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Neural Networks for Oil Spill Detection Using
ERS-SAR Data

Fabio Del Frate, Andrea Petrocchi, Juerg Lichtenegger, and Gianna Calabresi

Abstract—A neural network approach for semi-automatic de-
tection of oil spills in European remote sensing satellite-synthetic
aperture radar (ERS-SAR) imagery is presented. The network
input is a vector containing the values of a set of features char-
acterizing an oil spill candidate. The classification performance
of the algorithm has been evaluated on a data set containing
verified examples of oil spill and look-alike. A direct analysis of
the information content of the calculated features has been also
carried out through an extended pruning procedure of the net.

Index Terms—ERS-synthetic aperture radar (SAR), neural net-
works, oil spill detection.

I. INTRODUCTION

T HE DEVELOPMENT of spaceborne synthetic aperture
radar (SAR) systems, in particular the advent of the Eu-

ropean remote sensing satellite (ERS) missions, have improved
the possibilities for the detection of oil spills, seriously affecting
the marine ecosystem, allowing a more rigorous and cost-ef-
fective monitoring. The presence of an oil film on the sea sur-
face damps the small waves due to the increased viscosity of
the top layer and drastically reduces the measured backscat-
tering energy, resulting in darker areas in SAR imagery [1], [2].
However, careful interpretation is required because dark areas
might also be caused by locally low winds or by natural sea
slicks. To avoid false alarms, experienced image interpreters or
well tuned classification algorithms are employed. Indeed, oil
spills show a larger discontinuity effect with respect to the back-
ground, mainly because of their high viscosity.

Based on such a rationale, a possible operational procedure
could be as follows:

1) selection of an area in the image containing a dark object;
2) computation of physical and geometrical features charac-

terizing the object;
3) classification of the object into oil spill or look-alike,

based on the calculated features.
In this paper, we considered an operational scenario like the

one illustrated in Fig. 1. We assumed that an operator, by visual
inspection, performs the first step, while the two last steps are
executed automatically. Even though the attention of this work
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Fig. 1. Block-diagram showing a possible operational scenario for oil spill
detection.

is focused on the classification algorithm, a description of the
general aspects for the features extraction will be also given.

Mostly classification algorithms for oil spill detection rely on
Bayesian or other statistically-based decisions. The drawback of
these methods is the complex process to develop classification
rules, due to the many nonlinear and poorly understood factors
involved. These kinds of difficulties can be overcome by con-
sidering a neural network approach.

The use of neural networks in remote sensing has often been
found effective, since they can simultaneously handle nonlinear
mapping of a multidimensional input space onto the output one
and cope with complex statistical behavior [3]. Neural networks,
conversely, from statistically-based classifiers, do not require an
explicitly well defined relationship between the input and the
output vectors, as they determine their own input-output dis-
criminant relations directly from a set of training data, used to
draw the decision boundaries [4].

Our study investigates the potentiality of a neural network
approach to provide a classification algorithm only using
ERS-SAR data without auxiliary information. This could be
used to support and make the decision-taking process of image
analysts more reliable. Moreover, if an appropriate filter that
selects dark objects in the image is designed, the algorithm can
be considered for a fully automatic approach.

The input of the net consists of a set of features providing in-
formation about an oil spill candidate, and the output gives the
probability for the candidate to be a real oil spill. An optimiza-
tion of the neural net has also been carried out by using pruning
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Fig. 2. Image of a verified oil spill taken on June 10, 1998 outside Elba Island
(Italy).

algorithms which eliminate its ineffective connections. A dis-
cussion on the performance of the net and on the information
content of the considered individual features characterizing the
input vector is also conducted.

II. DATA SET

The nominal spatial resolution of the ERS data is 25 m
25 m, but for oil spill detection, low resolution images of 100
m 100 m are more than sufficient, and the data amount of
each image significantly reduced. For this reason, fast delivery
images produced at Fucino Station, Italy, have been considered
in our work. These products are common binary files of 1050
Kb reduced from a multilook SAR image by resampling (56
pixels block averaging).

It is to be noted that these products can be generated immedi-
ately after data acquisition and hence allow us to set up a system
that could support Coastal Guards for their activity of marine
pollution control.

