal component analysis (PCA), or NOF expansion, is
a technique for mapping multidimensional data into lower di-
mensions with minimal loss of information [8]. The mapping,
from to , has the form

(1)

where is the matrix of the original data (
observations, variables), is the ( ) matrix of
the components (features), and is the matrix which
performs the mapping. The columns of are the eigenvectors
corresponding to the largest eigenvalues of the covariance
matrix ( ) of

(2)

solution of the eigenvalue problem

(3)

where is a diagonal matrix whose elements are the
largest eigenvalues of . These eigenvectors represent the

first natural orthogonal functions. The factorization (linear
transformation) of

(4)

is optimal in the sense that the Euclidean norm of the
residual matrix , norm , is minimized for the given
number of factors . The reconstruction of the data is per-
formed by

(5)
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Fig. 1. Two level temperature profile dataset distribution with linear corre-
lation.

In nonlinear principal component analysis (NLPCA) [9], the
mapping into feature space is generalized to allow arbitrary
nonlinear functionalities. Analogous to (1), the mapping is
expressed in the form

(6)

where is a nonlinear vector function, composed of
individual nonlinear functions, ,
analogous to the columns of . The inverse transformation,
restoring the original dimensionality of the data, analogous
to (5), is implemented by a second nonlinear vector function

(7)

Analogous to PCA, the functions and are selected to
minimize norm .

If nonlinear correlation between variables exists, NLPCA
will describe the data with greater accuracy and/or by fewer
components than PCA. A simple example can help to under-
stand this statement.

Consider the set of atmospheric temperature profiles, de-
scribed by the two temperature values at ground level and at
500 m height, which is plotted in Fig. 1. Each point represents
a different profile and some samples are drawn in Fig. 2 for
reference. The points in Fig. 1 are mainly distributed along
a straight line, showing little dispersion in the orthogonal
direction. The PCA identifies the two principal axes drawn
in the figure as dashed lines, and the use of only the first
principal component for the representation of the data leads to
a variance in the reconstruction error of 0.03 (versus a value
of 13.79 using only the least principal component), while the
variances of the original temperatures were 8.39 and 5.43,
respectively.

A different set of profiles is shown in Figs. 3 and 4. In
this case the points in Fig. 3 are mainly distributed around
an ellipse, representing profiles with greater variability in
the slope and with ground temperature inversions (Fig. 4). In

Fig. 2. Samples of profiles from the dataset of Fig. 1.

Fig. 3. Two level temperature profile dataset distribution with nonlinear
correlation.

this case, again, the two principal axes are drawn as dashed
lines, but a very poor approximation of the data is obtained
using only one principal component, with a variance in the
reconstruction error of 8.04 and 12.56 for the first and the least
component, respectively. If, on the other hand, the mapping to
the feature space is performed by the nonlinear transformation
which maps rectangular coordinates to polar with respect to
the center of the ellipse, a much better approximation is
obtained using only the polar angle. In fact, a variance in
the reconstruction error of 0.04 is obtained in this case, while
the use of only the radius leads to a value of 41.22. For
this reason, the angle can be considered our first nonlinear
principal component.

III. A UTOASSOCIATIVE NEURAL NETWORKS

To generate the functions and of previous section,
a basis function approach can also be used. Cybenko [10] has
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Fig. 4. Samples of profiles from the dataset of Fig. 3.

shown that functions of the following form are capable of
fitting any nonlinear function to an arbitrary degree
of precision

(8)

where is any continuous and monotically increasing
function with as and as

. A suitable function is the sigmoid

(9)

Equations (8) and (9) are the describing equations for a feed-
forward NN with inputs, a hidden layer containing
nodes with sigmoidal transfer functions, and a linear output
node for each th component of . In (8), represents
the weight on the connection from node in layer to
node in layer . The are nodal biases, treatable as
adjustable parameters like the weights. More details on NN
of this type are given in [11]. Here, we emphasize that (8)
and (9) are showing that multilayer neural networks can be
used to perform nonlinear dimensionality reduction, thereby
overcoming some of the limitations of NOF linear algorithm.

