

Compact and Full Polarimetric SAR techniques

Presenter Marco Lavalle, DISP, Tor Vergata University, Rome, Italy

D. Solimini, Tor Vergata University, E. Pottier, University of Rennes 1

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. – 2^{cd} Oct. 2009

1. FULL POLARIMETRY AND FULL POLINSAR

2. COMPACT POLARIMETRY AND COMPACT POLINSAR

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. – 2^{cd} Oct. 2009

Radar Polarimetry (Polar : polarisation Metry: measure) is the science of acquiring, processing and analysing the polarization state of an electromagnetic field

Radar Polarimetry deals with the full vector nature of polarized electromagnetic waves

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. - 2^{cd} Oct. 2009

what is polarimetry

The information contained into backscattered waves from a given target is highly related to:

- \rightarrow geometrical structure
- \rightarrow reflectivity
- \rightarrow shape
- \rightarrow orientation
- \rightarrow geophysical properties
- \rightarrow umidity
- \rightarrow roughness
- \rightarrow etc.

space-borne sensors

SEASAT NASA/JPL (USA) L-Band, 1978

ERS-1 **European Space Agency (ESA)** C-Band, 1991-2000

J-ERS-1 Japanese Space Agency (NASDA) L-Band, 1992-1998

SIR-C/X-SAR NASA/JPL, L- and C-Band (quad) DLR / ASI, X-band April and October 1994

RadarSAT-1 Canadian Space Agency (CSA) C-Band, 1995-today

ERS-2 **European Space Agency (ESA)** C-Band, 1995-today

Shuttle Radar Topography Mission (SRTM) NASA/JPL (C-Band), DLR (X-Band) February 2000

ENVISAT / ASAR European Space Agency (ESA) C-Band (dual), 2002-today

ALOS / PALSAR Japanese Space Agency (JAXA) German Aerospace Center (DLR) / Astirum L-Band (quad), 2006

TerraSAR-X X-Band (quad), 2007

RadarSAT-II Canadian Space Agency (CSA) C-Band (quad), 2007

EURAD

2009

COSMO-SkyMed Italian Space Agency (ASI) X-Band, 2007

WORKSHOP AND SHORT COURSES

space-borne sensors

SEASAT NASA/JPL (USA) L-Band, 1978

ERS-1 **European Space Agency (ESA)** C-Band, 1991-2000

J-ERS-1 Japanese Space Agency (NASDA) L-Band, 1992-1998

SIR-C/X-SAR NASA/JPL, L- and C-Band (guad) DLR / ASI, X-band April and October 1994

RadarSAT-1 Canadian Space Agency (CSA) C-Band, 1995-today

ERS-2 **European Space Agency (ESA)** C-Band, 1995-today

Shuttle Radar Topography Mission (SRTM) NASA/JPL (C-Band), DLR (X-Band) February 2000

ENVISAT / ASAR European Space Agency (ESA) C-Band (dual), 2002-today

ALOS / PALSAR Japanese Space Agency (JAXA) German Aerospace Center (DLR) / Astirum L-Band (quad), 2006

TerraSAR-X X-Band (quad), 2007

RadarSAT-II Canadian Space Agency (CSA) C-Band (quad), 2007

2009

COSMO-SkyMed Italian Space Agency (ASI) X-Band, 2007

WORKSHOP AND SHORT COURSES

space-borne sensors

SEASAT NASA/JPL (USA) L-Band, 1978

ERS-1 **European Space Agency (ESA)** C-Band, 1991-2000

J-ERS-1 Japanese Space Agency (NASDA) L-Band, 1992-1998

SIR-C/X-SAR NASA/JPL, L- and C-Band (quad) DLR / ASI, X-band April and October 1994

RadarSAT-1 Canadian Space Agency (CSA) C-Band, 1995-today

ERS-2 **European Space Agency (ESA)** C-Band, 1995-today

Shuttle Radar Topography Mission (SRTM) NASA/JPL (C-Band), DLR (X-Band) February 2000

ENVISAT / ASAR European Space Agency (ESA) C-Band (dual), 2002-today

ALOS / PALSAR L-Band (quad), 2006

TerraSAR-X Japanese Space Agency (JAXA) German Aerospace Center (DLR) / Astirum X-Band (quad), 2007