For promotion and demonstration purposes, over 600 images
have been taken in the years 1997 and 1998 over various areas
of the Mediterranean Sea. Out of this archive, each image con-
taining at least one occurrence of look-alike or of oil spill, has
been selected and calibrated so that its pixel intensity values
were representing the measured backscattering coefficients. Im-
ages with examples of oil spill and of look-alike are shown in
Figs. 2 and 3, respectively. Many of these occurrences were re-
ported to the authorities and verified by the Coast Guards of
Italy and France.

After the radiometric range correction and the georeferencing
of each image, a dedicated oil spill processing and analysis tool
is applied, based on edge detection. The procedure starts with
the definition of a region of interest by the user. The tool ana-
lyzes the overall backscattering of the region and in particular

Fig. 3. Image of a verified natural film taken on July 5, 1998, near the coast
near Palermo, Italy.

Fig. 4. Histogram where the number of pixels in the region with the same grey
level is reported. The dashed line corresponds to the local minimum between the
two peaks and indicates the threshold value needed for the edge detection of a
oil spill candidate.

produces a histogram. The typical shape of such a histogram is
shown in Fig. 4. We see that the histogram contains two peaks,
the lower is located around the mean backscattering value of the
dark object, the taller around the mean value of the background.
The local minimum value between the two peaks is stored and
is the one used for image fragmentation. To this purpose, the
darkest pixel in the region is selected as a starting point and then
the region around this pixel grows, defining an edge that corre-
sponds to the border of the oil. The region grows until the neigh-
boring pixels have a value greater of the threshold value given
by the local minimum previously calculated (Fig. 4). Several
routines have been implemented dealing with anomalies from
the described general case. Subsequently, the human operator
can either accept the result suggested by the automatic proce-
dure or reject it and produce a new edge detection by changing
manually the threshold. In this way, the oil spill analysis tool is
made flexible and adaptive to a variety of situations. Once the
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Fig. 5. Fragmented oil spill. Image taken on August 6, 1998 outside Sicily
Island, Italy.

border of the dark object is accepted, a mask is generated and
a number of morphological and physical parameters are com-
puted. If more than one dark object is present in the selected
area, the described process can be extended to a neighboring
object so that oil spills consisting of multiple releases can be
also analyzed. In these cases, the features are first calculated for
each element and then elaborated to describe one single repre-
sentative object. An example of such a situation is reported in
Fig. 5, where the dark objects A, B, C, and D can be reasonably
assumed to originate from a single (likely) oil spill event.

At this point, the features extracted from the dark object are
input to a classifier that estimates its probability of being an oil
slick. These features consider the geometry of the dark object
in terms of its extension and of its shape, as well as the physical
behavior in terms of the characteristics of the backscattering in-
tensity of the pixels belonging to the object, to the background,
and to the area around the border. A more detailed description
of the features is the following.

1) Area ( ). Area (in km ) of the object.
2) Perimeter ( ). Length (in km) of the border of the object.
3) Complexity ( ). Complexity is defined as follows:

(1)

This feature will generally take a small numerical value
for regions with simple geometry and larger values for
complex geometrical regions.

4) Spreading ( ). This feature is derived from the principal
component analysis [5] of the vectors whose compo-
nents are the coordinates of the pixels belonging to the
object. If and are the two eigenvalues associated
with the computed covariance matrix and , the
spreading value is computed using this expression

(2)

will be low for long and thin objects and high for
objects closer to a circular shape.

TABLE I
MAIN STATISTICAL PARAMETERS DESCRIBING THE FEATURES

EXTRACTED FROM THEDATA SET

5) Object standard deviation (OSd). Standard deviation (in
dB) of the intensity values of the pixels belonging to the
oil spill candidate.

6) Background standard deviation (BSd). Standard devi-
ation (in dB) of the intensity values of the pixels be-
longing to the region of interest, selected by the user,
surrounding the object.

7) Max contrast (ConMax). Difference (in dB) between the
background mean value and the lowest value inside the
object.

8) Mean contrast (ConMe). Difference (in dB) between the
background mean value and the object mean value.

9) Max gradient (GMax). Maximum value (in dB) of
border gradient.

