

URBAN LAND-USE MULTI-SCALE TEXTURAL ANALYSIS

Fabio Pacifici¹, Marco Chini² and William J. Emery³

f.pacifici@disp.uniroma2.it

Earth Observation Laboratory, DISP, Tor Vergata University, Rome, Italy
 Istituto Nazionale di Geofisica e Vulcanologia – INGV, Rome, Italy
 Colorado Center for Astrodynamics Research, University of Colorado at Boulder, Colorado, U.S.A.

IGARSS 2008, Boston - July, 2008

Urban areas currently cover only 2% of the land surface, but they have a global impact due to the size of the demand associated to:

- energy
- food
- water
- raw material

The analysis of the urban environment represents one of the most important areas for the remote sensing community.

Urban areas are composed of numerous materials:

- -

concrete, asphalt, metal, plastic, glass, water, grass, shrubs, trees and soil arranged by humans in complex ways to build housing, transportation systems, utilities, commercial buildings and recreational areas.

Very high resolution panchromatic images, such those provided by QuickBird, WorldView 1 and future WorldView 2, have the potential for an increase in accurate mapping of the urban environment with a sub-meter ground resolution.

It is necessary to extract additional information from panchromatic data to recognize objects within the scene, such as morphological or textural features.

Although more information may be helpful for the classification process, it could introduce other problems:

- "curse" of dimensionality Vergata
- increase of computation time

<u>ati</u>

This results in a necessity to estimate the contribution of each parameter in order to reduce and optimize the input space.

A multi-scale textural analysis is presented to optimize the classification process of urban land-use in very high spatial resolution panchromatic imagery.

Location C	Acquisition Date	Satellite	Spat. Res. (m)	Dim. (pixels)	
Las Vegas, U.S.A.	May 10, 2002	OuisleDird	0.6	755x722	
Rome, Italy	July 19, 2004	QuickBild	0.0	1188x973	
Washington, U.S.A.	December 18, 2007	WorldView	0.5	2173x2103	
San Francisco, U.S.A.	November 26, 2007	rnata	0.5	917x889	

Outline

- 1. Classification performance for Las Vegas, Rome and Washington:
 - panchromatic data
 - multi-scale textural features + NN topology optimization
 - multi-scale textural features + NN extended pruning

to give evidence of the most relevant input features

- 2. Analysis of the input feature contributions for the 3 data sets:
 - extraction of the most significant features
 - application of the resulting parameters to an independent data set (San Francisco)
- 3. Analysis of texture properties of shadowed areas
- 4. Conclusions

Urban environment with regular structures

Presence of cars in the parking lots

Small shadows

Medium off-nadir angle (12.8°)

Land-Use Classes	TR	VS
Bare Soil	4255	44675
Commercial Buildings	1822	19126
Drainage Channel	1143	12001
Highway	2836	29774
Parking Lots	2257	23695
Residential Houses	7007	73563
Roads	6098	64023
Short Vegetation	1793	18823
Soil	1472	15437
Trees	1043	10945
Water	118	1236
TOTAL ROIS	29844	313298

Land-Use Classes				
	Bare Soil			
	Commercial Buildings			
	Drainage Channel			
	Highway			
	Parking Lots			
	Residential Houses			
	Roads			
	Short Vegetation			
	Short Vegetation Soil			
	Short Vegetation Soil Trees			

Overall Error = 50.2% *k*-Coeff. = 0.378

Las Vegas – Analysis of DG

We analyze the contextual information of each pixel by mean textural features.

Las Vegas – Homogeneity

Wide structures

Homogeneity assumes larger values for smaller gray tone differences in pair elements.

The classification process with a large input space rarely yields high classification accuracies due to information redundancy of certain inputs.

Neural network pruning eliminates the weakest connections and at the same time optimizes the network topology:

generally, this increases the classification accuracy.

Neural network pruning was used to eliminate the textural features that did

not contribute to the classification process

i.e. textural features that introduce ONLY redundancy.

The remaining input features totaled 169.

]	Land-Use Classes		
	Bare Soil		
	Commercial Buildings		
	Drainage Channel		
	Highway		
	Parking Lots		
	Residential Houses		
	Roads		
	Short Vegetation		
	Soil		
	Trees		
	Water		

Overall Error = 6.8%

k-Coeff. = 0.920

2 Different urban environments:

- old style architecture
- new style architecture

Many temporary objects:

- cars

- buses

Long shadows

High off-nadir angle (23°)

Land-Use Classes	TR	VS	
Bare Soil	4127	38572	
Apartment Blocks	20472	44672	
Buildings	27188	77034	
Railway	2606	6727	
Roads	35531	69002	
Soil	3506	5776	
Tower	9187	19365	
Trees	13632	38624	
Short Vegetation	10443	29587	
TOTAL ROIS	126692	329359	

Land-Use Classes				
	Bare Soil			
	Apartment Blocks			
	Buildings			
	Railway			
	Roads			
	Soil			
	Tower			
	Trees			
	Short Vegetation			

Overall Error = 66.0% *k*-Coeff. = 0.184

Again, pruning was applied to reduce the number of textural features eliminating the

redundant inputs. The selected input features were 140.