RadarSAT-II Canadian Space Agency (CSA) C-Band (quad), 2007

EURAD

2009

COSMO-SkyMed Italian Space Agency (ASI) X-Band, 2007

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. - 2cd Oct. 2009 EuWiT 2009

 (\bigcirc)

space-borne sensors

SEASAT NASA/JPL (USA) L-Band, 1978

ERS-1 **European Space Agency (ESA)** C-Band, 1991-2000

J-ERS-1 Japanese Space Agency (NASDA) L-Band, 1992-1998

SIR-C/X-SAR NASA/JPL, L- and C-Band (guad) DLR / ASI. X-band April and October 1994

RadarSAT-1 **Canadian Space Agency (CSA)** C-Band, 1995-today

ERS-2 **European Space Agency (ESA)** C-Band, 1995-today

Shuttle Radar Topography Mission (SRTM) NASA/JPL (C-Band), DLR (X-Band) February 2000

ENVISAT / ASAR European Space Agency (ESA) C-Band (dual), 2002-today

ALOS / PALSAR L-Band (quad), 2006

TerraSAR-X Japanese Space Agency (JAXA) German Aerospace Center (DLR) / Astirum X-Band (quad), 2007

RadarSAT-II Canadian Space Agency (CSA) C-Band (quad), 2007

COSMO-SkyMed Italian Space Agency (ASI) X-Band, 2007

WORKSHOP AND SHORT COURSES

ALOS-PALSAR

RADARSAT-1

TERRASAR-X

Orbit: LEO, Circular	Sun-synchronous	Sun-synchronous	Sun-synchronous
Repeat Period	46 days	24 days	11 days
Equatorial Crossing Time (<i>hrs</i>)	22:30 (ascending)	18:00 (ascending)	18:00 (ascending)
Inclinaison (<i>deg</i>)	98.16	98.60	97.44
Equatorial Altitude (<i>km</i>)	692	798	515
Wavelegth - Band	23cm (L)	5.6 cm (C)	3 cm (X)

European Microwave Week, Rome, 28th Sept. – 2^{cd} Oct. 2009

EURAD

2009 European Radar Conference

TanDEM – X

TanDEM-L – DESDynil

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. – 2^{cd} Oct. 2009

 (\bigcirc)

SAR POLARIMETRY APPLICATIONS

Forest Vegetation

- Forest Height
- Forest Biomass
- Forest Structure
- Canopy Extinction
- Underlying Topography

- Forest Ecology
- Forest Management
- Ecosystem Change
- Carbon Cycle

Agriculture

- Soil Moisture Content
- Soil roughness
- Height of Vegetation Layer
- Extinction of Vegetation Layer
- Moisture of Vegetation Layer
- Farming Management
- Water Cycle
- Desretification

- Topography
- Penetration Depth / Density
- Snow Ice Layer
- Snow Ice Extinction
- Water Equivalent

- Ecosystem Change
- Water Cycle
- Water Management

- Geometric Properties
- Dielectric Properties

Urban Monitoring

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. – 2^{cd} Oct. 2009

EURAD

DC8 P, L, C-Band (Quad)

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. – 2^{cd} Oct. 2009

© Google Earth

Sinclair Color Coding

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. – 2^{cd} Oct. 2009

EURAD

2009 European Radar Confere

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. – 2^{cd} Oct. 2009

EURAL

VECTORIZATION OF [S]

$$\begin{bmatrix} S \end{bmatrix} = \begin{bmatrix} S_{HH} & S_{HV} \\ S_{HV} & S_{VV} \end{bmatrix} \implies \underline{k} = V(\llbracket S \rrbracket) = \frac{1}{2} Trace(\llbracket S \llbracket \psi \rrbracket)$$

EuWiT

2009

EuMIC

2009

2009

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. - 2^{cd} Oct. 2009

TARGET VECTOR <u>k</u>

$$\underline{k} = \frac{1}{\sqrt{2}} \begin{bmatrix} S_{HH} + S_{VV} & S_{HH} - S_{VV} & 2S_{HV} \end{bmatrix}^T$$