Consider then a multilayer perceptron whose topology has
the form shown in Fig. 5, having a left-hand stage (LS) with
inputs and a mapping (hidden) layer, one bottleneck (hidden)
layer with units ( ), and a right-hand stage (RS)
with a demapping (hidden) layer and output units. The
targets used to train the network are simply the input vectors
themselves, so that the network is attempting to map each
input vector onto itself. Due to the reduced number of units
in the central layer, a perfect reconstruction of all inputs is
not possible, in general, but the network can be trained by
minimizing a sum-of-squares error of the form

(10)

where is the number of the training examples,
represents the output of unit as a function of the input
vector , and the quantity represents the desired value
for output unit when the input vector is . Such a
network is said to form an autoassociative mapping. Error
minimization in this case represents a form of unsupervised
training, since no independent target data is provided [12].
The network can be viewed as two successive functional
mappings and . The first mapping (performed by
the LS) projects the original-dimensional data onto an -
dimensional subspace defined by the activations of the units in
the central hidden layer. Because of the presence of nonlinear
units, this mapping is essentially arbitrary, and in particular
not restricted to being linear. Similarly the second half of the
network (RS) defines an arbitrary functional mapping from
the -dimensional space back into the original-dimensional
space. The described network performs a NLPCA. It might
be thought that these arbitrary mappings can be performed
by a net with one hidden layer, obtained by the one of
Fig. 5 removing the mapping and demapping layers, provided
that the bottleneck layer has nonlinear (sigmoid) activation
functions. However, it was shown by Bourland and Kamp
[13] that, in this case, the PCA analysis is the one providing
the minimum error on the representation of the data in a
subspace with reduced dimensionality. There is not therefore
any advantage in using the net with one hidden layer to
perform dimensionality reduction. Another comment is that,
using the NLPCA analysis, it may be necessary to train and
compare several networks having different values ofto be
able to specify the proper number of components to be used.
A convenient strategy might be that of exploiting the PCA
properties and select this number using the linear approach.
The actual representation in the lower-dimensionality space
can then be realized with the NLPCA technique.

Examples of autoassociative networks capable of providing
good one-factor representation of data of the kind of those
reported in Fig. 3 can be found in [9], [14].

IV. THE GLOBAL INVERSION PROBLEM

Although the dimensionality reduction, operated on either
the input or the output vector, can lead to an optimized
definition of the inversion problem, it does not perform by
itself the inversion from the measured data to the desired
parameters. Therefore, three stages are needed to complete
the retrieval algorithm, as shown in Fig. 6. The first neural
net N , which is the LS of a net, as in Fig. 5, performs the
dimensionality reduction of the input. This net, processing the
input data, provides the mapping described in the previous
section. The middle net Nwill carry out the pure inversion
phase. Its input and output units are hidden units of the neural
net N given by the connection of networks N, N , and N .
The third net N (RS of a net, as in Fig. 5) executes the
mapping of the previous section on the output of net
N , yielding the predicted vector after having transformed
its dimension to that of the original data. The topology and
the weights characterizing each net are calculated separately
so that the nets can be optimized for their specific different
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Fig. 5. Topology of an autoassociative multilayer perceptron.

Fig. 6. Topology of the net performing the global retrieval algorithm.

task. Note that nets Nand N can easily implement a NOF
algorithm and in the same way net Ncan implement a
linear regression model so that the netrepresents a general
inversion procedure including linear models as special cases.