10) Mean gradient (GMe). Mean border gradient (in dB).
11) Gradient standard deviation (GSd). Standard deviation

(in dB) of the border gradient values.
The described set of features has been calculated for 139 dark

objects, 71 oil spills, and 68 look-alikes. For a number of exam-
ples, ground truth was available. Otherwise, the discrimination
was based on the independent judgment of experienced image
analysts. In Table I, some statistical parameters of the features
extracted from our data set are reported. The table shows that
oil spills have less complex and more thin shapes, while in case
of the look-alikes, the values of the backscattering either in the
object or in the surroundings are more dispersed. Also, oil spills
show mean value of the gradient along the border higher than
look-alikes. Look-alikes are generally larger than oil spills.

III. N EURAL ALGORITHM

An artificial neural network (NN) may be viewed as a mathe-
matical model composed of many nonlinear computational ele-
ments, named neurons operating in parallel and massively con-
nected by links characterized by different weights. A single
neuron computes the sum of its inputs, adds a bias term, and
drives the result through a generally nonlinear activation func-
tion to produce a single output termed the activation level of that
neuron. NN models are mainly specified by the net topology,
neuron characteristics, and training or learning rules.

The term topology refers to the structure of the network as a
whole, specifying how its input, output, and hidden units are in-
terconnected [6]. For this study, multilayer perceptrons (MLP)
have been considered, which have been found to have the best
suited topology for classification and inversion problems [7].
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Fig. 6. Feedforward topology for a neural network (NN).

These are feedforward networks, where the input flows only in
one direction to the output, and each neuron of a layer is con-
nected to all neurons of the successive layer but has no feed-
back to neurons in the previous layers. Two layers of weights
have been used in our case. The described topology is reported
in Fig. 6.

The individual neuron is the elemental building block of each
layer, and it is mainly characterized by its activation function.
The most common activation function is the nonlinear sigmoid
function, also used in our simulations, defined as follows:

(3)

Such an activation function yields values in the range [0,1].
An MLP is designed to approximate an unknown

input–output relation by determining the weight or strength
of each connection via learning rules. These rules indicate
how to pursue minimization of the error function measuring
the quality of the network’s approximation on the domain
covered by a training set (i.e., a set of input–output examples).
In our case, the input vector contains the measured features,
the output vector contains the response classification provided
either by the ground truth, or by image interpretation experts.
A preprocessing of the input variables is commonly performed.
In particular, this is useful if different input variables have
typical values that differ significantly and do not reflect the
relative importance in determining the required outputs. For
these reasons we scaled the input values so that they were
between 0.01–0.99.

The net was trained using the back propagation algorithm,
which uses a gradient search technique and iteratively adjusts
the weight coefficients in the network to minimize an error func-
tion equal to the mean square difference between the desired
and the actual net output. Iterating the procedure, the learning

process was stopped when no more significant variations in the
overall error were observed.

The neural network simulator (SNNS) developed at the
University of Stuttgart, Stuttgart, Germany, [8] formed the
basic software for the classification algorithm implementation
and proved to be a high level, flexible, and reliable software
package.

IV. RESULTS

Several attempts have been initially made to properly select
the number of units to be considered in the hidden layers. The
topology 11-8-8-1 has been finally chosen for its good perfor-
mance as well in terms of classification accuracy as well of
training time. In fact, the number of about 15 000 training cycles
was sufficient to get the network learned.

The classification results are very promising as, once trained,
the net is able to correctly classify all examples. The neural re-
sponses are generally not ambiguous. In fact, the outputs tend
to assume the extreme values in the allowed range [0,1]. This
means that with the considered data set and with the consid-
ered learning strategy the net succeeded in determining a pre-
cise mapping function. The function returns 0 if a dark spot in
the image is an oil spill, 1 if it is a look-alike.