COHERENCY MATRIX [7]

$$\begin{bmatrix} T \end{bmatrix} = \underline{k} \cdot \underline{k}^{*T} = \begin{bmatrix} 2A_0 & C - jD & H + jG \\ C + jD & B_0 + B & E + jF \\ H - jG & E - jF & B_0 - B \end{bmatrix}$$

HERMITIAN MATRIX - RANK 1

A0, B0+B, B0-B : HUYNEN TARGET GENERATORS

[T] is closer related to Physical and Geometrical Properties of the Scattering Process, and thus allows a better and direct physical interpretation

TARGET GENERATORS

PHYSICAL INTERPRETATION

$$T_{11} = 2A_0 = |S_{HH} + S_{VV}|^2$$

$$T_{33} = B_0 - B = 2 |S_{HV}|^2$$

39 EUROPEAN MICROWAVE CONFERENCE

EURAD

2009 European Radar Conferen

EuMIC

2009

$$T_{22} = B_0 + B = |S_{HH} - S_{VV}|^2$$

EuWiT

2009

WORKSHOP AND SHORT COURSES

SINCLAIR MATRIX

$$\left[S_{(B,B_{\perp})}\right] = \left[U_{(A,A_{\perp})\mapsto(B,B_{\perp})}\right]^{T} \left[S_{(A,A_{\perp})}\right] \left[U_{(A,A_{\perp})\mapsto(B,B_{\perp})}\right]$$

CON-SIMILARITY TRANSFORMATION

$$igg[U_{2(A,A_{ot})\mapsto(B,B_{ot})}igg]$$

U(2) SPECIAL UNITARY ELLIPTICAL BASIS TRANSFORMATION MATRIX

COHERENCY MATRIX

$$\begin{bmatrix} T_{(B,B_{\perp})} \end{bmatrix} = \begin{bmatrix} U_{3(A,A_{\perp})\mapsto(B,B_{\perp})} \end{bmatrix} \begin{bmatrix} T_{(A,A_{\perp})} \end{bmatrix} \begin{bmatrix} U_{3(A,A_{\perp})\mapsto(B,B_{\perp})} \end{bmatrix}^{-1}$$

SIMILARITY TRANSFORMATION

$$\left[U_{3(A,A_{\perp})\mapsto(B,B_{\perp})}
ight]$$

U(3) SPECIAL UNITARY ELLIPTICAL BASIS TRANSFORMATION MATRIX

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. – 2^{cd} Oct. 2009

 $\begin{bmatrix} U \end{bmatrix} = \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} \cos(\tau) & j\sin(\tau) \\ j\sin(\tau) & \cos(\tau) \end{bmatrix} \begin{bmatrix} e^{-j\alpha} & 0 \\ 0 & e^{j\alpha} \end{bmatrix}$ $\begin{bmatrix} U_2(\phi) \end{bmatrix} \begin{bmatrix} U_2(\tau) \end{bmatrix} \begin{bmatrix} U_2(\alpha) \end{bmatrix}$

SPECIAL UNITARY SU(3) GROUP

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(2\phi) & \sin(2\phi) \\ 0 & -\sin(2\phi) & \cos(2\phi) \end{bmatrix} \begin{bmatrix} \cos(2\tau) & 0 & j\sin(2\tau) \\ 0 & 1 & 0 \\ j\sin(2\tau) & 0 & \cos(2\tau) \end{bmatrix} \begin{bmatrix} \cos(2\alpha) & -j\sin(2\alpha) & 0 \\ -j\sin(2\alpha) & \cos(2\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} U_3(2\phi) \end{bmatrix} \begin{bmatrix} U_3(2\tau) \end{bmatrix} \begin{bmatrix} U_3(2\alpha) \end{bmatrix}$$

 (ϕ, τ, α) POLARIZATION ELLIPSE PARAMETERS

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. – 2^{cd} Oct. 2009

EURAD

SPECKLE FILTERING

2009

2009 an Radar Conferen

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. – 2^{cd} Oct. 2009

EURAD

TARGET VECTOR
$$\underline{k} = \frac{1}{\sqrt{2}} \begin{bmatrix} S_{XX} + S_{YY} & S_{XX} - S_{YY} & 2S_{XY} \end{bmatrix}^T$$