V. RESULTS

The algorithm described in the previous section has been
applied to retrieve atmospheric profiles from radiometric data.
Two sets (training and evaluation) of 1783 and 1662 tem-
perature and water vapor profiles, respectively, statistically
generated starting from the midlatitude summer standard at-

mosphere, have been used [15]. All profiles contain clouds.
Realistic and physically acceptable humidity and tempera-
ture irregularities as well ground-based inversions are also
included. Liebe’s millimeter-wave propagation model (MPM)
[16] has been used to compute the brightness temperatures
as would be measured with a ground-based microwave ra-
diometer aiming at zenith at the following seven frequencies:
22.235, 23.87, 31.65, 51.25, 52.85, 53.85, and 54.85 GHz.
These values define the actual channels of a new-generation
radiometer designed and developed under a European Space
Agency (ESA) contract by Officine Galileo, Florence, Italy



DEL FRATE AND SCHIAVON: NONLINEAR PRINCIPAL COMPONENT ANALYSIS 2339

[17]. To simulate noise in the radiometric channels, random
fluctuations with 0.5 K standard deviation (representative of
the performance of the mentioned radiometer) have been added
to the brightness temperature data. Ground measurements of
surface temperature and relative humidity have also been
considered.

The dimensionality reduction of the inputs (measurements)
could be very useful in the case of hyperspectral and/or
scanning remote sensing instruments, with hundreds or even
thousands of channels which can be correlated to one another.
For example, Westwateret al. [18] perform atmospheric tem-
perature profiling by means of a multifrequency (7) scanning
(50 angles) radiometer. In this case the degree of redun-
dancy is considerable and the measurements dimensionality
is conveniently reduced from 350 to 9 using a singular value
decomposition (SVD) [19].

In our case, with only seven radiometric channels, which
have been chosen to give different pieces of information, and
one ground measurement, the reduction of the dimension of the
input vector did not show to provide significant improvement
in the inversion process. For this reason it has not been applied,
while seven nonlinear principal components have been used
for the output (starting from the initial number of 33 levels
discretizing the profile) which guaranteed a satisfactory level
of representation. This means that the net used was made up
by only sections N and N of Fig. 6.

Using sigmoidal functions a scaling procedure is generally
recommended to prevent the input values from being in the
saturated regions. In this study, the input variables of the
autoassociative networks have then been linearly transformed
to have all values comprised in the range . Similarly,
being the outputs units characterized by sigmoidal functions,
the output variables have been scaled to have all values varying
in the range .

Several attempts have been made to properly choose the
number of hidden units to insert in the LS and RS stages of
the autoassociative NN which performs the NLPCA of the
atmospheric profiles. The following two topologies have been
selected: 33-18-7-18-33 for the case of temperature and 33-
30-7-30-33 for the vapor case. The hidden layer of netof
Fig. 6 has been made up by eight units for temperature and
12 units for vapor. Therefore, the resulting topology of the
net performing the global algorithm has been 8-8-7-18-33 for
temperature and 8-12-7-30-33 for vapor.

The rms representation accuracies, for both temperature and
vapor profiles, using seven nonlinear principal components are
plotted in Figs. 7 and 8 compared to those obtained with the
same number of linear principal components. The behavior
of PCA and NLPCA is quite similar for temperature (Fig. 7)
while NLPCA achieves a reduced rms error profile in the case
of vapor (Fig. 8).

As far as the complete inversion process is concerned,
some examples of retrieved temperature and vapor profiles are
plotted in Figs. 9 and 10, respectively. The profiles retrieved
with the technique described in this study are compared with
the actual profiles and with those retrieved by means of a
linear technique which estimates the coefficients of the NOF
expansion (PCA) of the profiles with a linear regression,

Fig. 7. The rms representation accuracies of temperature profiles using seven
NOF (dashed curve) and seven nonlinear components (solid curve).

Fig. 8. The rms representation accuracies of water vapor profiles using seven
NOF (dashed curve) and seven nonlinear components (solid curve).

as already performed in [5]. In general, the accuracies of
the retrievals obtained with the two different techniques are
comparable, while for the extreme cases, which are those
with the presence of ground inversions for temperature and
of thick clouds for vapor, the nonlinear technique performs
better. Observe in Fig. 9 (bottom) how the temperature profile
retrieved with the nonlinear inversion approaches the value of
the ground inversion more precisely than the linear technique,
while the estimation is essentially equivalent with no inversion
(top). In Fig. 10, two samples of vapor profiles are plotted.
The bottom graph shows the improved ability of the nonlinear
technique to follow sharp variations in the profile, particularly
at the boundaries of a thick cloud, where the linear one tend to
smooth out the retrieved profile. The estimation is comparable
when low cloud liquid is present, as shown in the top graph.