L	Land-Use Classes		
	Bare Soil		
	Apartment Blocks		
	Buildings		
	Railway		
	Roads		
	Soil		
	Tower		
	Trees		
	Short Vegetation		

Overall Error = 5.0% *k*-Coeff. = 0.941

Washington – Data Set and Regions Of Interest

- **3 Different urban environments:**
 - small residential houses
 - large buildings
 - tall large buildings

Very long shadows (24.9° sun elevation)

Very high off-nadir angle (27.8°)

Land-Use Classes	TR	VS	
Buildings	24178	76159	
Highway	17985	56653	
Parking Lots	17019	53611	
Residential	14195	44714	
Roads	20618	64946	
Soil	2553	8043	
Sport Facilities	8270	26051	
Tall Buildings	21047	66297	
Trees	18535	58386	
Short Vegetation	23403	73720	
Walk side	12203	38439	
TOTAL ROIS	180006	567019	

Land-Use Classes				
	Buildings			
	Highway			
	Parking Lots			
	Residential			
	Roads			
	Soil			
	Sport Facilities			
	Tall Buildings			
	Trees			
	Short Vegetation			
	Walk side			

Overall Error = 68.6%

k-Coeff. = 0.187

L	Land-Use Classes			
	Buildings			
	Highway			
	Parking Lots			
	Residential			
	Roads			
	Soil			
	Sport Facilities			
	Tall Buildings			
	Trees			
	Short Vegetation			
	Walk side			

Overall Error = 8.6% *k*-Coeff. = 0.904

Feature selection with neural networks can be seen as a special case of architecture pruning.

EXTENDED PRUNING is the process of eliminating the least contributing

inputs in order to identify an optimal textural feature set:

this further input textural feature reduction results in a decrease in the classification accuracy.

	LA	S VEGAS			ROME		WASI	HINGTON DC	
	Class. Err. (%)	k-Coeff.	Inputs	Class. Err.	k-Coeff.	Inputs	Class. Err. (%)	k-Coeff.	Inputs
Panchromatic	50.2	0.378	1	66.0	0.184	1	68.6	0.187	1
Full NN	7.1	0.916	191	16.9	0.798	191	14.5	0.838	191
Pruned NN	6.8	0.920	169	5.0	0.941	140	8.6	0.904	152
Ext. Pruning	12.0	0.859	59	15.1	0.820	61	18.31	0.796	59

A simple method of determining the relative significance of the input features once the network has been trained considers the most important input units those that have the largest absolute values of weighted connections.

In the case of two hidden layers, a saliency metric for the single feature input *i* with respect to the class *j* is given by:

$$S_{ij} = \sum_{k \in H1} \left[\frac{|w_{ik}|}{\sum_{k' \in H1} |w_{ik'}|} \cdot \sum_{x \in H2} \left(\frac{|w_{kx}||w_{xj}|}{\sum_{x' \in H2} |w_{kx'}| \cdot \sum_{x' \in H2} |w_{x'j}|} \right) \right]$$

The relevance (*contribution*) of the input feature *i* with respect to all output classes is given by: $O TOr Venerata S_i = \sum_{j=1}^{N_{cl}} S_{ij}$

Extended Pruning (1/2)

Extended Pruning (2/2)

Textural Analysis – features-cell sizes-directions

Input Features	Relative Feature Contribution			
Panchromatic	0.029			
Mean	0.434			
Variance	0.214			
Homogeneity	0.803			
Contrast	0.708			
Dissimilarity	1.000			
Entropy	0.546			
Second Moment	0.577			
Correlation	0.331			

Cell size	Relative Contribu	ition
3x3	0.034	
7x7	0.081	
15x15	0.272	
31x31	0.738	
51x51	1.000	

Relative Contribution
1.000
0.923
0.821

23 of 30

How well do these 10 features classify a new urban scene?

Long shadows (29.6° sun elevation)

High off-nadir angle (19.6°)

Classes	TR	VS
Buildings	36,689	85,240
Roads	49,436	114,857
Soil	6,524	15,158
Trees	7,745	17,993
Vegetation	1,465	3,404
TOTAL ROIs	101,859	236,652

San Francisco – Classification Map

Land-cover Classes	
	Buildings
	Roads
	Soil
	Trees
	Vegetation

Overall Error = 5.1% *k*-Coeff. = 0.917

Panchromatic ONLY: Overall Error = 42.8% *k*-Coeff. = 0.224

Textural Analysis – shadowed areas of the Rome set

A multi-scale textural approach made it possible to classify urban LAND-USE on a per-pixel basis overcoming the spectral information deficit of panchromatic imagery.

The obtained classification maps not only showed different asphalt surfaces, such as ROADS, **HIGHWAYS** and **PARKING LOTS**, but also discriminated traffic patterns in the parking lots. The method also differentiated building architectures, such as **RESIDENTIAL HOUSES**, **APARTMENT BLOCKS and TOWERS.**

The analysis of the feature contributions indicates the importance of using cell dimensions greater than 31x31 pixels for images with a 50 cm resolution. Dissimilarity appears to be the most significant textural feature among those considered.

The ten features selected appear to generalize well to new urban scenes. Shadowed areas show their own texture properties with respect to non-shadowed areas of the same class.

Thank you for your attention!

Contacts:

Fabio Pacifici f.pacifici@disp.uniroma2.it

Tor Vergata University Dottorandi GeoInformazione - room DT09 Dipartimento di Informatica Sistemi e Produzione – DISP Via del Politecnico, 1 - 00133 Rome ITALY Office. +39 06 7259 7711

University of Colorado at Boulder

Engineering Center North Office Tower - room 218 ECNT Colorado Center for Astrodynamics Research (CCAR) Department of Aerospace Engineering Sciences Boulder, CO 80309 USA Office. +1 303 492 1308