LOCAL ESTIMATE OF THE COHERENCY MATRIX $\langle [T] \rangle = \frac{1}{N} \sum_{i=1}^{N} \underline{k}_i \cdot \underline{k}_i^{*T} = \frac{1}{N} \sum_{i=1}^{N} [T_i]$

EIGENVECTORS / EIGENVALUES ANALYSIS

$$\langle [T] \rangle = [U_3] [\Sigma] [U_3]^{-1} = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}^{*T}$$

$$\begin{array}{c} \text{ORTHOGONAL} \\ \text{EIGENVECTORS} \end{array} \xrightarrow{\text{REAL EIGENVALUES} \\ \lambda_1 > \lambda_2 > \lambda_3 \\ & & & & & & \\ \lambda_1 > \lambda_2 > \lambda_3 \end{array} \xrightarrow{P_i} = \frac{\lambda_i}{\sum\limits_{k=1}^{3} \lambda_k}$$

$$\begin{array}{c} \text{ORTHOGONAL} \\ \text{EIGENVECTORS} \end{array} \xrightarrow{P_i = \frac{\lambda_i}{\sum\limits_{k=1}^{3} \lambda_k} \\ \text{ORTSHOP AND SHORT COURSES} \end{array} \xrightarrow{P_i = \frac{\lambda_i}{\sum\limits_{k=1}^{3} \lambda_k}$$

European Microwave Week, Rome, 28th Sept. - 2cd Oct. 2009

PARAMETERISATION OF THE SU(3) UNITARY MATRIX

 $\underline{\alpha} = P_1 \alpha_1 + P_2 \alpha_2 + P_3 \alpha_3 \quad : \text{ROLL INVARIANT}$

PHYSICAL INTERPRETATION

H/A/ α DECOMPOSITION

$\underline{\alpha} \text{ parameter}$

H/A/ α DECOMPOSITION

ENTROPY (H)

SEGMENTATION OF THE H / $\underline{\alpha}\,$ SPACE

ALOS - PALSAR

2009

E

2009

2009

- PALSAR Quad POL
- PALSAR Data Level 1.1

WORKSHOP AND SHORT COURS Cape Town – February 2009

European Microwave Week, Rome, 28th Sept. – 2^{cd} Oct. 2009

Cape Town – February 2009 2009 2009 A ••• 2009 European Radar Conference

WORKSHOP AND SHORT COURSI

European Microwave Week, Rome, 28th Sept. - 2cd Oct. 2009

European

European

RADARSAT-1

Cape Town – April 2009

2009

2009 European Radar Conferen

2009

A

- RADARSAT-2 Quad POL
- RADARSAT-2 Fine Mode

WORKSHOP AND SHORT COURSES

European Microwave Week, Rome, 28th Sept. - 2cd Oct. 2009

Cape Town – April 2009 A 2009 2009

WORKSHOP AND SHORT COURSES

European Microwave Week, Rome, 28th Sept. - 2cd Oct. 2009

|HH+VV| |HV| |HH-VV|

ð

European I

Date des images satellite : 5 mars 2008

18.415135

lat -34.020882° long

BOOGLE ENCE 2000

Altitude 20.97 mi 🔘

FULL POLARIMETRIC SAR INTERFEROMETRY

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. – 2^{cd} Oct. 2009

 (\bigcirc)

INTRODUCTION to POLINSAR

 \rightarrow PollnSAR basic idea

- InSAR coherence has different sensitivity according to polarization
- To discriminate among different components of the vertical structure of vegetation
- → Key observable
 - Complex degree of coherence $\widetilde{\gamma}$
- \rightarrow ALOS PALSAR
 - L-band
 - 46 days revisit time

European Microwave Week, Rome, 28th Sept. - 2^{cd} Oct. 2009

INTRODUCTION to POLINSAR vertical distribution of scatterers

→ Complex coherence model (Truhaft and Siqueira, Cloude and Papathanassiou):

$$\widetilde{\gamma}_{t} = \frac{\left\langle S_{1}^{A} S_{2}^{B^{*}} \right\rangle}{\sqrt{\left\langle S_{1}^{A} S_{1}^{B^{*}} \right\rangle \left\langle S_{1}^{A} S_{2}^{B^{*}} \right\rangle}} = e^{jk_{z}z_{0}} \frac{\int_{0}^{h_{y}} \rho(z) e^{jk_{z}z} dz}{\int_{0}^{h_{y}} \rho(z) dz}$$