The overall retrieval accuracy is reported in Figs. 11 and
12, where the profiles of rms error of retrieved temperature
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(a)

(b)

Fig. 9. Examples of temperature profiles from the considered data set (solid
line), linear retrieval (dotted line), and nonlinear retrieval (dashed line).

and vapor, respectively, for both the linear and the nonlinear
technique are plotted. The standard deviation curves, also
plotted in the figures, give thea priori profiling accuracy
without measurements. The graphs show that the rms error
values of the retrieved atmospheric quantities are smaller for
NLPCA than for PCA for all levels in the profiles. This
means that the nonlinear technique provides a better retrieval
accuracy than that of the linear one.

Fig. 13 reports the retrieval accuracy of vapor for profiles
with the highest liquid content ( mm). In this case the
gap between the rms error profiles corresponding to the linear
and the nonlinear retrievals has grown wider with respect to
Fig. 12, confirming at an ensemble level what was already
observed at single-profile level when commenting Fig. 10.

It could be observed that the nonlinear method is more
complex than the linear one. In fact, more adaptive coefficients

(a)

(b)

Fig. 10. Examples of vapor profiles from the considered data set (solid line),
linear retrieval (dotted line), and nonlinear retrieval (dashed line).

Fig. 11. Profiles of rms error of retrieved temperature. Solid line: nonlinear
retrieval, dashed line: linear retrieval, and dotted line: standard deviation of
profiles from their means.
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Fig. 12. Profiles of rms error of retrieved vapor. Solid line: nonlinear
retrieval, dashed line: linear retrieval, and dotted line: standard deviation of
profiles from their means.

Fig. 13. Profiles of rms error of retrieved vapor in case ofL > 2 mm. Solid
line: nonlinear retrieval and dashed line: linear retrieval.

have to be calculated. Nevertheless, the number of these coef-
ficients can be significantly reduced by means of appropriate
pruning procedures [20], which, as a secondary effect, may
also improve the algorithm estimation accuracy.

Finally, we directly estimated the 33-level profiles from the
seven brightness temperatures and the ground measurements
by means of a multilayer perceptron with one hidden layer.
As far as the estimation accuracy is concerned, the results
were very close to those obtained using the NLPCA, the
latter being slightly better in terms of the rms error averaged
over the profile. Conversely, the inversion carried out with
the direct algorithm required a training time ten times longer
than that needed for the inversion in the algorithm performing
dimensionality reduction. In fact, a reduction of dimensionality
of the output vector, leading to a net with fewer weights,
significantly alleviates the training task.

VI. CONCLUSIONS

A NN-based algorithm for the inversion of radiometric
data to retrieve atmospheric profiles has been presented. In
the algorithm the pure inversion phase is combined with
pre/postprocessing of the data and both tasks are performed
using NN. This means that the NN potentialities are exploited
either to face the nonlinearities characterizing the inversion
problem or to implement a nonlinear principal component
analysis of the input and of the output vectors. This latter
finds and eliminates nonlinear correlations in the data and has
been carried out by means of autoassociative neural networks,
containing a bottleneck hidden layer and trained to learn
an identity mapping. The final proposed retrieval scheme
illustrates an inversion procedure operating according to the
described approach but also including the linear techniques as
by-product.

Results obtained with the considered new methodology have
been compared with those of linear algorithms. The advan-
tages of the neural processing are concerned either with the
representation of the data in a lower-dimensionality space or
with the retrieval capabilities in the global inversion problem.
Particularly, the considered algorithms are more precise in the
estimation of ground inversions and sharp variations in the
atmospheric profiles, providing results comparable with those
obtained using linear techniques when profiles are closer to
those characterizing the average atmospheric conditions.
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