

Earth Observation Laboratory *PhD Program in GeoInformation* **DISP - Tor Vergata University**

Wavenumber Spectra of High Resolution Optical Images for Characterizing Urban Features

Chiara Solimini, William J. Emery

- Use of different wavenumber spectra produced by both one-dimensional and two-dimensional Fast Fourier Transform (FFT) of images, to quantitatively describe features of different urban environments;
- QuickBird images provided by Digital Globe Inc.
- Computation of statistically significant confidence intervals;
- Spatial scale characterization of urban features.

Characteristics of the data set

City	Acquisition	Spatial	Off Nadir
	Date	Resolution	Angle
New York	08/20/2002	2.4 meters	20.3 Degrees
Boston	09/20/2005	2.4 meters	18.4 Degrees
San Francisco	02/12/2006	2.4 meters	19.8 Degrees
Rome	07/19/2004	2.4 meters	23 Degrees
Urban areas selected: downtown, airport, high density industrial/commercial			

Results are reported for band 2 (green, high sensitivity to mineral urban surfaces) and some test sites

Two-dimensional FFT: urban features characterization

A selected typical downtown area of Manhattan (NY): the image shows a uniform distribution of the 3D representation: bottom layer: original inlage; middle layer: pixels reflectance values; top layer: object image contours

Theo perpendicenergy eclaratesists essmopphily building, rand priefstation datas directionly fromenties n buildings, tradtpeakryalohiffeESAFt aind MADA, dizectiond. Ibrightnessi (segular predetons repetition).not very bright image features.

In the housing area energy is mainly distributed along two axes, according to road orientations. 6 of 15

One-dimensional FFT: urban feature characterization

Rotated image of downtown Manhattan, NY; rotation angle defined by the ridges of the two-dimensional Power Spectrum;

To eliminate spectral dependency on relative image acquisition angle

One-dimensional FFT: urban feature characterization

Fig. (a): Reflectance values relative to column 130: buildings spectral periodicity. Fig. (b): Power Spectrum (solid line) and smoothed power spectrum (dashed line);

Chi-square distribution in logarithmic scale (Emery and Thomson, Data Analysis Methods In

Physical Oceanography, Elsevier, Amsterdam, 2001):

$$\log[v / \chi^{2}_{1-\alpha/2,v}] \le \log[G_{yy}(f)] - \log[G'_{yy}(f)] \le \log[v / \chi^{2}_{\alpha/2,v}]$$

$$G_{yy} \longrightarrow (1-\alpha)100\%; v = \text{Degrees of Freedom (DOF)} = 2\text{K} = 6;$$

Peak at 72 m represents the spatial periodicity of buildings (roof widths); peaks around 24, 48 m correspond to spatial periods of small bright features on roof tops (e.g. air conditioning installations and storages) along with smaller buildings.

One-dimensional FFT: urban features characterization

Reflectance values relative to row 100:

high peaks are caused by periodicity of both smaller and larger

features (building tops).

The peak centred at 50 m corresponds to the spatial periodicity of small bright features (house roof tops).

The longer wavelength peak around 90 m is contributed by larger buildings.

Accuracy assessment by ancillary data comparison.

Rotated image of high density urban area of San Francisco.

Numbers denote image rows and columns

Reflectance values relative to column 108 of San Francisco downtown area. Long-wavelength periodicity is determined by blocks contoured by streets, within a block mid-wavelength periodicity is determined by lots, while houses within lots affect the short-wavelength spectrum.

Rotated image of a commercial/industrial area of San Francisco.

The wavenumber spectra are shown to effectively allow the identification of high-level (object or region of interest) spatial features from the low-level (pixel) representation.

- Wavenumber spectra result from spatial and spectral information of highresolution images.
- Wavenumber spectra can represent global features of cities
- Spectral analysis highlights differences and analogies between cities in different locations, climates, history.
- Spectra characterize different urban environments within the same city
- Spectral characteristics may help understanding how the cities have been built and developed, according with topology.

• A straightforward analysis process and a particular ease for applicability due to the limited number of pre-processing steps which could be a source of uncertainty and errors

• A limited evaluation of processing parameters which may strictly depend on the image features

• Generalization ability: the methodology is suitable for different scenarios and other satellite data sources

FUTURE WORK:

Change Detection

Data Mining ergata

Multi Bands Analysis