INTRODUCTION to POLINSAR

vertical distribution of scatterers

→ Complex coherence model (Truhaft and Siqueira, Cloude and Papathanassiou):

$$\widetilde{\gamma}_{l} = \frac{\left\langle S_{1}^{A} S_{2}^{B^{*}} \right\rangle}{\sqrt{\left\langle S_{1}^{A} S_{1}^{B^{*}} \right\rangle \left\langle S_{1}^{A} S_{2}^{B^{*}} \right\rangle}} = e^{jk_{z} z_{0}} \frac{\int_{0}^{h_{z}} \rho(z) e^{jk_{z} z} dz}{\int_{0}^{h_{z}} \rho(z) dz}$$

$$SINC = e^{jk_{z} z_{0}} e^{jk_{z} \frac{h_{z}}{2}} \operatorname{Sinc}\left(k_{z} \frac{h_{v}}{2}\right)$$

$$h_{v}$$

$$z_{v}$$

$$\int_{0}^{z_{v}} \rho(z)$$

Introduction

 \rightarrow

Vertical distribution of scatterers

Complex coherence model (Truhaft and Sigueira, Cloude and Papathanassiou): \rightarrow

main issues

vertical distribution of scatterers

- → Polarization diversity allows to identify top- (ϕ_A) and bottom-phase center (ϕ_B)
- \rightarrow Temporal decorrelation
 - Up to a certain extent, low impact on the average *phase height, but..*

$$h_{v} \neq \frac{1}{k_{z}} \left(\phi_{A} - \phi_{B} \right)$$

- → Effects of volume penetration
- → Terrain-induced distortions

OBJECTIVES

To quantify the amount of terrain slope distortion and volume penetration using PolSARProSIM simulations and RVoG predictions

To perform ALOS-PALSAR observations and to retrieve slope-corrected forest height estimates

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. – 2^{cd} Oct. 2009

EURAD

2009

Volume and slope effects top/bottom scattering phase center

- \rightarrow Polarization diversity allows to identify top- (\otimes) and bottom-phase center (\otimes)
- \rightarrow Complex coherence includes the contribution of volume and slope distortion

PolSARProSIM

results

→PolSARProSIM

- Maxwell-based scattering model
- Fully coherent PolInSAR simulator
- Only target decorrelation

→ Input Parameters

- Satellite altitude, baseline, inc. angle
- Forest height *h*, density, tree type
- Soil roughness, moisture, terrain slope

\rightarrow Output Parameters

- Interferometric height h_{int}
- Individual scattering mechanisms $\rightarrow \sigma$, η

\rightarrow Simulated scenario

- ALOS/PALSAR acquisition geometry
- Moderate density and soil roughness
- L-band
- Pine forest

volume penetration

volume penetration

azimuth terrain slope

 $h_{v} = 15 \text{ m}$

15

FOREST HEIGHT ESTIMATION

azimuth terrain slope

range terrain slope

S.P.Q.R. Islence, Program, and Gustly in Excludence

range terrain slope

rmazione

POLINSAR ALOS PALSAR

- → Full-PolInSAR → Amazon/Brasil
- \rightarrow Ascending pass
- \rightarrow Baseline = 130 m

POLINSAR ALOS PALSAR

Max/Min Phase difference scaled by vertical wavenumber:

$$h_{v0} = \frac{1}{k_z} \arg \left[\widetilde{\gamma}^A \, \widetilde{\gamma}^{B^*} \right]$$

POLINSAR ALOS PALSAR

Slope correction maps for Max/Min phase height generated by combining SRTM DEM and PolSARProSIM simulations

$$h_{v1} = \frac{1}{k_z} \arg\left[\frac{\widetilde{\gamma}^A \, \widetilde{\gamma}^{B^*}}{\widetilde{\gamma}_s^A(\alpha) \, \widetilde{\gamma}_s^{B^*}(\alpha)}\right]$$