A step forward in the evaluation of the neural net performance
consists in the analysis of its behavior once it is tested on a set
of new examples, not belonging to the training set. In order to
avoid the long time consuming work for the collection of a new
set of data, we decided to adopt the leave-one-out method [9].
According to this procedure, if is the number of the available
data points, a net is trained using 1 points and tested on
the remaining one. This process is repeated for each of the
possible choices, and the results can give a first estimation on
the generalizing capabilities of the net. In our case, where
139, it has been found that the 18% of real oil spills has been
misclassified as look-alike, and 10% of look-alikes have been
misclassified as oil spill, with an overall rate of misclassified
pixels of 14%. So there are some situations in which the single
data point does not respect the internal rules that the net has
learned from the other points. This can be explained with the
heterogeneity of the data set, which includes several examples
with very different geometric and physical characteristics.

The good performance of the neural algorithm encouraged a
second phase where an optimization of the net from the point
of view of the number of its adaptive parameters (units and con-
nections) has been carried out by using a pruning procedure. Ac-
cording to this, a network is examined to assess the relative im-
portance of its weights, and the least important ones are deleted.
Typically, this is followed by some further training of the pruned
network, and the procedure of pruning and training may be re-
peated for several cycles. Clearly, there are various choices to
be made concerning how much training is applied at each stage,
what fraction of the weights is pruned, and so on. In our case,
every time a weight was removed, we trained the new net until,
as in the case of the initial training, the overall error value was
approaching a value of convergence, and, since we started with
a net committing no errors, we continued with the pruning pro-
cedure until we realized that new removals involved errors in
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Fig. 7. NN after the pruning procedure.

TABLE II
CLASSIFICATION OF THEFEATURES SIGNIFIGANCE ACCORDING TO THE

ORDER OFREMOVAL OF THE INPUT COMPONENTS BYAPPLYING

THE PRUNING ALGORTIHM

the classification task. The most important consideration, how-
ever, is how to decide which weights should be removed. To
do this, we need some measure of the relative importance, or
saliency, of different weights. The results have been obtained by
applying the simple concept that small weights are less impor-
tant than large weights and by using the magnitude of a weight
value as a measure of its importance. At the end of the pruning
process, we obtained a new net that, though in terms of classifi-
cation accuracy showed the same performance of the initial one,
was characterized by a much smaller number of connections: 45
versus 160. This net is illustrated in Fig. 7.

We finally tried to examine which features, in the chosen con-
text, were containing less information and, conversely, which
were the features which might be crucial for the success of clas-
sification in the oil slick detection on SAR imagery. To this end,
we prolonged the pruning procedure to the input layer, until ten
of the eleven components of the input vector were removed (it
has to be recalled that an input or hidden unit is removed when
it has lost all its connections). The result of this analysis is syn-
thetically reported in Table II, where the features are classified
through three levels of significance, deduced from the order of
removal of the corresponding input units. We see that almost

all features belonging to the first class, i.e., containing the most
useful information, are those mainly involved in quantifying the
border discontinuity effect, so basically, those containing infor-
mation on the gradient of the backscattering value when we pass
from the background into the spill. A fourth crucial quantity
seems to be the background standard deviation, which is actu-
ally one of the parameters most affected by wind effects and is
generally high for natural sea slicks. In fact, natural sea slicks
tend to be more sparsely distributed than oil spills on the sea
surface. This can provoke the main film (i.e., the analyzed dark
object) to be accompanied by other minor damping effects in
the surrounding area (see also Fig. 3).

In the second level, shape features, together with a measure
of the homogeneity of the backscattering intensity inside the
object, confirm to give a significant contribution of information.
Finally, features measuring the extension of the dark object are
found to be reasonable in the third class.

V. CONCLUSIONS

The potentialities of NN algorithms for the detection of oil
spills in ERS-SAR imagery have been studied in this paper. The
data necessary to train the net has been generated using routines
that retrieve a set of specific features describing a dark area in a
ERS-SAR image over the sea. The neural net could correctly
discriminate over a set of independent examples between oil
spills and look-alikes with a largely acceptable rate of success.
It has been shown that the net can be made much simpler than
its initial and standard feedforward configuration. More than
70% of the connections of the initial topology could be removed
by means of a pruning algorithm without loss of accuracy of
the classification. Extending the pruning to the input layer, the
significance of the individual feature could be assessed.

It must be also pointed out that additional features taking into
account local atmospheric conditions such as wind speed might
still improve the oil spill detection performance.
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