POLINSAR ALOS PALSAR

15 m

Penetration correction maps for Max/Min phase height generated by combining height estimates at STEP-1 and PoISARProSIM simulations

$$h_{v2} = \frac{1}{k_z} \arg \left[\frac{\widetilde{\gamma}^A \, \widetilde{\gamma}^{B^*}}{\widetilde{\gamma}_s^A(\alpha) \, \widetilde{\gamma}_s^{B^*}(\alpha)} e^{j\phi_1(h_{v1})} e^{j\phi_2(h_{v1})} \right]$$

COMPACT POLARIMETRY AND COMPACT POLINSAR

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. – 2^{cd} Oct. 2009

 $(\cap$

WORKSHOP AND SHORT COURSES

European Microwave Week, Rome, 28th Sept. - 2cd Oct. 2009

APL

COMPACT/HYBRID MODES

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. – 2^{cd} Oct. 2009

Freeman Decomposition QP: Quad Polarization

R: Surface G: Volume B: Double Bounce

Courtesy of Dr. F. Charbonneau (CCRS) - POLINSAR09

WORKSHOP AND SHORT COURSES

European Microwave Week, Rome, 28th Sept. - 2cd Oct. 2009

 $G = \sqrt{S_o(1-m)}$

2009

 $B = \sqrt{S_o m \frac{(1 + \sin \delta)}{2}}$

Compact / Hybrid Pol Data are usually synthesized from full-pol SLC data

Synthesis of Compact / Hybrid Pol Data more close to the reality On received signal before the SAR Receiver (a)

Taking into account:

Attenuation (co-, x-channels), A / D Conversion, SAR processor

SAR ANTENNA

To compare the PolinSAR performance of Compact-Pol with Full-Pol using L-band data

How

Reconstruction of the pseudo full PolInSAR information aims

- to extract the HH-HV-VV channels from compact-pol data
- to easily compare them with the full-pol channels

WORKSHOP AND SHORT COURSES European Microwave Week, Rome, 28th Sept. – 2^{cd} Oct. 2009

2009 **EuWiT** 2009

EURAD

2009

COMPACT PollnSAR

Reconstruction of full PollnSAR information

Reconstruction of full PollnSAR information

CP scattering vectors

WORKSHOP AND SHORT COURSES

European Microwave Week, Rome, 28th Sept. - 2^{cd} Oct. 2009

4×4 C-PolInSAR covariance matrix

8 observables < 18 unknowns

🕥 EuWiT

EuMIC

2009

EUROPEAN

COMPACT Pol-InSAR

Reconstruction of full PollnSAR information

 \rightarrow Additional equations from symmetry properties (Nghiem, 1992)

- \rightarrow Two approaches:
 - rotation symmetry
 - reflection symmetry

C-PolInSAR observables + Reflection symmetry + rotation invariance of x-pol terms 6×6 reconstructed F-PolInSAR coherency matrix $T_6^{
m ref}$

Cross-coherency matrix:

2009

2009

European Microwave Week, Rome, 28th Sept. - 2^{cd} Oct. 2009

COMPACT Pol-InSAR

Performance evaluation scheme

Reconstructed FP information Airborne E-SAR data (Traunstein, Germany)

HH **CP** circular Full pol CP linear 45 VV HV NCE 2009 Europe

Reconstructed FP information Airborne E-SAR data (Traunstein, Germany)

CP linear 45 Full pol Europea

Reconstructed FP information

Airborne E-SAR data (Traunstein, Germany)

Row profiles

European Microwave Week, Rome, 28th Sept. - 2cd Oct. 2009

NOT A SUBSTITUTE FOR COMPLETE FULL-POL SAR

- SAR Processor does not introduce important distortions
- $\overline{\mathbf{S}}$
- A/D Converters increase the Signal-to-Quantization Noise on HV/VH (6dB)

 $\overline{\mathbf{S}}$

Attenuation imbalance (9dB): Important Effect for the HV reconstruction

Compact / Hybrid Polarimetric Reconstruction procedures cannot cope with point scatterers.

 \odot

 \odot

Compact / Hybrid Polarimetric Reconstruction procedures cannot cope with quantitative Surf / Vol models, even in the "well posed" reflection symmetry case.

Compact PolInSAR gives good performance in presence of "well posed" symmetry case.

